Chapter 5

Verifying Identities, and Some Complexity

Bv Sariel Har-Peled. March 19. 2024% The events of September 8 prompted Foch to draft
y ’ ’ the later legendary signal: “My centre is giving way,

my right is in retreat, situation excellent. I attack.” It
was probably never sent.

John Keegan, The first world war

5.1. Verifying equality

5.1.1. Vectors

You are given two binary vectors v = (vi,...,v,),u = (uy,...,u,) € {0, 1}" and you would like to decide if
they are equal or not. Unfortunately, the only access you have to the two vectors is via a black-box that enables
you to compute the dot-product of two binary vectors over Z,. Formally, given two binary vectors as above,
their dot-product is (v,u) = }i, v;u; (Which is a non-negative integer number). Their dot product modulo 2, is
(v,u) mod 2 (i.e.,itis 1if (v, u) is odd and O otherwise).

Naturally, we could the use the black-box to read the vectors (using 2n calls), but since we are interested
only in deciding if they are equal or not, this should require less calls to the black-box (which is expensive).

Lemma 5.1.1. Given two binary vectors v,u € {0, 1}", a randomized algorithm can, using two computations
of dot-product modulo 2, decide if v is equal to u or not. The algorithm may return one of the following two
values:

#: Thenv # u.

=: Then the probability that the algorithm made a mistake (i.e., the vectors are different) is at most 1/2.
The running time of the algorithm is O(n + B(n)), where B(n) is the time to compute a single dot-product of
vectors of length n.

Proof: Pick arandom vector r = (ry,...,r,) € {0, 1}" by picking each coordinate independently with probabil-
ity 1/2. Compute the two dot-products (v,r) and (u, r).
(A) If (v,r) =(v,r)mod2 = the algorithm returns ‘=".
(B) If (v,r) #£(v,ry mod 2 = the algorithm returns ‘#’.
Clearly, if the ‘#’ is returned then v # u.
So, assume that the algorithm returned ‘=" but v # u. For the sake of simplicity of exposition, assume that
they differ on the nth bit: u, # v,. We then have that

=a’ =p’
— —
n—1 n—1

a={v,r)= Z Vit VI, and B=@r)= Z u;r; + Uuyr,.

i=1 i=1
Now, there are two possibilities:
(A) If @ # 8 mod 2, then, with probability half, we have r; = 0, and as such @ # 8 mod 2.
(B) If @ = B mod 2, then, with probability half, we have r; = 1, and as such a # 8 mod 2.
As such, with probability at most half, the algorithm would fail to discover that the two vectors are different.ll

®This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc/3.0/

5.1.1.1. Amplification

Of course, this is not a satisfying algorithm — it returns the correct answer only with probability half if the
vectors are different. So, let us run the algorithm ¢ times. Let 77, ..., T, be the returned values from all these
executions. If any of the f executions returns that the vectors are different, then we know that they are different.

P[Algorithm fails] = P[v # u, but all ¢ executions return ‘=’]
=]P)[(Tl = ‘=’) N (T2 — ‘=’) N---N (T[— =’]

We thus get the following result.

Lemma 5.1.2. Given two binary vectors v,u € {0, l}" and a confidence parameter 6 > 0, a randomized
algorithm can decide if v is equal to u or not. More precisely, the algorithm may return one of the two
following results:

#: Then v # u.

=: Then, with probability > 1 — d, we have v # u.
The running time of the algorithm is O((n + B(n)) In (5‘1), where B(n) is the time to compute a single dot-product
of two vectors of length n.

Proof: Follows from the above by setting 7 = [1g(1/6)]. [

5.1.2. Matrices

Given three binary matrices B, C, D of size n X n, we are interested in deciding if BC = D. Computing BC is
expensive — the fastest known (theoretical!) algorithm has running time (roughly) 0(n2'37). On the other hand,

multiplying such a matrix with a vector r (modulo 2, as usual) takes only O(n*) time (and this algorithm is
simple).

Lemma 5.1.3. Given three binary matrices B, C,D € {0, 1}"X" and a confidence parameter 6 > 0, a randomized
algorithm can decide if BC = D or not. More precisely the algorithm can return one of the following two
results:

#: Then BC # D.

=: Then BC = D with probability > 1 — 6.
The running time of the algorithm is O(n2 log (5‘1).

Proof: Compute a random vector r = (r,...,7,), and compute the quantity x = BCr = B(Cr) in O(n?) time,
using the associative property of matrix multiplication. Similarly, compute y = Dr. Now, if X # y then return

[J)

Now, we execute this algorithm # = [lg 6‘1-| times. If all of these independent runs return that the matrices
are equal then return ‘=".

The algorithm fails only if BC # D, but then, assume the ith row in two matrices BC and D are different.
The probability that the algorithm would not detect that these rows are different is at most 1/2, by Lemma 5.1.1.
As such, the probability that all ¢ runs failed is at most 1/2" < 6, as desired. |

2

5.1.3. Checking identity for polynomials

5.1.3.1. The Schwartz-Zippel lemma

Let ¥ be a field (i.e., real numbers). Let F[x;,...,X,] denote the set of polynomials over the_ n Variable;s

X1, ..., X%, over F. Such a polynomial is a sum of monomial, where a monomial has the form c - x| - xéz R Wil
where ¢ € . The degree of this monomial is degree(c .)c"l1 . xéz . x;) =1y + iy + -+ i, Thus, a polynomial
of degree d over n variables has potentially up to dn‘ monomials (the exact bound is messier, but an easy lower
bound on this quantity is (Z)).

For a polynomial f € F[xi,...,X,], the zero set of f, is the set Z; = {(x1,...,x,) | f(x1,...,x,) = O}
Intuitively, the zero set Z; = F" only if f(xi,...,x,) = O (and then it is the zero polynomial), but otherwise
(i.e., f # 0) Z should be much “smaller”.

Specifically, a polynomial in a single variable of degree d is either zero everywhere, or has at most d roots
(i.e., |Zs| < d). This is known as the fundamental theorem of algebra®. The picture gets much messier once
one deals with multi-variate polynomials, but fortunately there is a simple and elegant lemma that bounds the
number of zeros if we pick the values from the right set of values.

Lemma 5.1.4 (Schwartz—Zippel). Let f € F[xy,..., x,] be a non-zero polynomial of total degree d > 0, over
afieldF. Let S C IF be finite. Let v = (ry,...,r,) be randomly and uniformly chosen from S". Then

d
P[f(r)=0] < ST

Equivalently, we have |Z; N S"| < d|S|".

Proof: The proof is by induction on n. For n = 1, by the theorem, formally known as the fundamental theorem
of algebra, |Zy N S| < |Zf| < d. So assume the theorem holds for n — 1. Since f is non-zero, it can be written as
a sum of d polynomials in n — 1 variables. That is, f can be written as

d
fam) =) XA, x),
i=0
where degree(f;) < d —i. Since f is not zero, one of the f's must be non-zero, and let i the maximum value such
that f; # 0.
Now, we randomly choose the values r,,...,r, € S (independently and uniformly). And consider the
polynomial in the single variable x, which is

d
g(x) = Z fi(ra, ..., o)X
=0

Let F be the event that fi(r,,...,r,) = 0. Let G be the event that g(x) = 0. By induction, we have P[J] <
(d —1)/|S|. More interestingly if 3 does not happen, then degree(g) = i. As such, by induction, we have that
— — i
IP’[9|3P]=IP>[g(x):O|CT’“]Sﬂ.

‘We conclude that

B[f0 = 0] = P N 51+ PIG N T1 < PIF1 + B[S | F1 < L+ L < & .

+ — < —.
ISTIST 18]
®@Wikipedia notes that the proof is not algebraic, and it is definitely not fundamental to modern algebra. So maybe it should be
cited as “the theorem formerly known as the fundamental theorem of algebra”.

3

Remark 5.1.5. Consider the polynomial f(x,y) = (x — 1)> + (y — 1)*> — 1. The zero set of this polynomial is
the unit circle. So the zero set Z; is infinite in this case. However, note that for any choice of S, the set S% is a
grid. The Schwartz-Zippel lemma, tells us that there relatively few grid points that are in the zero set.

5.1.3.2. Applications

5.1.3.2.1. Checking if a polynomial is the zero polynomial. Let f be a polynomial of degree d, with n
variables, over the reals that can be evaluated in O(T') time. One can check if f zero, by picking randomly a n
numbers from S = [d°]. By Lemma 5.1.4, we have that the probability of f to be zero over the chosen values
is < d/d?, which is a small number. As above, we can do amplification to get a high confidence answer.

5.1.3.2.2. Checking if two polynomials are equal. Given two polynomials f and g, one can now check if
they are equal by checking if f(r) = g(r), for some random input. The proof of correctness follows from the
above, as one interpret the algorithm as checking if f — g is the zero polynomial.

5.1.3.2.3. Verifying polynomials product. Given three polynomials f, g, and &, one can now check if fg = h.
Again, one randomly pick a value r, and check if f(r)g(r) = h(r). The proof of correctness follows from the
above, as one interprets the algorithm as checking if fg — & is the zero polynomial.

5.1.4. Checking if a bipartite graph has a perfect matching
Let G = (L UR, E) be a bipartite graph. Let L = {u,...,u,} and R = {vy,...,v,}. Consider the set of variables

V= {xi,j | Uv; € E}.

Let M be an n X n matrix, where M[i, j] = 0 if w;v; ¢ E, and M[i, j] = x;; otherwise. Let I be the set of all
permutations of [n].

A perfect matching is a permutation 7 : [n] — [nr], such that for all i, we have u;v,;, € E. For such a
permutation 7, consider the monomial

fo = sign(m) | | M, 11,
i=1

where sign is the sign of the permutation (it is either —1 or +1 — for our purpose here we do not care about
the exact definition of this quantity). It is either a polynomial of degree exactly n, or it is zero. Furthermore,
observe that for any two different permutation m,o0 € II, we have that if f; and f, are both non-zero, then

fn * fa’ and fn’ * _f0'~

Consider the following “crazy” polynomial over the set of variables V:

Y = Y(V) = det(M) =) sign(z)fr.

mell

If there is perfect matching in G, then there is a permutation 7 such that f; # 0. But this implies that ¢ # 0
(since it has a non-zero monomials, and the monomials can not cancel each other).

In the other direction, if there is no perfect matching in G, then f, = O for all permutation 7. This implies
that ¢ = 0. Thus, deciding if G has a perfect matching is equivalent to deciding if ¥ # 0. The polynomial y is
defined via a determinant of a matrix that variables as some of the entries (and zeros otherwise). By the above,
all we need to do is to evaluate ¢ over some random values. If we use exact arithmetic, we would just pick a
random number in [0, 1] for each variable, and evaluate ¢ for these values of the variable. Namely, we filled

4

the matrix M with values (so it is all numbers now), and we need to computes its determinant. Via Gaussian
elimination, the determinant can be computed in cubic time. Thus, we can evaluate ¢ in cubic time, which
implies that with high probability we can check if G has a perfect matching.

If we do not want to be prisoners of the impreciseness of floating point arithmetic, then one can perform
the above calculations over some finite field (usually, the field is simply working modulo a prime number).

5.2. Las Vegas and Monte Carlo algorithms

Definition 5.2.1. A Las Vegas algorithm is a randomized algorithms that always return the correct result. The
only variant is that it’s running time might change between executions.

An example for a Las Vegas algorithm is the QuickSort algorithm.

Definition 5.2.2. A Monte Carlo algorithm is a randomized algorithm that might output an incorrect result.
However, the probability of error can be diminished by repeated executions of the algorithm.

The matrix multiplication algorithm is an example of a Monte Carlo algorithm.

5.2.1. Complexity Classes

I assume people know what are Turing machines, NP, NPC, RAM machines, uniform model, logarithmic
model. PSPACE, and EXP. If you do now know what are those things, you should read about them. Some
of that is covered in the randomized algorithms book, and some other stuff is covered in any basic text on
complexity theory®.

Definition 5.2.3. The class P consists of all languages L that have a polynomial time algorithm Alg, such that
for any input X*, we have

(A) x € L= Alg(x) accepts,

(B) x ¢ L = Alg(x) rejects.

Definition 5.2.4. The class NP consists of all languages L that have a polynomial time algorithm Alg, such
that for any input X*, we have:
(1) If x € L = then dy € ", Alg(x,y) accepts, where [y| (i.e. the length of y) is bounded by a polynomial in
|x].
(i1) If x ¢ L = then Vy € X*Alg(x, y) rejects.

Definition 5.2.5. For a complexity class €, we define the complementary class co-C as the set of languages
whose complement is in the class C. That is

co—G:{L|ZEG},
4 where L ="\ L.

It is obvious that P = co—P and P € NP N co—NP. (It is currently unknown if P = NP N co—NP or whether
NP = co—NP, although both statements are believed to be false.)

®There is also the internet.

Definition 5.2.6. The class RP (for Randomized Polynomial time) consists of all languages L that have a
randomized algorithm Alg with worst case polynomial running time such that for any input x € £*, we have
(i) If x € L then P[Alg(x) accepts] > 1/2.
(i1) x ¢ L then P[Alg(x) accepts] = 0.

An RP algorithm is a Monte Carlo algorithm, but this algorithm can make a mistake only if x € L. As such,
co—RP is all the languages that have a Monte Carlo algorithm that make a mistake only if x ¢ L. A problem
which is in RP N co—RP has an algorithm that does not make a mistake, namely a Las Vegas algorithm.

Definition 5.2.7. The class ZPP (for Zero-error Probabilistic Polynomial time) is the class of languages that
have a Las Vegas algorithm that runs in expected polynomial time.

Definition 5.2.8. The class PP (for Probabilistic Polynomial time) is the class of languages that have a ran-
domized algorithm Alg, with worst case polynomial running time, such that for any input x € £*, we have

(i) If x € L then P[Alg(x) accepts] > 1/2.

(ii) If x ¢ L then P[Alg(x) accepts] < 1/2.

The class PP is not very useful. Why?

Exercise 5.2.9. Provide a PP algorithm for 3SAT.

Consider the mind-boggling stupid randomized algorithm that returns either yes or no with probability half.
This algorithm is almost in PP, as it return the correct answer with probability half. An algorithm is in PP
needs to be slightly better, and be correct with probability better than half. However, how much better can be
made to be arbitrarily close to 1/2. In particular, there is no way to do effective amplification with such an
algorithm.

Definition 5.2.10. The class BPP (for Bounded-error Probabilistic Polynomial time) is the class of languages
that have a randomized algorithm Alg with worst case polynomial running time such that for any input x € X*,
we have

(i) If x € L then P[Alg(x) accepts] > 3/4.

(ii) If x ¢ L then P[Alg(x) accepts]| < 1/4.

5.3. Bibliographical notes

Section 5.2 follows [MR95, Section 1.5].

References

[MRO95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University
Press, 1995.

http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Verifying Identities, and Some Complexity
	Verifying equality
	Vectors
	Matrices
	Checking identity for polynomials
	Checking if a bipartite graph has a perfect matching

	Las Vegas and Monte Carlo algorithms
	Complexity Classes

	Bibliographical notes

