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Chapter 1

Expectation and Quick Sort
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

Everybody knows that the dice are loaded
Everybody rolls with their fingers crossed
Everybody knows the war is over
Everybody knows the good guys lost
Everybody knows the fight was fixed
The poor stay poor, the rich get rich
That’s how it goes
Everybody knows

Everybody knows, Leonard Cohen

1.1. Basic probability
Here we recall some definitions about probability. The reader already familiar with these definition can
happily skip this section.

1.1.1. Formal basic definitions: Sample space, f-algebra, and probability
A sample space Ω is a set of all possible outcomes of an experiment. We also have a set of events F ,
where every member of F is a subset of Ω. Formally, we require that F is a f-algebra.

Definition 1.1.1. A single element of Ω is an elementary event or an atomic event.

Definition 1.1.2. A set F of subsets of Ω is a f-algebra if:
(i) F is not empty,
(ii) if - ∈ F then - = (Ω \ -) ∈ F , and
(iii) if -,. ∈ F then - ∪ . ∈ F .
More generally, we require that if -8 ∈ F , for 8 ∈ Z, then ∪8-8 ∈ F . A member of F is an event.

As a concrete example, if we are rolling a dice, then Ω = {1, 2, 3, 4, 5, 6} and F would be the power
set of all possible subsets of Ω.

Definition 1.1.3. A probability measure is a mapping P : F → [0, 1] assigning probabilities to events.
The function P needs to have the following properties:
(i) Additive: for -,. ∈ F disjoint sets, we have that P

[
- ∪ .

]
= P

[
-
]
+ P

[
.
]
, and

(ii) P[Ω] = 1.

Definition 1.1.4. A probability space is a triple (Ω, F , P), where Ω is a sample space, F is a f-algebra
defined over Ω, and P is a probability measure.
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Definition 1.1.5. A random variable 5 is a mapping from Ω into some set G. We require that the
probability of the random variable to take on any value in a given subset of values is well defined.
Formally, for any subset * ⊆ G, we have that 5 −1(*) ∈ F . That is, P[ 5 ∈ *] = P

[
5 −1(*)

]
is defined.

Going back to the dice example, the number on the top of the dice when we roll it is a random
variable. Similarly, let - be one if the number rolled is larger than 3, and zero otherwise. Clearly - is
a random variable.

We denote the probability of a random variable - to get the value G, by P[- = G] (or sometime
P[G], if we are lazy).

1.2. Expectation and conditional probability

1.2.1. Expectation
Definition 1.2.1 (Expectation). The expectation of a random variable -, is its average. Formally, the
expectation of - is

E
[
-
]
=

∑
G

G P
[
- = G

]
.

Lemma 1.2.2 (Linearity of expectation). Linearity of expectation is the property that for any
two random variables - and . , we have that E

[
- + .

]
= E

[
-
]
+ E

[
.
]
.

Proof: E
[
- + .

]
=

∑
l∈Ω
P[l]

(
- (l) + . (l)

)
=

∑
l∈Ω
P[l]- (l) +

∑
l∈Ω
P[l]. (l) = E

[
-
]
+ E

[
.
]
. �

Example 1.2.3. Let � be a boolean formula with = variables in CNF form, with < clauses, where each
clause has exactly : literals. A random assignment for �, where value 0 or 1 is picked with probability
1/2, satisfies in expectation (1 − 2−: )< of the clauses.

1.2.2. Conditional probability
Definition 1.2.4 (Conditional Probability). The conditional probability of - given . , is the probability
that - = G given that . = H. We denote this quantity by P[- = G | . = H].

One useful way to think about the conditional probability P[- | . ] is as a function, between the
given value of . (i.e., H), and the probability of - (to be equal to G) in this case. Since in many cases G
and H are omitted in the notation, it is somewhat confusing.

The conditional probability can be computed using the formula

P[- = G | . = H] =
P
[
(- = G) ∩ (. = H)

]
P[. = H]

.

For example, let us roll a dice and let - be the number we got. Let . be the random variable that
is true if the number we get is even. Then, we have that

P
[
- = 2

�� . = CAD4] = 1
3 .
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Definition 1.2.5. Two random variables - and . are independent if P[- = G | . = H] = P[- = G], for
all G and H.

Observation 1.2.6. If - and . are independent then P
[
- = G

��. = H ] = P[- = G] which is equivalent

to P[- = G ∩ . = H]
P[. = H]

= P[- = G]. That is, - and . are independent, if for all G and H, we have that

P
[
- = G ∩ . = H

]
= P

[
- = G

]
P
[
. = H

]
.

Remark. Informally, and not quite correctly, one possible way to think about conditional probability
P[- = G | . = H] is as measuring the benefit of having more information. If we know that . = H, do we
have any change in the probability of - = G?

Lemma 1.2.8. If - and . are two random independent variables, then E[-. ] = E[-] E[. ].

1.2.3. Application: Approximating :-SAT
We remind the reader that an instance of 3SAT is a boolean formula, for example � = (G1 + G2 + G3) (G4 +
G1 + G2), and the decision problem is to decide if the formula has a satisfiable assignment. Interestingly,
we can turn this into an optimization problem.

Max 3SAT
Instance: A collection of clauses: �1, . . . , �< .
Question: Find the assignment to G1, ..., G= that satisfies the maximum number of clauses.

Clearly, since 3SAT is NP-Complete it implies that Max 3SAT is NP-Hard. In particular, the
formula � becomes the following set of two clauses:

G1 + G2 + G3 and G4 + G1 + G2.

Note, that Max 3SAT is a maximization problem.

Definition 1.2.9. Algorithm Alg for a maximization problem achieves an approximation factor U if for
all inputs, we have:

Alg(�)
Opt(�) ≥ U.

In the following, we present a randomized algorithm – it is allowed to consult with a source of
random numbers in making decisions. A key property we need about random variables, is the linearity
of expectation property, which is easy to derive directly from the definition of expectation.

Definition 1.2.10 (Linearity of expectations.). Given two random variables -,. (not necessarily inde-
pendent, we have that E

[
- + .

]
= E

[
-
]
+ E

[
.
]
.

Theorem 1.2.11. One can achieve (in expectation) (7/8)-approximation to Max 3SAT in polynomial
time. Namely, if the instance has < clauses, then the generated assignment satisfies (7/8)< clauses in
expectation.
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Proof: Let G1, . . . , G= be the = variables used in the given instance. The algorithm works by randomly
assigning values to G1, . . . , G=, independently, and equal probability, to 0 or 1, for each one of the variables.

Let .8 be the indicator variables which is 1 if (and only if) the 8th clause is satisfied by the generated
random assignment and 0 otherwise, for 8 = 1, . . . , <. Formally, we have

.8 =

{
1 �8 is satisfied by the generated assignment,
0 otherwise.

Now, the number of clauses satisfied by the given assignment is . =
∑<
8=1.8. We claim that E[. ] =

(7/8)<, where < is the number of clauses in the input. Indeed, we have

E
[
.
]
= E

[ <∑
8=1
.8

]
=

<∑
8=1
E
[
.8

]
by linearity of expectation. Now, what is the probability that .8 = 0? This is the probability that all
three literals appear in the clause �8 are evaluated to FALSE. Since the three literals are instance of three
distinct variable, these three events are independent, and as such the probability for this happening is

P
[
.8 = 0

]
=

1
2 ∗

1
2 ∗

1
2 =

1
8 .

(Another way to see this, is to observe that since �8 has exactly three literals, there is only one possible
assignment to the three variables appearing in it, such that the clause evaluates to FALSE. Now, there
are eight (8) possible assignments to this clause, and thus the probability of picking a FALSE assignment
is 1/8.) Thus,

P
[
.8 = 1

]
= 1 − P

[
.8 = 0

]
=

7
8 ,

and
E
[
.8

]
= P

[
.8 = 0

]
∗ 0 + P

[
.8 = 1

]
∗ 1 = 7

8 .

Namely, E[# of clauses sat] = E[. ] =
∑<
8=1 E[.8] = (7/8)<. Since the optimal solution satisfies at most

< clauses, the claim follows. �

Curiously, Theorem 1.2.11 is stronger than what one usually would be able to get for an approx-
imation algorithm. Here, the approximation quality is independent of how well the optimal solution
does (the optimal can satisfy at most < clauses, as such we get a (7/8)-approximation. Curiouser and
curiouser¬, the algorithm does not even look on the input when generating the random assignment.

Håstad [Hås01a] proved that one can do no better; that is, for any constant Y > 0, one can not
approximate 3SAT in polynomial time (unless P = NP) to within a factor of 7/8 + Y. It is pretty
amazing that a trivial algorithm like the above is essentially optimal.

Remark 1.2.12. For : ≥ 3, the above implies 1− 2−: -approximation algorithm, for :-SAT, as long as the
instances are each of length at least :.

¬“Curiouser and curiouser!” Cried Alice (she was so much surprised, that for the moment she quite forgot how to
speak good English). – Alice in wonderland, Lewis Carol
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1.3. The Markov and Chebyshev’s inequalities

1.3.1. Markov’s inequality
We remind the reader that for a random variable - assuming real values, its expectation is E[. ] =∑
H H · P[. = H]. Similarly, for a function 5 (·), we have E[ 5 (. )] =

∑
H 5 (H) · P[. = H].

Theorem 1.3.1 (Markov’s Inequality). Let . be a random variable assuming only non-negative val-
ues. Then for all C > 0, we have

P
[
. ≥ C

]
≤
E
[
.
]

C
.

Proof: Indeed,

E
[
.
]
=

∑
H≥C

H P
[
. = H

]
+

∑
H<C

H P[. = H] ≥
∑
H≥C

H P
[
. = H

]
≥

∑
H≥C

C P
[
. = H

]
= C P

[
. ≥ C

]
. �

Markov inequality is tight, as the following exercise testifies.

Exercise 1.3.2. For any (integer) : > 1, define a random positive variable -: such that P[-: ≥ : E[-: ]] =
1/:.

1.3.1.1. Another example for expectation

Let -8 ∈ {−1, +1} with probability half for each value, for 8 = 1, . . . , = (all picked independently). Let
. =

∑
8 -8.

E[. ] = E

[∑
8

-8

]
=

∑
8

E[-8] = = · 0 = 0.

A more interesting quantity is

E
[
.2] = E[(∑

8

-8)2
]
= E

[∑
8

-2
8 + 2

∑
8< 9

-8- 9

]
=

∑
8

E
[
-2
8

]
+ 2E

[∑
8< 9

-8- 9

]
= = + 2

∑
8< 9

E
[
-8- 9

]
= = + 2

∑
8< 9

E[-8] E
[
- 9

]
= =.

Lemma 1.3.3. Let -8 ∈ {−1, +1} with probability half for each value, for 8 = 1, . . . , = (all picked inde-
pendently). We have that P

[
|∑8 -8 | > C

√
=
]
< 1/C2.

Proof: Let . =
∑
8 -8 and / = .2. We have

P

[�����∑
8

-8

����� > C√=
]
= P


(∑
8

-8

)2

> C2=

 = P
[
.2 > C2 E

[
.2] ] = P[/ > C2 E[/]] ≤ 1/C2,

by Markov’s inequality. �

15



1.3.2. Chebychev’s inequality
Theorem 1.3.4 (Chebyshev’s inequality). Let - be a real random variable, with `- = E[-], and
f- =

√
V[-]. Then, for any C > 0, we have P

[
|- − `- | ≥ Cf-

]
≤ 1/C2.

Proof: Note that
P
[
|- − `- | ≥ Cf-

]
= P

[
(- − `-)2 ≥ C2f2

-

]
.

Set . = (- − `-)2. Clearly, E[.. ] = f2
-
. Now, apply Markov’s inequality to . . �

1.4. Quick Sort
Let the input be a set ) = {C1, . . . , C=} of = items to be sorted. We remind the reader, that the
QuickSort algorithm randomly pick a pivot element (uniformly), splits the input into two subarrays of
all the elements smaller than the pivot, and all the elements larger than the pivot, and then it recurses
on these two subarrays (the pivot is not included in these two subproblems). Here we will show that
the expected running time of QuickSort is $ (= log =).

Definition 1.4.1. For an event E, let - be a random variable which is 1 if E occurred and 0 otherwise.
The random variable - is an indicator variable.

Observation 1.4.2. For an indicator variable - of an event E, we have

E
[
-
]
= 0 · P

[
- = 0

]
+ 1 · P

[
- = 1

]
= P

[
- = 1

]
= P

[
E
]
.

Let (1, . . . , (= be the elements in their sorted order (i.e., the output order). Let -8 9 = 1 be the
indicator variable which is one iff QuickSort compares (8 to ( 9 , and let ?8 9 denote the probability that
this happens. Clearly, the number of comparisons performed by the algorithm is � =

∑
8< 9 -8 9 . By

linearity of expectations, we have

E
[
�
]
= E

[∑
8< 9

-8 9

]
=

∑
8< 9

E
[
-8 9

]
=

∑
8< 9

?8 9 .

We want to bound ?8 9 , the probability that the (8 is compared to ( 9 . Consider the last recursive
call involving both (8 and ( 9 . Clearly, the pivot at this step must be one of (8, . . . , ( 9 , all equally likely.
Indeed, (8 and ( 9 were separated in the next recursive call.

Observe, that (8 and ( 9 get compared if and only if pivot is (8 or ( 9 . Thus, the probability for that
is 2/( 9 − 8 + 1). Indeed,

?8 9 = P
[
(8 or ( 9 picked

�� picked pivot from (8, . . . , ( 9
]
=

2
9 − 8 + 1 .

Thus,
=∑
8=1

∑
9>8

?8 9 =

=∑
8=1

∑
9>8

2/( 9 − 8 + 1) =
=∑
8=1

=−8+1∑
:=1

2
:
≤ 2

=∑
8=1

=∑
:=1

1
:
≤ 2=�= ≤ = + 2= ln =,

where �= is the harmonic number �= =
∑=
8=1 1/8, We thus proved the following result.

Using integration to bound summation, we have �= ≤ 1 +
∫ =
G=1

1
G
3G ≤ 1 + ln =. Similarly, �= ≥

∫ =
G=1

1
G
3G = ln =.
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Lemma 1.4.3. QuickSort performs in expectation at most = + 2= ln = comparisons, when sorting =
elements.

Note, that this holds for all inputs. No assumption on the input is made. Similar bounds holds not
only in expectation, but also with high probability.

This raises the question, of how does the algorithm pick a random element? We assume we have
access to a random source that can get us number between 1 and = uniformly.

Note, that the algorithm always works, but it might take quadratic time in the worst case.

Remark 1.4.4 (Wait, wait, wait). Let us do the key argument in the above more slowly, and more carefully.
Imagine, that before running QuickSort we choose for every element a random priority, which is a real
number in the range [0, 1]. Now, we reimplement QuickSort such that it always pick the element
with the lowest random priority (in the given subproblem) to be the pivot. One can verify that this
variant and the standard implementation have the same running time. Now, 08 gets compares to 0 9 if
and only if all the elements 08+1, . . . , 0 9−1 have random priority larger than both the random priority of
08 and the random priority of 0 9 . But the probability that one of two elements would have the lowest
random-priority out of 9 − 8 + 1 elements is 2 ∗ 1/( 9 − 8 + 1), as claimed.
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Chapter 2

Quick Sort with High Probability
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

2.1. Conditional expectation
Definition 2.1.1 (Conditional Probability). The conditional probability of - given . , is the probability
that - = G given that . = H. We denote this quantity by P[- = G | . = H].

For two random variables - and . , let E[- | . ] denote the expected value of -, if the value of . is
specified. Formally, we have

E[- | . = H] =
∑
G∈Ω

G P[- = G | . = H] .

The expression E[- | . ], which is a shorthand for E[- | . = H], is the conditional expectation of -
given . . In reality, it is a function from the value of H, to the average value of -. As such, one can think
of conditional expectation as a function 5 (H) = E[- | . = H].

Lemma 2.1.2. For any two random variables - and . , we have E
[
E[- | . ]

]
= E

[
-
]
.

Proof: E
[
E[- | . ]

]
= E.

[
E
[
-

��. = H ] ] = ∑
H P[. = H] E[- | . = H]

=
∑
H

P
[
. = H

] ∑
G

G P[- = G | . = H] =
∑
H

P
[
. = H

] ∑
G G P[- = G ∩ . = H]
P[. = H]

=
∑
H

∑
G

G P
[
- = G ∩ . = H

]
=

∑
G

G
∑
H

P
[
- = G ∩ . = H

]
=

∑
G

G P
[
- = G

]
= E

[
-
]
. �

Lemma 2.1.3. For any two random variables - and . , we have E
[
. · E[- | . ]

]
= E

[
-.

]
.

Proof: We have that E
[
. · E

[
-

��. ] ]
=

∑
H

P[. = H] · H · E
[
-

��. = H ]
=

∑
H

P[. = H] · H ·
∑
G G P[- = G ∩ . = H]
P[. = H]

=
∑
G

∑
H

GH · P
[
- = G ∩ . = H

]
= E

[
-.

]
. �
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2.2. QuickSort runs in $ (= log =) time with high probability
Consider a set ) of the = items to be sorted, and consider a specific element C ∈ ) . Let -8 be the size of
the input in the 8th level of recursion that contains C. We know that -0 = =, and

E
[
-8

�� -8−1
]
≤ 1

2
3
4-8−1 +

1
2-8−1 ≤

7
8-8−1.

Indeed, with probability 1/2 the pivot is the middle of the subproblem; that is, its rank is between
-8−1/4 and (3/4)-8−1 (and then the subproblem has size ≤ -8−1(3/4)), and with probability 1/2 the
subproblem might has not shrank significantly (i.e., we pretend it did not shrink at all).

Now, observe that for any two random variables we have that E[-] = EH [E[- |. = H ]], see Lemma 2.1.2p19..
As such, we have that

E[-8] = E
H

[
E
[
-8

�� -8−1 = H
] ]
≤ E

-8−1=H

[
7
8 H

]
=

7
8 E[-8−1] ≤

(
7
8

) 8
E[-0] =

(
7
8

) 8
=.

In particular, consider " = 8 log8/7 =. We have that

` = E[-"] ≤
(
7
8

)"
= ≤ 1

=8= =
1
=7 .

Of course, C participates in more than " recursive calls, if and only if -" ≥ 1. However, by Markov’s
inequality (Theorem 1.3.1), we have that

P

[
element C participates

in more than " recursive calls

]
≤ P[-" ≥ 1] ≤ E[-"]1 ≤ 1

=7 ,

as desired. That is, we proved that the probability that any element of the input ) participates in more
than " recursive calls is at most =(1/=7) ≤ 1/=6.

Theorem 2.2.1. For = elements, QuickSort runs in $ (= log =) time, with high probability.

2.3. Treaps
Anybody that ever implemented a balanced binary tree, knows that it can be very painful. A natural
question, is whether we can use randomization to get a simpler data-structure with good performance.

2.3.1. Construction
The key observation is that many of data-structures that offer good performance for balanced binary
search trees, do so by storing additional information to help in how to balance the tree. As such, the
key Idea is that for every element G inserted into the data-structure, randomly choose a priority ?(G);
that is, ?(G) is chosen uniformly and randomly in the range [0, 1].

So, for the set of elements - = {G1, . . . , G=}, with (random) priorities ?(G1), . . . , ?(G=), our purpose
is to build a binary tree which is “balanced”. So, let us pick the element G: with the lowest priority in
-, and make it the root of the tree. Now, we partition - in the natural way:

(A) !: set of all the numbers smaller than G: in -, and
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p(xk)
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(B) ': set of all the numbers larger than G: in -.

We can now build recursively the trees for ! and ', and let denote them by )! and )'. We build
the natural tree, by creating a node for G: , having )! its left child, and )' as its right child.

We call the resulting tree a treap. As it is a tree over the elements, and a heap over the priorities;
that is, treap = tree + heap.

Lemma 2.3.1. Given = elements, the expected depth of a treap ) defined over those elements is $ (log(=)).
Furthermore, this holds with high probability; namely, the probability that the depth of the treap would
exceed 2 log = is smaller than X = =−3, where 3 is an arbitrary constant, and 2 is a constant that depends
on 3.¬

Furthermore, the probability that ) has depth larger than 2C log(=), for any C ≥ 1, is smaller than
=−3C.

Proof: Observe, that every element has equal probability to be in the root of the treap. Thus, the
structure of a treap, is identical to the recursive tree of QuickSort. Indeed, imagine that instead of
picking the pivot uniformly at random, we instead pick the pivot to be the element with the lowest
(random) priority. Clearly, these two ways of choosing pivots are equivalent. As such, the claim follows
immediately from our analysis of the depth of the recursion tree of QuickSort, see Theorem 2.2.1. �

2.3.2. Operations

The following innocent observation is going to be the key insight in implementing operations on treaps:

Observation 2.3.2. Given = distinct elements, and their (distinct) priorities, the treap storing them is
uniquely defined.

2.3.2.1. Insertion

Given an element G to be inserted into an existing treap ) , insert it in the usual way into ) (i.e., treat
it a regular search binary tree). This takes $ (height())). Now, G is a leaf in the treap. Set G priority
?(G) to some random number [0, 1]. Now, while the new tree is a valid search tree, it is not necessarily
still a valid treap, as G’s priority might be smaller than its parent. So, we need to fix the tree around G,
so that the priority property holds.

¬That is, if we want to decrease the probability of failure, that is X, we need to increase 2.
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Figure 2.1: RotateRight: Rotate right in action.

RotateUp(G)
H ← parent(G)
while ?(H) > ?(G) do

if H.left_child = G then
RotateRight(H)

else
RotateLeft(H)

H ← parent(G)
We call RotateUp(G) to do so. Specifically, if G parent is H, and ?(G) < ?(H), we will rotate G up

so that it becomes the parent of H. We repeatedly do it till G has a larger priority than its parent. The
rotation operation takes constant time and plays around with priorities, and importantly, it preserves
the binary search tree order. Here is a rotate right operation RotateRight(�):

RotateLeft is the same tree rewriting operation done in the other direction.
In the end of this process, both the ordering property and the priority property holds. That is, we

have a valid treap that includes all the old elements, and the new element. By Observation 2.3.2, since
the treap is uniquely defined, we have updated the treap correctly. Since every time we do a rotation
the distance of G from the root decrease by one, it follows that insertions takes $ (height())).

2.3.2.2. Deletion

Deletion is just an insertion done in reverse. Specifically, to delete an element G from a treap ) , set its
priority to +∞, and rotate it down it becomes a leaf. The only tricky observation is that you should
rotate always so that the child with the lower priority becomes the new parent. Once G becomes a leaf
deleting it is trivial - just set the pointer pointing to it in the tree to null.

2.3.2.3. Split

Given an element G stored in a treap ) , we would like to split ) into two treaps – one treap )≤ for all the
elements smaller or equal to G, and the other treap )> for all the elements larger than G. To this end,
we set G priority to −∞, fix the priorities by rotating G up so it becomes the root of the treap. The right
child of G is the treap )>, and we disconnect it from ) by setting G right child pointer to null. Next, we
restore G to its real priority, and rotate it down to its natural location. The resulting treap is )≤. This
again takes time that is proportional to the depth of the treap.
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2.3.2.4. Meld

Given two treaps )! and )' such that all the elements in )! are smaller than all the elements in )', we
would like to merge them into a single treap. Find the largest element G stored in )! (this is just the
element stored in the path going only right from the root of the tree). Set G priority to −∞, and rotate
it up the treap so that it becomes the root. Now, G being the largest element in )! has no right child.
Attach )' as the right child of G. Now, restore G priority to its original priority, and rotate it back so
the priorities properties hold.

2.3.3. Summery
Theorem 2.3.3. Let ) be a treap, initialized to an empty treap, and undergoing a sequence of < = =2

insertions, where 2 is some constant. The probability that the depth of the treap in any point in time
would exceed 3 log = is ≤ 1/= 5 , where 3 is an arbitrary constant, and 5 is a constant that depends only
2 and 3.

In particular, a treap can handle insertion/deletion in $ (log =) time with high probability.

Proof: Since the first part of the theorem implies that with high probability all these treaps have
logarithmic depth, then this implies that all operations takes logarithmic time, as an operation on a
treap takes at most the depth of the treap.

As for the first part, let )1, . . . , )< be the sequence of treaps, where )8 is the treap after the 8th
operation. Similarly, let -8 be the set of elements stored in )8. By Lemma 2.3.1, the probability that )8
has large depth is tiny. Specifically, we have that

U8 = P[depth()8) > C2′ log =2] = P
[
depth()8) > 2′C

(
log =2
log |)8 |

)
· log |)8 |

]
≤ 1
=C·2

,

as a tedious and boring but straightforward calculation shows. Picking C to be sufficiently large, we have
that the probability that the 8th treap is too deep is smaller than 1/= 5 +2. By the union bound, since
there are =2 treaps in this sequence of operations, it follows that the probability of any of these treaps
to be too deep is at most 1/= 5 , as desired. �

2.4. Extra: Sorting Nuts and Bolts
Problem 2.4.1 (Sorting Nuts and Bolts). You are given a set of = nuts and = bolts. Every nut have a
matching bolt, and all the = pairs of nuts and bolts have different sizes. Unfortunately, you get the nuts
and bolts separated from each other and you have to match the nuts to the bolts. Furthermore, given
a nut and a bolt, all you can do is to try and match one bolt against a nut (i.e., you can not compare
two nuts to each other, or two bolts to each other).

When comparing a nut to a bolt, either they match, or one is smaller than other (and you known
the relationship after the comparison).

How to match the = nuts to the = bolts quickly? Namely, while performing a small number of
comparisons.
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MatchNuts&Bolts (#: nuts, �: bolts)
Pick a random nut =?8E>C from #

Find its matching bolt 1?8E>C in �
�! ← All bolts in � smaller than =?8E>C
#! ← All nuts in # smaller than 1?8E>C
�' ← All bolts in � larger than =?8E>C
#' ← All nuts in # larger than 1?8E>C
MatchNuts&Bolts(#',�')
MatchNuts&Bolts(#!,�!)

The naive algorithm is of course to compare each nut to
each bolt, and match them together. This would require
a quadratic number of comparisons. Another option is
to sort the nuts by size, and the bolts by size and then
“merge” the two ordered sets, matching them by size. The
only problem is that we can not sorts only the nuts, or only
the bolts, since we can not compare them to each other.
Indeed, we sort the two sets simultaneously, by simulating
QuickSort. The resulting algorithm is depicted on the
right.

2.4.1. Running time analysis
Definition 2.4.2. Let RT denote the random variable which is the running time of the algorithm. Note,
that the running time is a random variable as it might be different between different executions on the
same input.
Definition 2.4.3. For a randomized algorithm, we can speak about the expected running time. Namely,
we are interested in bounding the quantity E[RT] for the worst input.
Definition 2.4.4. The expected running-time of a randomized algorithm for input of size = is

) (=) = max
* is an input of size =

E[RT(*)] ,

where RT(*) is the running time of the algorithm for the input *.
Definition 2.4.5. The rank of an element G in a set (, denoted by rank(G), is the number of elements in
( of size smaller or equal to G. Namely, it is the location of G in the sorted list of the elements of (.
Theorem 2.4.6. The expected running time of MatchNuts&Bolts (and thus also of QuickSort) is
) (=) = $ (= log =), where = is the number of nuts and bolts. The worst case running time of this algorithm
is $ (=2).
Proof: Clearly, we have that P

[
rank(=?8E>C) = :

]
= 1
=
. Furthermore, if the rank of the pivot is : then

) (=) = E
:=rank(=?8E>C )

[$ (=) + ) (: − 1) + ) (= − :)] = $ (=) + E
:
[) (: − 1) + ) (= − :)]

= ) (=) = $ (=) +
=∑
:=1
P['0=: (%8E>C) = :] ∗ () (: − 1) + ) (= − :))

= $ (=) +
=∑
:=1

1
=
· () (: − 1) + ) (= − :)),

by the definition of expectation. It is not easy to verify that the solution to the recurrence ) (=) =
$ (=) +∑=

:=1
1
=
· () (: − 1) + ) (= − :)) is $ (= log =). �

2.5. Bibliographical Notes
Treaps were invented by Siedel and Aragon [SA96]. Experimental evidence suggests that Treaps performs
reasonably well in practice, despite their simplicity, see for example the comparison carried out by Cho
and Sahni [CS00]. Implementations of treaps are readily available. An old implementation I wrote in C
is available here: http://valis.cs.uiuc.edu/blog/?p=6060.
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Chapter 3

On :-wise independence
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

3.1. Pairwise independence

3.1.1. Pairwise independence
Definition 3.1.1. A set of random variables -1, . . . , -= is pairwise independent, if for any pair of values
U, V, and any two indices 8, 9 , we have that

P
[
-8 = U and . 9 = V

]
= P[-8 = U] P

[
. 9 = V

]
.

Namely, the variables are independent if you look at pairs of variables. Compare this to the much
stronger property of independence.

Definition 3.1.2. A set of random variables -1, . . . , -= is independent, if for any C, and any C values
U1, . . . , UC , and any C indices 81, . . . , 8C , we have that

P
[
-81 = U1, -82 = U2, . . . , and .8C = U8C

]
=

C∏
9=1
P
[
-8 9 = U 9

]
.

3.1.2. A pairwise independent set of bits
Let = be a number which is a power of two. As such, C = log2 = = lg = is an integer. Let -0, . . . , -C−1 be
truly independent random bits, each one of them is 1 with probability 1/2.

For a non-negative integer number G, let bit(G, 9) ∈ {0, 1} be the 9th bit in the binary representation
of G. That is, we have G =

∑
9 bit(G, 9)2 9 .

For an index 8 = 1, . . . , 2C − 1, we define .8 =
⊗

9 :bit(8, 9)=1 - 9 , where ⊗ is the xor operator.

Lemma 3.1.3. The random variables .1, .2, . . . , .=−1 are pairwise independent.

Proof: Consider two distinct indices 8, 8′, and two arbitrary values E, E′. We need to prove that

P[.8 = E and .8′ = E′] = P[.8 = E] P[.8′ = E′] =
1
4 .

Here, we used that P[.8 = 1] = P[.8 = 0] = 1/2. To see this, let U be an index such that bit(8, U) = 1,
and observe that this follows readily if pick all the true random variables -0, . . . , -C−1 in such an order
such that -U is the last one to be set.
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Let � = { 9 | bit(8, 9) = 1} and �′ = { 9 | bit(8′, 9) = 1}. If there is an index V ∈ � \ �′, then we have

P[.8 = E | .8′ = E′] = P
[⊗

9 :bit(8, 9)=1- 9 = E
��� .8′ = E′] = P[-V ⊗ ⊗

9 :bit(8, 9)=1
- 9 = E

��� .8′ = E′]
= P

[
-V =

(
E ⊗

⊗
9 :bit(8, 9)=1

- 9

) ��� .8′ = E′] = 1
2 .

This implies that P[.8 = E and .8′ = E′] = P[.8 = E | .8′ = E′] P[.8′ = E′] = (1/2) (1/2) = 1/4, as claimed.
A similar argument implies that if there is an index V ∈ �′ \ �, then P[.8′ = E′ | .8 = E] = 1/2, which

implies the claim in this case.
Since 8 ≠ 8′, one of the two scenarios must happen, implying the claim. �

3.1.3. An application: Max cut
Given a graph G = (V, E) with = vertices and < edges, consider the problem of computing the max-cut.
That is, computing the set of vertices (, such that the cut

((, () = ((,V \ () = {DE ∈ E | D ∈ (, E ∈ V \ (} .
is of maximum cardinality.

To this end, let .1, . . . , .= be the pairwise independent bits of Section 3.1.2. Here, let ( be the set of
all vertices E8 ∈ V, such that .8 = 1. Let /DE be an indicator variable for the event that the edge DE ∈ E
is in the cut ((, ().

We have that

E
[��((, ()��] = E[∑

DE∈E
/DE

]
=

∑
DE∈E
E[/DE] =

∑
DE∈E
P[.D ≠ .E] = 1/2,

using linearity of expectation and independence.
Lemma 3.1.4. Given a graph G with = vertices and < edges, say stored in a read only memory, one
can compute a max-cut of G, and the edges in it, using $ (log =) random bits, and $ (log =) RAM bits.
Furthermore, the expected size of the cut is ≥ </2.

Proof: The algorithm description is above. The pairwise independence is described above requires
$ (log =) random bits, which needs to be stored. Otherwise, all we need is to scan the edges of the
graph, and for each one to decide if it is or not in the graph. Clearly, this can be done using $ (log =)
RAM bits. �

Compare this to the natural randomized algorithm of computing a random subset (. This would
require using = random bits, and = bits of space to store it.

Max cut in the streaming model. Imagine that the edges of the graph are given to you via
streaming: You are told the number of vertices in advance, but then edges arrive one by one. The above
enables you to compute the cut in a streaming fashion using $ (log =) bits. Alternatively, you can output
the edges in a streaming fashion.

Another way of thinking about it, is that given a set ( = {B1, . . . , B=} of = elements, we can use the
above to select a random sample where every element is selected with probability half, and the samples
are pairwise independent. The kicker is that to specify the sample, or decide if an element is in the
sample, we can do it using $ (log =) bits. This is a huge save compared to the regular = bits required to
maintain to remember the sample.

It is clear however that we want a stronger concept – where things are :-wise independent.

26



3.2. On :-wise independence

3.2.1. Definition
Definition 3.2.1. A set of variables -1, . . . , -= are :-wise independent if for any set � = {81, 82, . . . , 8C}
of indices, for C ≤ :, and any set of values E1, . . . , EC , we have that

P
[
-81 = E1 and -82 = E2 and · · · and -8C = EC

]
=

C∏
9=1
P
[
-8 9 = E 9

]
.

Observe, that verifying the above property needs to be done only for C = :.

3.2.2. On working modulo prime
Definition 3.2.2. For a number ?, let Z= =

{
0, . . . , = − 1

}
.

For two integer numbers G and H, the quotient of G/H is G div H = bG/Hc. The remainder of G/H is
G mod H = G − H bG/Hc. If the G mod H = 0, than H divides G, denoted by H | G. We use U ≡ V (mod ?)
or U ≡? V to denote that U and V are congruent modulo ?; that is U mod ? = V mod ? – equivalently,
? | (U − V).

Lemma 3.2.3. Let ? be a prime number.
(A) For any U, V ∈ {1, . . . , ? − 1}, we have that UV . 0 (mod ?).
(B) For any U, V, 8 ∈ {1, . . . , ? − 1}, such that U ≠ V, we have that U8 . V8 (mod ?).
(C) For any G ∈ {1, . . . , ? − 1} there exists a unique H such that GH ≡ 1 (mod ?). The number H is the

inverse of G, and is denoted by G−1 or 1/G.

Proof: (A) If UV ≡ 0 (mod ?), then ? must divide UV, as it divides 0. But U, V are smaller than ?, and
? is prime. This implies that either ? | U or ? | V, which is impossible.

(B) Assume that U > V. Furthermore, for the sake of contradiction, assume that U8 ≡ V8 (mod ?).
But then, (U − V)8 ≡ 0 (mod ?), which is impossible, by (A).

(C) For any U ∈ {1, . . . , ? − 1}, consider the set !U = {U∗1 mod ?, U∗2 mod ?, . . . , U∗(?−1) mod ?}.
By (A), zero is not in !U, and by (B), !U must contain ? − 1 distinct values. It follows that !U =
{1, 2, . . . , ?−1}. As such, there exists exactly one number H ∈ {1, . . . , ? − 1}, such that UH ≡ 1 (mod ?).
�

Lemma 3.2.4. Consider a prime ?, and any numbers G, H ∈ Z?. If G ≠ H then, for any 0, 1 ∈ Z?, such
that 0 ≠ 0, we have 0G + 1 . 0H + 1 (mod ?).

Proof: Assume H > G (the other case is handled similarly). If 0G + 1 ≡ 0H + 1 (mod ?) then 0(G − H)
(mod ?) = 0 and 0 ≠ 0 and (G − H) ≠ 0. However, 0 and G − H cannot divide ? since ? is prime and
0 < ? and 0 < G − H < ?. �

Lemma 3.2.5. Consider a prime ?, and any numbers G, H ∈ Z?. If G ≠ H then, for each pair of numbers
A, B ∈ Z? = {0, 1, . . . , ? − 1}, such that A ≠ B, there is exactly one unique choice of numbers 0, 1 ∈ Z?
such that 0G + 1 (mod ?) = A and 0H + 1 (mod ?) = B.

Proof: Solve the system of equations

0G + 1 ≡ A (mod ?) and 0H + 1 ≡ B (mod ?).

We get 0 = A−B
G−H (mod ?) and 1 = A − 0G (mod ?). �

27



3.2.3. Construction of :-wise independence variables

3.2.4. Construction
Consider the following matrix, aka the Vandermonde matrix, defined by = variables:

+ =



1 G1 G2
1 . . . G=−1

1
1 G2 G2

2 . . . G=−1
2

1 G3 G2
3 . . . G=−1

3
...

...
...

. . .
...

1 G= G2
= . . . G=−1

=


.

Claim 3.2.6. det(+) = ∏
1≤8< 9≤= (G 9 − G8).

Proof: One can prove this in several ways, and we include a proof via properties of polynomials. The
determinant det(+) is a polynomial in the variables G1, G2, . . . , G=. Formally, let Π be the set of all
permutations of J=K = {1, . . . , =}. For a permutation c ∈ Π, let sign(c) ∈ {−1, +1} denote the sign of
this permutation. We have that

5 (G1, G2, . . . , G=) = det(+) =
∑
c∈Π

sign(c)Gc(8)
8
.

Every monomial in this polynomial has total degree
∑=
8=1 c(8) = 1+2+ · · · += = =(=−1)/2. Observe, that

if we replace G 9 by G8, then we have 5 (G1, . . . , G8, . . . , G 9−1, G8, G 9+1, . . . , G=) is the determinant of a matrix
with two identical rows, and such a matrix has a zero determinate. Namely, the polynomial 5 is zero
if G8 = G 9 . This implies that G 9 − G8 divides 5 . We conclude that the polynomial 6 ≡ ∏

1≤8< 9≤= (G 9 − G8)
divides 5 . Namely, we can write 5 = 6 ∗ ℎ, where ℎ is some polynomial.

Consider the monomial G2G
2
3 · · · G=−1

= . It appears in 5 with coefficient 1. Similarly, it generated in 6
by selecting the first term in each sub-polynomial, that is

∏
1≤8< 9≤=

(
G 9 − G8

)
. It is to verify that this

is the only time this monomial appears in 6. This implies that ℎ = 1. We conclude that 5 = 6, as
claimed. �

Lemma 3.2.7. For a vector b = (10, . . . , 1:−1) ∈ Z:?, consider the associated polynomial 5 (G, b) =∑:−1
8=0 18G

8 mod ?. For any : distinct values U1, . . . , U: ∈ Z?, and : values E1, . . . , E: ∈ Z?, then there is
a unique choice of b, such that 5 (U8) = E8 mod ?, for 8 = 1, . . . , :.

Proof: Let α8 =
(
1, U8, U2

8
, · · · , U:−1

8

)
. We have that 5 (U8, b) = 〈α8, b〉 mod ?. This translates into the

linear system

©«
α1
α2
...

α:

ª®®®®¬
b) =

©«
E1
E2
...

E:

ª®®®®¬
⇐⇒ Mb) =

©«
E1
E2
...

E:

ª®®®®¬
where M =



1 U1 U2
1 . . . U=−1

1
1 U2 U2

2 . . . U=−1
2

1 U3 U2
3 . . . U=−1

3
...

...
...

. . .
...

1 U= U2
= . . . U=−1

=


.

The matrix M is the Vandermonde matrix, and by the above it is invertible. We thus get there exists a
unique solution to this system of linear equations (modulo ?). �
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The construction. So, let us pick independently and uniformly : values 10.11, . . . , 1:−1 ∈ Z?, let
b = (10, 11, . . . , 1:−1). 6(G) =

∑:−1
8=0 18G

8 mod ?, and consider the random variables

.8 = 6(8), ∀8 ∈ Z? .

Lemma 3.2.8. The variables .0, . . . , .?−1 are uniformly distributed and :-wise independent.

Proof: The uniform distribution for each .8 follows readily by picking 10 last, and observing that each
such choice corresponds to a different value of .8.

As for the :-independence, observe that for any set � = {81, 82, . . . , 8: } of indices, for C ≤ :, and any
set of values E1, . . . , E: ∈ Z?, we have that the event

.81 = E1 and .82 = E2 and · · · and .8: = E:

happens only for a unique choice of b, by Lemma 3.2.7. But there are ?: such choices. We conclude
that the probability of the above event is 1/?: = ∏:

9=1 P
[
.8 9 = E 9

]
, as desired. �

We summarize the result for later use.

Theorem 3.2.9. let ? be a prime number, and pick independently and uniformly : values 10.11, . . . , 1:−1 ∈
Z?, and let 6(G) = ∑:−1

8=0 18G
8 mod ?. Then the random variables

.0 = 6(0), . . . , .?−1 = 6(? − 1).

are uniformly distributed in Z? and are :-wise independent.

3.2.5. Applications of :-wide independent variables
Lemma 3.2.10. If -1, . . . , -: are :-wise independent, then E[-1 · · · -: ] = E[-1] · · ·E[-: ].

3.3. Higher moment inequalities
The following is the higher moment variant of Chebychev inequality.

Lemma 3.3.1. For a random variable -, we have that P
[
|- − E[-] | ≥ CE

[
|- − E[-] |:

]1/: ] ≤ 1
C:

Proof: Setting / = |- − E[-] |: , and raising the inequality by a power of :, we have

P
[
|- − E[-] | ≥ CE

[
|- − E[-] |:

]1/:
]
= P

[
/1/: ≥ C E[/]1/:

]
= P

[
/ ≥ C: E[/]

]
≤ 1
C:
,

by Markov’s inequality. �

The problem is that computing (or even bounding) the :th moment ": (-) = E
[
|- − E[-] |:

]
is

usually not easy. Let us do it for one interesting example.

Lemma 3.3.2. Consider : be an even integer and let -1, . . . , -= be = random independent variables
such that P[-8 = −1] = P[-8 = +1] = 1/2. Let - = ∑=

8=1 -8. Then, we have

P

[
|- | ≥ C:2

√
=

]
≤ 1
C:
.
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Proof: Observe that E[-] = =E[-1] = 0. We are interested in computing

": (-) = E
[
- :

]
= E


(∑
8

-8

) : = E
[
=∑

81=1
. . .

=∑
8:=1

-81-82 · · · -8:

]
=

=∑
81=1

. . .

=∑
8:=1
E
[
-81-82 · · · -8:

]
(3.1)

Consider a term in the above summation, where one of the indices (say 81) has a unique value among
81, 82, . . . , 8: . By independence, we have

E
[
-81-82 · · · -8:

]
= E

[
-81

]
E
[
-82 · · · -8:

]
= 0,

since E
[
-81

]
= 0. As such, in the above all terms that have a unique index disappear. A term that does

not disappear is going to be of the form

E
[
-
U1
81
-
U2
82
. . . -

Uℓ
8ℓ

]
= E

[
-
U1
81

]
E
[
-
U2
82

]
. . . E

[
-
Uℓ
8ℓ

]
where U8 ≥ 2, and

∑
8 U8 = :. Observe that

E
[
- C1

]
=

{
0 C is odd
1 C is even.

As such, all the terms in the summation of Eq. (3.1) that have value that is not zero, have value one.
These terms corresponds to tuples ) = (81, 82, . . . , 8: ), such that the set of values � ()) = {81, . . . , 8: }
has at most :/2 values, and furthermore, each such value appears an even number of times in ) . We
conclude that the total number of such tuples is at most

=:/2(:/2): .
Note, that this is a naive bound – indeed, we choose the :/2 values that are in � ()), and then we
generate the tuple ) , by choosing values for each coordinate separately. We thus conclude that

": (-) = E
[
- :

]
≤ =:/2(:/2): .

Using Lemma 3.3.1, we thus get

P

[
|- | ≥ C:2

√
=

]
= P

[
|- | ≥ C

(
=:/2(:/2):

)1/:
]
≤ P

[
|- | ≥ CE

[
|- |:

]1/: ] ≤ 1/C: . �

Corollary 3.3.3. Consider : be an even integer and let -1, . . . , -= be = random independent variables
such that P[-8 = −1] = P[-8 = +1] = 1/2. For - = ∑=

8=1 -8, and any :, we have P
[
|- | ≥ :

√
=
]
≤ 1/2: .

Observe, that the above proof did not require all the variables to be purely independent – it was
enough that they are :-wise independent. We readily get the following.
Definition 3.3.4. Given = random variables -1, . . . , -= they are :-wise independent, if for any : of
them (i.e., 81 < 82, . . . , 8:), and any : values G1, . . . , G: , we have

P

[
:⋂
ℓ=1

(
-8ℓ = Eℓ

) ]
=

:∏
ℓ=1
P
[
-8ℓ = Eℓ

]
.

Informally, variables are :-wise independent, if any : of them (on their own) looks totally random.
Lemma 3.3.5. Consider : be an even integer and let -1, . . . , -= be = random independent variables,
that are :-wise independent, such that P[-8 = −1] = P[-8 = +1] = 1/2. Let - = ∑=

8=1 -8. Then, we have

P

[
|- | ≥ C:2

√
=

]
≤ 1
C:
.
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Chapter 4

Min Cut

To acknowledge the corn - This purely American expression means to admit the losing of an argument, especially
in regard to a detail; to retract; to admit defeat. It is over a hundred years old. Andrew Stewart, a member of
Congress, is said to have mentioned it in a speech in 1828. He said that haystacks and cornfields were sent by Indiana,
Ohio and Kentucky to Philadelphia and New York. Charles A. Wickliffe, a member from Kentucky questioned the
statement by commenting that haystacks and cornfields could not walk. Stewart then pointed out that he did not
mean literal haystacks and cornfields, but the horses, mules, and hogs for which the hay and corn were raised.
Wickliffe then rose to his feet, and said, “Mr. Speaker, I acknowledge the corn”.

Funk, Earle, A Hog on Ice and Other Curious Expressions598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

4.1. Branching processes – Galton-Watson Process

4.1.1. The problem
In the 19th century, Victorians were worried that aristocratic surnames were disappearing, as family
names passed on only through the male children. As such, a family with no male children had its family
name disappear. So, imagine the number of male children of a person is an independent random variable
- ∈ {0, 1, 2, . . .}. Starting with a single person, its family (as far as male children are concerned) is a
random tree with the degree of a node being distributed according to -. We continue recursively in
constructing this tree, again, sampling the number of children for each current leaf according to the
distribution of -. It is not hard to see that a family disappears if E[-] ≤ 1, and it has a constant
probability of surviving if E[-] > 1.

Francis Galton asked the question of what is the probability of such a blue-blood family name to
survive, and this question was answered by Henry William Watson [WG75]. The Victorians were worried
about strange things, see [Gre69] for a provocatively titled article from the period, and [Ste12] for a
more recent take on this issue.

Of course, since infant mortality is dramatically down (as is the number of aristocrat males dying to
maintain the British empire), the probability of family names to disappear is now much lower than it was
in the 19th century. Interestingly, countries with family names that were introduced long time ago have
very few surnames (i.e., Korean have 250 surnames, and three surnames form 45% of the population).
On the other hand, countries that introduced surnames more recently have dramatically more surnames
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(for example, the Dutch have surnames only for the last 200 years, and there are 68, 000 different family
names).

Here we are going to look on a very specific variant of this problem. Imagine that starting with a
single male. A male has exactly two children, and one of them is a male with probability half (i.e., the
. -chromosome is being passed only to its male children). As such, the natural question is what is the
probability that ℎ generations down, there is a male decedent that all his ancestors are male (i.e., it
caries the original family name, and the original . -chromosome).

4.1.2. On coloring trees
Let )ℎ be a complete binary tree of height ℎ. We randomly color its edges by black and white. Namely,
for each edge we independently choose its color to be either black or white, with equal probability (say,
black indicates the child is male). We are interested in the event that there exists a path from the root
of )ℎ to one of its leafs, that is all black. Let Eℎ denote this event, and let dℎ = P[Eℎ]. Observe that
d0 = 1 and d1 = 3/4 (see below).

To bound this probability, consider the root D of )ℎ and its two children D; and DA . The probability
that there is a black path from D; to one of its children is dℎ−1, and as such, the probability that there is
a black path from D through D; to a leaf of the subtree of D; is P[the edge DD; is colored black] · dℎ−1 =
dℎ−1/2. As such, the probability that there is no black path through D; is 1 − dℎ−1/2. As such, the
probability of not having a black path from D to a leaf (through either children) is (1 − dℎ−1/2)2. In
particular, there desired probability, is the complement; that is

dℎ = 1 −
(
1 − dℎ−1

2

)2
=
dℎ−1

2

(
2 − dℎ−1

2

)
= dℎ−1 −

d2
ℎ−1
4 = 5

(
dℎ−1

)
for 5 (G) = G − G2/4.

The starting values are d0 = 1, and d1 = 3/4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f(x)=x - x2/4

Figure 4.1: A graph of the function 5 (G) = G − G2/4.

Lemma 4.1.1. We have that dℎ ≥ 1/(ℎ + 1).

Proof: (Feel free to skip reading.) The proof is by induction. For ℎ = 1, we have d1 = 3/4 ≥ 1/(1 + 1).
Observe that dℎ = 5 (dℎ−1) for 5 (G) = G − G2/4, and 5 ′(G) = 1 − G/2. As such, 5 ′(G) > 0 for G ∈ [0, 1]

and 5 (G) is increasing in the range [0, 1]. As such, by induction, we have that

dℎ = 5 (dℎ−1) ≥ 5

(
1

(ℎ − 1) + 1

)
=

1
ℎ
− 1

4ℎ2 .

We need to prove that dℎ ≥ 1/(ℎ + 1), which is implied by the above if
1
ℎ
− 1

4ℎ2 ≥
1

ℎ + 1 ⇔ 4ℎ(ℎ + 1) − (ℎ + 1) ≥ 4ℎ2 ⇔ 4ℎ2 + 4ℎ − ℎ − 1 ≥ 4ℎ2 ⇔ 3ℎ ≥ 1,

which trivially holds. �
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Lemma 4.1.2. We have that dℎ = $ (1/ℎ).
Proof: (Feel free to skip reading.) The claim trivially holds for small values of ℎ. For any 9 > 0, let ℎ 9 be
the minimal index such that dℎ 9 ≤ 1/2 9 . It is easy to verify that dℎ 9 ≥ 1/2 9+1. We claim (mysteriously)
that ℎ 9+1 − ℎ 9 ≤

dℎ 9 − dℎ 9+1
(dℎ 9+1)2/4

Indeed, d:+1 is the number resulting from removing d2
:
/4 from d: . Namely,

the sequence d1, d2, . . . is a monotonically decreasing sequence of numbers in the interval [0, 1], where
the gaps between consecutive numbers decreases. In particular, to get from dℎ 9 to dℎ 9+1 , the gaps used
were of size at least Δ =

(
dℎ 9+1

)2, which means that there are at least (dℎ 9 − dℎ 9+1)/Δ − 1 numbers in the
series between these two elements. As such, we have

ℎ 9+1 − ℎ 9 ≤
dℎ 9 − dℎ 9+1
(dℎ 9+1)2/4

≤ 1/2 9 − 1/2 9+2

1/22( 9+2)+2 = 2 9+6 + 2 9+4 = $
(
2 9

)
.

Arguing similarly, we have

ℎ 9+2 − ℎ 9 ≥
dℎ 9 − dℎ 9+2
(dℎ 9 )2/4

≥ 1/2 9+1 − 1/2 9+2
1/22 9+2 = 2 9+1 + 2 9 = Ω

(
2 9

)
.

We conclude that ℎ 9 = (ℎ 9 − ℎ 9−2) + (ℎ 9−2 − ℎ 9−4) + · · · = 2 9−1 −$ (1), implying the claim. �

4.2. Min Cut

4.2.1. Problem Definition

V \ SS

Let G = (V, E) be an undirected graph with = vertices and < edges. We are
interested in cuts in G.
Definition 4.2.1. A cut in G is a partition of the vertices of V into two
sets ( and V \ (, where the edges of the cut are

((,V \ () =
{
DE

�� D ∈ (, E ∈ V \ (, and DE ∈ � }
,

where ( ≠ ∅ and V \ ( ≠ ∅. We will refer to the number of edges in the
cut ((,V \ () as the size of the cut. For an example of a cut, see figure
on the right.

We are interested in the problem of computing theminimum cut (i.e., mincut), that is, the cut in
the graph with minimum cardinality. Specifically, we would like to find the set ( ⊆ V such that ((,V\()
is as small as possible, and ( is neither empty nor V \ ( is empty.

4.2.2. Some Definitions
We remind the reader of the following concepts. The conditional probability of - given . is
P
[
- = G

��. = H ] = P[(- = G) ∩ (. = H)]/P[. = H]. An equivalent, useful restatement of this is that

P
[
(- = G) ∩ (. = H)

]
= P

[
- = G

��. = H ] · P[. = H] . (4.1)
The following is easy to prove by induction using Eq. (4.1).

Lemma 4.2.2. Let E1, . . . ,E= be = events which are not necessarily independent. Then,

P
[
∩=8=1E8

]
= P

[
E1

]
∗ P

[
E2

��E1
]
∗ P

[
E3

��E1 ∩ E2
]
∗ . . . ∗ P

[
E=

��E1 ∩ . . . ∩ E=−1
]
.
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4.3. The Algorithm

x y {x, y}
(a) (b)

Figure 4.2: (a) A contraction of the edge GH.
(b) The resulting graph.

The basic operation used by the algorithm is edge
contraction, depicted in Figure 4.2. We take an
edge 4 = GH in G and merge the two vertices into a
single vertex. The new resulting graph is denoted
by G/GH. Note, that we remove self loops created by
the contraction. However, since the resulting graph
is no longer a regular graph, it has parallel edges –
namely, it is a multi-graph. We represent a multi-
graph, as a regular graph with multiplicities on the
edges. See Figure 4.3.

2
2

2
2

(a) (b)

Figure 4.3: (a) A multi-graph. (b) A minimum
cut in the resulting multi-graph.

The edge contraction operation can be implemented
in $ (=) time for a graph with = vertices. This is
done by merging the adjacency lists of the two ver-
tices being contracted, and then using hashing to do
the fix-ups (i.e., we need to fix the adjacency list of
the vertices that are connected to the two vertices).

Note, that the cut is now computed counting mul-
tiplicities (i.e., if 4 is in the cut and it has weight F,
then the contribution of 4 to the cut weight is F).

Observation 4.3.1. A set of vertices in G/GH corresponds to a set of vertices in the graph G. Thus a
cut in G/GH always corresponds to a valid cut in G. However, there are cuts in G that do not exist in
G/GH. For example, the cut ( = {G}, does not exist in G/GH. As such, the size of the minimum cut in
G/GH is at least as large as the minimum cut in G (as long as G/GH has at least one edge). Since any
cut in G/GH has a corresponding cut of the same cardinality in G.

Our algorithm works by repeatedly performing edge contractions. This is beneficial as this shrinks
the underlying graph, and we would compute the cut in the resulting (smaller) graph. An “extreme”
example of this, is shown in Figure 4.4, where we contract the graph into a single edge, which (in turn)
corresponds to a cut in the original graph. (It might help the reader to think about each vertex in the
contracted graph, as corresponding to a connected component in the original graph.)

Figure 4.4 also demonstrates the problem with taking this approach. Indeed, the resulting cut is not
the minimum cut in the graph.

So, why did the algorithm fail to find the minimum cut in this case?¬ The failure occurs because
of the contraction at Figure 4.4 (e), as we had contracted an edge in the minimum cut. In the new
graph, depicted in Figure 4.4 (f), there is no longer a cut of size 3, and all cuts are of size 4 or more.
Specifically, the algorithm succeeds only if it does not contract an edge in the minimum cut.

Observation 4.3.2. Let 41, . . . , 4=−2 be a sequence of edges in G, such that none of them is in the min-
imum cut, and such that G′ = �/{41, . . . , 4=−2} is a single multi-edge. Then, this multi-edge corresponds
to a minimum cut in G.

Note, that the claim in the above observation is only in one direction. We might be able to still
compute a minimum cut, even if we contract an edge in a minimum cut, the reason being that a minimum

¬Naturally, if the algorithm had succeeded in finding the minimum cut, this would have been our success.
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5

4

5

(e) (f) (g) (h)

9

(i) (j)

Figure 4.4: (a) Original graph. (b)–(j) a sequence of contractions in the graph, and (h) the cut in the
original graph, corresponding to the single edge in (h). Note that the cut of (h) is not a mincut in the
original graph.

Algorithm MinCut(G)
G0 ← �

8 = 0
while G8 has more than two vertices do

Pick randomly an edge 48 from the edges of G8
G8+1 ← �8/48
8 ← 8 + 1

Let ((,V \ () be the cut in the original graph
corresponding to the single edge in G8

return ((,V \ ().

Figure 4.5: The minimum cut algorithm.
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cut is not unique. In particular, another minimum cut might survived the sequence of contractions that
destroyed other minimum cuts.

Using Observation 4.3.2 in an algorithm is problematic, since the argumentation is circular, how can
we find a sequence of edges that are not in the cut without knowing what the cut is? The way to slice
the Gordian knot here, is to randomly select an edge at each stage, and contract this random edge.

See Figure 4.5 for the resulting algorithm MinCut.

4.3.1. Analysis
4.3.1.1. The probability of success

Naturally, if we are extremely lucky, the algorithm would never pick an edge in the mincut, and the
algorithm would succeed. The ultimate question here is what is the probability of success. If it is
relatively “large” then this algorithm is useful since we can run it several times, and return the best
result computed. If on the other hand, this probability is tiny, then we are working in vain since this
approach would not work.

Lemma 4.3.3. If a graph G has a minimum cut of size : and G has = vertices, then |� (�) | ≥ :=
2 .

Proof: Each vertex degree is at least :, otherwise the vertex itself would form a minimum cut of size
smaller than :. As such, there are at least

∑
E∈V degree(v)/2 ≥ =:/2 edges in the graph. �

Lemma 4.3.4. Fix a specific minimum cut � = ((, () in the graph. If we pick in random an edge 4
from a graph G, uniformly at random, then with probability at most 2/= it belongs to the minimum cut
�.

Proof: There are at least =:/2 edges in the graph and exactly : edges in the minimum cut. Thus, the
probability of picking an edge from the minimum cut is smaller then :/(=:/2) = 2/=. �

The following lemma shows (surprisingly) that MinCut succeeds with reasonable probability.

Lemma 4.3.5. MinCut outputs the mincut with probability ≥ 2
=(= − 1) .

Proof: Let E8 be the event that 48 is not in the minimum cut of G8. By Observation 4.3.2, MinCut
outputs the minimum cut if the events E0, . . . ,E=−3 all happen (namely, all edges picked are outside the
minimum cut).

By Lemma 4.3.4, it holds P
[
E8

��E0 ∩ E1 ∩ . . . ∩ E8−1
]
≥ 1 − 2

|V(�8) |
= 1 − 2

= − 8 . Implying that

Δ = P[E0 ∩ . . . ∩ E=−3] = P[E0] · P
[
E1

��E0
]
· P

[
E2

��E0 ∩ E1
]
· . . . · P

[
E=−3

��E0 ∩ . . . ∩ E=−4
]
.

As such, we have

Δ ≥
=−3∏
8=0

(
1 − 2

= − 8

)
=

=−3∏
8=0

= − 8 − 2
= − 8

=
���= − 2
=
∗�
��= − 3

= − 1 ∗
���= − 4
���= − 2 ∗

XXX= − 5
���= − 3 ∗

���= − 6
���= − 4 ∗ · · · ∗

�3
�5
∗ 2
�4
∗ 1
�3

=
2

=(= − 1) . �
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4.3.1.2. Running time analysis.

Observation 4.3.6. MinCut runs in $ (=2) time.

Observation 4.3.7. The algorithm always outputs a cut, and the cut is not smaller than the minimum
cut.

Definition 4.3.8. (informal) Amplification is the process of running an experiment again and again till
the things we want to happen, with good probability, do happen.

Let MinCutRep be the algorithm that runs MinCut =(= − 1) times and return the minimum cut
computed in all those independent executions of MinCut.

Lemma 4.3.9. The probability that MinCutRep fails to return the minimum cut is < 0.14.

Proof: The probability of failure ofMinCut to output the mincut in each execution is at most 1− 2
=(=−1) ,

by Lemma 4.3.5. Now, MinCutRep fails, only if all the =(=− 1) executions of MinCut fail. But these
executions are independent, as such, the probability to this happen is at most(

1 − 2
=(= − 1)

)=(=−1)
≤ exp

(
− 2
=(= − 1) · =(= − 1)

)
= exp(−2) < 0.14,

since 1 − G ≤ 4−G for 0 ≤ G ≤ 1. �

Theorem 4.3.10. One can compute the minimum cut in $ (=4) time with constant probability to get a
correct result. In $

(
=4 log =

)
time the minimum cut is returned with high probability.

4.4. A faster algorithm
The algorithm presented in the previous section is extremely simple. Which raises the question of
whether we can get a faster algorithm?

So, why MinCutRep needs so many executions? Well, the probability of success in the first a
iterations is

P[E0 ∩ . . . ∩ Ea−1] ≥
a−1∏
8=0

(
1 − 2

= − 8

)
=

a−1∏
8=0

= − 8 − 2
= − 8

=
= − 2
=
∗ = − 3
= − 1 ∗

= − 4
= − 2 . . . =

(= − a) (= − a − 1)
= · (= − 1) . (4.2)

Namely, this probability deteriorates very quickly toward the end of the execution, when the graph
becomes small enough. (To see this, observe that for a = =/2, the probability of success is roughly 1/4,
but for a = = −

√
= the probability of success is roughly 1/=.)

So, the key observation is that as the graph get smaller the probability to make a bad choice increases.
So, instead of doing the amplification from the outside of the algorithm, we will run the new algorithm
more times when the graph is smaller. Namely, we put the amplification directly into the algorithm.

The basic new operation we use is Contract, depicted in Figure 4.6, which also depict the new
algorithm FastCut.

This would require a more involved algorithm, thats life.
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Contract ( G, C )
begin

while | (�) | > C do
Pick a random edge 4 in G.
G← �/4

return G
end

FastCut(G = (+, �))
G – multi-graph

begin
=← |+ (�) |
if = ≤ 6 then

Compute (via brute force) minimum cut
of G and return cut.

C ←
⌈
1 + =/

√
2
⌉

�1 ← Contract(�, C)
�2 ← Contract(�, C)
/* Contract is randomized!!! */
-1 ← FastCut(�1),
-2 ← FastCut(�2)
return minimum cut out of -1 and -2.

end

Figure 4.6: Contract(�, C) shrinks G till it has only C vertices. FastCut computes the minimum cut
using Contract.

Lemma 4.4.1. The running time of FastCut(�) is $
(
=2 log =

)
, where = = |+ (�) |.

Proof: Well, we perform two calls to Contract(�, C) which takes $ (=2) time. And then we perform
two recursive calls on the resulting graphs. We have

) (=) = $ (=2) + 2)
(
=/
√

2
)
.

The solution to this recurrence is $
(
=2 log =

)
as one can easily (and should) verify. �

Exercise 4.4.2. Show that one can modify FastCut so that it uses only $ (=2) space.

Lemma 4.4.3. The probability that Contract
(
G, =/

√
2
)
had not contracted the minimum cut is at least

1/2.
Namely, the probability that the minimum cut in the contracted graph is still a minimum cut in the

original graph is at least 1/2.

Proof: Just plug in a = = − C = = −
⌈
1 + =/

√
2
⌉
into Eq. (4.2). We have

P
[
E0 ∩ . . . ∩ E=−C

]
≥ C (C − 1)
= · (= − 1) =

⌈
1 + =/

√
2
⌉ (⌈

1 + =/
√

2
⌉
− 1

)
=(= − 1) ≥ 1

2 . �

The following lemma bounds the probability of success.

Lemma 4.4.4. FastCut finds the minimum cut with probability larger than Ω(1/log =).

Proof: Let )ℎ be the recursion tree of the algorithm of depth ℎ = Θ(log =). Color an edge of recursion
tree by black if the contraction succeeded. Clearly, the algorithm succeeds if there is a path from the
root to a leaf that is all black. This is exactly the settings of Lemma 4.1.1, and we conclude that the
probability of success is at least 1/(ℎ + 1) = Θ(1/log =), as desired. �
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Exercise 4.4.5. Prove, that running FastCut repeatedly 2 · log2 = times, guarantee that the algorithm
outputs the minimum cut with probability ≥ 1 − 1/=2, say, for 2 a constant large enough.

Theorem 4.4.6. One can compute the minimum cut in a graph G with = vertices in $ (=2 log3 =) time.
The algorithm succeeds with probability ≥ 1 − 1/=2.

Proof: We do amplification on FastCut by running it $ (log2 =) times. The running time bound follows
from Lemma 4.4.1. The bound on the probability follows from Lemma 4.4.4, and using the amplification
analysis as done in Lemma 4.3.9 for MinCutRep. �

4.5. Bibliographical Notes
The MinCut algorithm was developed by David Karger during his PhD thesis in Stanford. The fast
algorithm is a joint work with Clifford Stein. The basic algorithm of the mincut is described in [MR95,
pages 7–9], the faster algorithm is described in [MR95, pages 289–295].

4.5.0.0.1. Galton-Watson process. The idea of using coloring of the edges of a tree to analyze
FastCut might be new (i.e., Section 4.1.2).
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Chapter 5

Hashing
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

“I tried to read this book, Huckleberry Finn, to my grandchildren, but I couldn’t get past page six because the book
is fraught with the ‘n-word.’ And although they are the deepest-thinking, combat-ready eight- and ten-year-olds I
know, I knew my babies weren’t ready to comprehend Huckleberry Finn on its own merits. That’s why I took the
liberty to rewrite Mark Twain’s masterpiece. Where the repugnant ‘n-word’ occurs, I replaced it with ‘warrior’ and
the word ‘slave’ with ‘dark-skinned volunteer.”’

Paul Beatty, The Sellout

5.1. Introduction
We are interested here in dictionary data structure. The settings for such a data-structure:
(A) U: universe of keys with total order: numbers, strings, etc.
(B) Data structure to store a subset ( ⊆ U
(C) Operations:

(A) search/lookup: given G ∈ U is G ∈ (?
(B) insert: given G ∉ ( add G to (.
(C) delete: given G ∈ ( delete G from (

(D) Static structure: ( given in advance or changes very infrequently, main operations are lookups.
(E) Dynamic structure: ( changes rapidly so inserts and deletes as important as lookups.

Common constructions for such data-structures, include using a static sorted array, where the lookup
is a binary search. Alternatively, one might use a balanced search tree (i.e., red-black tree). The time
to perform an operation like lookup, insert, delete take $ (log |( |) time (comparisons).

Naturally, the above are potently an “overkill”, in the sense that sorting is unnecessary. In par-
ticular, the universe U may not be (naturally) totally ordered. The keys correspond to large objects
(images, graphs etc) for which comparisons are expensive. Finally, we would like to improve “average”
performance of lookups to $ (1) time, even at cost of extra space or errors with small probability: many
applications for fast lookups in networking, security, etc.

Hashing and Hash Tables. The hash-table data structure has an associated (hash) table/array )
of size < (the table size). A hash function ℎ : U → {0, . . . , < − 1}. An item G ∈ U hashes to slot ℎ(G)
in ) .
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Figure 5.1: Open hashing.

Given a set ( ⊆ U, in a perfect ideal situation, each element G ∈ ( hashes to a distinct slot in ) ,
and we store G in the slot ℎ(G). The Lookup for an item H ∈ U, is to check if ) [ℎ(H)] = H. This takes
constant time.

Unfortunately, collisions are unavoidable, and several different techniques to handle them. Formally,
two items G ≠ H collide if ℎ(G) = ℎ(H).

A standard technique to handle collisions is to use chaining (aka open hashing). Here, we handle
collisions as follows:
(A) For each slot 8 store all items hashed to slot 8 in a linked list. ) [8] points to the linked list.
(B) Lookup: to find if H ∈ U is in ) , check the linked list at ) [ℎ(H)]. Time proportion to size of

linked list.
Other techniques for handling collisions include associating a list of locations where an element can

be (in certain order), and check these locations in this order. Another useful technique is cuckoo
hashing which we will discuss later on: Every value has two possible locations. When inserting, insert
in one of the locations, otherwise, kick out the stored value to its other location. Repeat till stable. if
no stability then rebuild table.

The relevant questions when designing a hashing scheme, include: (I) Does hashing give $ (1) time
per operation for dictionaries? (II) Complexity of evaluating ℎ on a given element? (III) Relative sizes
of the universe U and the set to be stored (. (IV) Size of table relative to size of (. (V) Worst-case vs
average-case vs randomized (expected) time? (VI) How do we choose ℎ?

The load factor of the array ) is the ratio =/C where = = |( | is the number of elements being stored
and < = |) | is the size of the array being used. Typically =/C is a small constant smaller than 1.

In the following, we assume that U (the universe the keys are taken from) is large – specifically,
# = |U| � <2, where < is the size of the table. Consider a hash function ℎ : U → {0, . . . , < − 1}. If
hash # items to the < slots, then by the pigeon hole principle, there is some 8 ∈ {0, . . . , < − 1} such
that #/< ≥ < elements of U get hashed to 8. In particular, this implies that there is set ( ⊆ U, where
|( | = < such that all of ( hashes to same slot. Oops.

Namely, for every hash function there is a bad set with many collisions.

Observation 5.1.1. Let H be the set of all functions from U = {1, . . . ,*} to {1, . . . , <}. The number
of functions in H is <*. As such, specifying a function in H would require log2 |H | = $ (* log<).

As such, picking a truely random hash function requires many random bits, and furthermore, it is
not even clear how to evaluate it efficiently (which is the whole point of hashing).

Picking a hash function. Picking a good hash function in practice is a dark art involving many
non-trivial considerations and ideas. For parameters # = |U|, < = |) |, and = = |( |, we require the
following:
(A) H is a family of hash functions: each function ℎ ∈ H should be efficient to evaluate (that is, to

compute ℎ(G)).
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(B) ℎ is chosen randomly from H (typically uniformly at random). Implicitly assumes that H allows
an efficient sampling.

(C) Require that for any fixed set ( ⊆ U, of size <, the expected number of collisions for a function
chosen from H should be “small”. Here the expectation is over the randomness in choice of ℎ.

5.2. Universal Hashing
We would like the hash function to have the following property – For any element G ∈ U, and a random
ℎ ∈ H , then ℎ(G) should have a uniform distribution. That is Pr[ℎ(G) = 8] = 1/<, for every 0 ≤ 8 < <.
A somewhat stronger property is that for any two distinct elements G, H ∈ U, for a random ℎ ∈ H , the
probability of a collision between G and H should be at most 1/<. P[ℎ(G) = ℎ(H)] = 1/<.

Definition 5.2.1. A family H of hash functions is 2-universal if for all distinct G, H ∈ U, we have
P[ℎ(G) = ℎ(H)] ≤ 1/<.

Applying a 2-universal family hash function to a set of distinct numbers, results in a 2-wise inde-
pendent sequence of numbers.

Lemma 5.2.2. Let ( be a set of = elements stored using open hashing in a hash table of size <, using
open hashing, where the hash function is picked from a 2-universal family. Then, the expected lookup
time, for any element G ∈ U is $ (=/<).

Proof: The number of elements colliding with G is ℓ(G) = ∑
H∈( �H, where �H = 1 ⇐⇒ G and H collide

under the hash function ℎ. As such, we have

E[ℓ(G)] =
∑
H∈(
E
[
�H

]
=

∑
H∈(
P[ℎ(G) = ℎ(H)] =

∑
H∈(

1
<
= |( |/< = =/<. �

Remark 5.2.3. The above analysis holds even if we perform a sequence of $ (=) insertions/deletions
operations. Indeed, just repeat the analysis with the set of elements being all elements encountered
during these operations.

The worst-case bound is of course much worse – it is not hard to show that in the worst case, the
load of a single hash table entry might be Ω(log =/log log =) (as we seen in the occupancy problem).

Rehashing, amortization, etc. The above assumed that the set ( is fixed. If items are inserted
and deleted, then the hash table might become much worse. In particular, |( | grows to more than 2<,
for some constant 2, then hash table performance start degrading. Furthermore, if many insertions and
deletions happen then the initial random hash function is no longer random enough, and the above
analysis no longer holds.

A standard solution is to rebuild the hash table periodically. We choose a new table size based on
current number of elements in table, and a new random hash function, and rehash the elements. And
then discard the old table and hash function. In particular, if |( | grows to more than twice current table
size, then rebuild new hash table (choose a new random hash function) with double the current number
of elements. One can do a similar shrinking operation if the set size falls below quarter the current hash
table size.

If the working |( | stays roughly the same but more than 2 |( | operations on table for some chosen
constant 2 (say 10), rebuild.
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The amortize cost of rebuilding to previously performed operations. Rebuilding ensures $ (1)
expected analysis holds even when ( changes. Hence $ (1) expected look up/insert/delete time dynamic
data dictionary data structure!

5.2.1. How to build a 2-universal family
5.2.1.1. A quick reminder on working modulo prime

Definition 5.2.4. For a number ?, let Z= =
{
0, . . . , = − 1

}
.

For two integer numbers G and H, the quotient of G/H is G div H = bG/Hc. The remainder of G/H is
G mod H = G − H bG/Hc. If the G mod H = 0, than H divides G, denoted by H | G. We use U ≡ V (mod ?)
or U ≡? V to denote that U and V are congruent modulo ?; that is U mod ? = V mod ? – equivalently,
? | (U − V).

Remark 5.2.5. A quick review of what we already know. Let ? be a prime number.
(A) Lemma 3.2.3: For any U, V ∈ {1, . . . , ? − 1}, we have that UV . 0 (mod ?).
(B) Lemma 3.2.3: For any U, V, 8 ∈ {1, . . . , ? − 1}, such that U ≠ V, we have that U8 . V8 (mod ?).
(C) Lemma 3.2.3: For any G ∈ {1, . . . , ? − 1} there exists a unique H such that GH ≡ 1 (mod ?). The

number H is the inverse of G, and is denoted by G−1 or 1/G.
(D) Lemma 3.2.4: For any numbers G, H ∈ Z?. If G ≠ H then, for any 0, 1 ∈ Z?, such that 0 ≠ 0, we

have 0G + 1 . 0H + 1 (mod ?).
(E) Lemma 3.2.5: For any numbers G, H ∈ Z?. If G ≠ H then, for each pair of numbers A, B ∈ Z? =
{0, 1, . . . , ? − 1}, such that A ≠ B, there is exactly one unique choice of numbers 0, 1 ∈ Z? such that
0G + 1 (mod ?) = A and 0H + 1 (mod ?) = B.

5.2.1.2. Constructing a family of 2-universal hash functions

For parameters # = |U|, < = |) |, = = |( |. Choose a prime number ? ≥ #. Let

H =
{
ℎ0,1

�� 0, 1 ∈ Z? and 0 ≠ 0
}
,

where ℎ0,1 (G) = ((0G + 1) (mod ?)) (mod <). Note that |H | = ?(? − 1).

5.2.1.3. Analysis

Once we fix 0 and 1, and we are given a value G, we compute the hash value of G in two stages:
(A) Compute: A ← (0G + 1) (mod ?).
(B) Fold: A′← A (mod <)

Lemma 5.2.6. Assume that ? is a prime, and 1 < < < ?. The number of pairs (A, B) ∈ Z? × Z?, such
that A ≠ B, that are folded to the same number is ≤ ?(? − 1)/<. Formally, the set of bad pairs

� =
{
(A, B) ∈ Z? × Z?

�� A ≡< B}
is of size at most ?(? − 1)/<.

Proof: Consider a pair (G, H) ∈ {0, 1, . . . , ? − 1}2, such that G ≠ H. For a fixed G, there are at most d?/<e
values of H that fold into G. Indeed, G ≡< H if and only if

H ∈ ! (G) = {G + 8< | 8 is an integer} ∩ Z? .
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(A) (B) (C)

Figure 5.2: Explanation of the hashing scheme via figures.

The size of ! (G) is maximized when G = 0, The number of such elements is at most d?/<e (note, that
since ? is a prime, ?/< is fractional). One of the numbers in $ (G) is G itself. As such, we have that

|� | ≤ ?
(
|! (G) | − 1

)
≤ ?

(
d?/<e − 1

)
≤ ?

(
? − 1

)
/<,

since d?/<e − 1 ≤ (? − 1)/< ⇐⇒ < d?/<e − < ≤ ? − 1 ⇐⇒ < b?/<c ≤ ? − 1 ⇐⇒ < b?/<c < ?,
which is true since ? is a prime, and 1 < < < ?. �

Claim 5.2.7. For two distinct numbers G, H ∈ U, a pair 0, 1 is bad if ℎ0,1 (G) = ℎ0,1 (H). The number
of bad pairs is ≤ ?(? − 1)/<.

Proof: Let 0, 1 ∈ Z? such that 0 ≠ 0 and ℎ0,1 (G) = ℎ0,1 (H). Let

A = (0G + 1) mod ? and B = (0H + 1) mod ?.

By Lemma 3.2.4, we have that A ≠ B. As such, a collision happens if A ≡ B (mod <). By Lemma 5.2.6,
the number of such pairs (A, B) is at most ?(?−1)/<. By Lemma 3.2.5, for each such pair (A, B), there is
a unique choice of 0, 1 that maps G and H to A and B, respectively. As such, there are at most ?(?−1)/<
bad pairs. �

Theorem 5.2.8. The hash family H is a 2-universal hash family.

Proof: Fix two distinct numbers G, H ∈ U. We are interested in the probability they collide if ℎ is picked
randomly from H . By Claim 5.2.7 there are " ≤ ?(? − 1)/< bad pairs that causes such a collision, and
since H contains # = ?(? − 1) functions, it follows the probability for collision is "/# ≤ 1/<, which
implies that H is 2-universal. �

5.2.1.4. Explanation via pictures

Consider a pair (G, H) ∈ Z2
?, such that G ≠ H. This pair (G, H) corresponds to a cell in the natural “grid”

Z2
? that is off the main diagonal. See Figure 5.2
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The mapping 50,1 (G) = (0G + 1) mod ?, takes the pair (G, H), and maps it randomly and uniformly,
to some other pair G′ = 50,1 (G) and H′ = 50,1 (H) (where G′, H′ are again off the main diagonal).

Now consider the smaller grid Z< × Z<. The main diagonal of this subgrid is bad – it corresponds
to a collision. One can think about the last step, of computing ℎ0,1 (G) = 50,1 (G) mod <, as tiling the
larger grid, by the smaller grid. in the natural way. Any diagonal that is in distance <8 from the main
diagonal get marked as bad. At most 1/< fraction of the off diagonal cells get marked as bad. See
Figure 5.2.

As such, the random mapping of (G, H) to (G′, H′) causes a collision only if we map the pair to a badly
marked pair, and the probability for that ≤ 1/<.

5.3. Perfect hashing
An interesting special case of hashing is the static case – given a set ( of elements, we want to hash ( so
that we can answer membership queries efficiently (i.e., dictionary data-structures with no insertions).
it is easy to come up with a hashing scheme that is optimal as far as space.

5.3.1. Some easy calculations
The first observation is that if the hash table is quadraticly large, then there is a good (constant)
probability to have no collisions (this is also the threshold for the birthday paradox).

Lemma 5.3.1. Let ( ⊆ U be a set of = elements, and let H be a 2-universal family of hash functions,
into a table of size < ≥ =2. Then with probability ≤ 1/2, there is a pair of elements of ( that collide
under a random hash function ℎ ∈ H .

Proof: For a pair G, H ∈ (, the probability they collide is at most ≤ 1/<, by definition. As such, by the
union bound, the probability of any collusion is

(=
2
)
/< = =(= − 1)/2< ≤ 1/2. �

We now need a second moment bound on the sizes of the buckets.

Lemma 5.3.2. Let ( ⊆ U be a set of = elements, and let H be a 2-universal family of hash functions,
into a table of size < ≥ 2=, where 2 is an arbitrary constant. Let ℎ ∈ H be a random hash function, and
let -8 be the number of elements of ( mapped to the 8th bucket by ℎ, for 8 = 0, . . . , < − 1. Then, we have
E
[∑<−1

9=0 -
2
9

]
≤ (1 + 1/2)=.

Proof: Let B1, . . . , B= be the = items in (, and let /8, 9 = 1 if ℎ(B8) = ℎ(B 9 ), for 8 < 9 . Observe that
E
[
/8, 9

]
= P

[
ℎ(B8) = ℎ(B 9 )

]
≤ 1/< (this is the only place we use the property that H is 2-universal). In

particular, let Z(U) be all the variables /8, 9 , for 8 < 9 , such that /8, 9 = 1 and ℎ(B8) = ℎ(B 9 ) = U.
If for some U we have that -U = :, then there are : indices ℓ1 < ℓ2 < . . . < ℓ: , such that ℎ(Bℓ1) =

· · · = ℎ(Bℓ: ) = 8. As such, I(U) = |Z(U) | =
(:
2
)
. In particular, we have

-2
U = :

2 = 2
(
:

2

)
+ : = 2I(U) + -U

This implies that
<−1∑
U=0

-2
U =

<−1∑
U=0

(
2I(U) + -U

)
= 2

<−1∑
U=0

I(U) +
<−1∑
U=0

-U = = + 2
=−1∑
8=1

=∑
9=8+1

/8 9
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Now, by linearity of expectations, we have

E
[<−1∑
U=0

-2
U

]
= E

[
= + 2

=−1∑
8=1

=∑
9=8+1

/8 9

]
= = + 2

=−1∑
8=1

=∑
9=8+1
E
[
/8 9

]
≤ = + 2

=−1∑
8=1

=∑
9=8+1

1
<

= = + 2
<

(
=

2

)
= = + 2=(= − 1)

2< ≤ =
(
1 + = − 1

<

)
≤ =

(
1 + 1

2

)
since < ≥ 2=. �

5.3.2. Construction of perfect hashing
Given a set ( of = elements, we build a open hash table ) of size, say, 2=. We use a random hash function
ℎ that is 2-universal for this hash table, see Theorem 5.2.8. Next, we map the elements of ( into the
hash table. Let ( 9 be the list of all the elements of ( mapped to the 9th bucket, and let - 9 =

��! 9 ��, for
9 = 0, . . . , = − 1.

We compute . =
∑
8=1 -

2
9
. If . > 6=, then we reject ℎ, and resample a hash function ℎ. We repeat

this process till success.
In the second stage, we build secondary hash tables for each bucket. Specifically, for 9 = 0, . . . , 2=−1,

if the 9th bucket contains - 9 > 0 elements, then we construct a secondary hash table � 9 to store the
elements of ( 9 , and this secondary hash table has size -2

9
, and again we use a random 2-universal hash

function ℎ 9 for the hashing of ( 9 into � 9 . If any pair of elements of ( 9 collide under ℎ 9 , then we resample
the hash function ℎ 9 , and try again till success.

5.3.2.1. Analysis

Theorem 5.3.3. Given a (static) set ( ⊆ U of = elements, the above scheme, constructs, in expected
linear time, a two level hash-table that can perform search queries in $ (1) time. The resulting data-
structure uses $ (=) space.

Proof: Given an element G ∈ U, we first compute 9 = ℎ(G), and then : = ℎ 9 (G), and we can check
whether the element stored in the secondary hash table � 9 at the entry : is indeed G. As such, the
search time is $ (1).

The more interesting issue is the construction time. Let - 9 be the number of elements mapped to
the 9th bucket, and let . =

∑=
8=1 -

2
8
. Observe, that E[. ] ≤ (1 + 1/2)= = (3/2)=, by Lemma 5.3.2 (here,

< = 2= and as such 2 = 2). As such, by Markov’s inequality, P[- > 6=] = (3/2)=6= ≤ 1/4. In particular,
picking a good top level hash function requires in expectation at most 1/(3/4) = 4/3 ≤ 2 iterations.
Thus the first stage takes $ (=) time, in expectation.

For the 9th bucket, with - 9 entries, by Lemma 5.3.1, the construction succeeds with probability
≥ 1/2. As before, the expected number of iterations till success is at most 2. As such, the expected
construction time of the secondary hash table for the 9th bucket is $ (-2

9
).

We conclude that the overall expected construction time is $ (= +∑
9 -

2
9
) = $ (=).

As for the space used, observe that it is $ (= +∑
9 -

2
9
) = $ (=). �

5.4. Bloom filters
Consider an application where we have a set ( ⊆ U of = elements, and we want to be able to decide for
a query G ∈ U, whether or not G ∈ (. Naturally, we can use hashing. However, here we are interested in
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more efficient data-structure as far as space. We allow the data-structure to make a mistake (i.e., say
that an element is in, when it is not in).

First try. So, let start silly. Let �[0 . . . , <] be an array of bits, and pick a random hash function
ℎ : U → Z<. Initialize � to 0. Next, for every element B ∈ (, set �[ℎ(B)] to 1. Now, given a query,
return �[ℎ(G)] as an answer whether or not G ∈ (. Note, that � is an array of bits, and as such it can
be bit-packed and stored efficiently.

For the sake of simplicity of exposition, assume that the hash functions picked is truly random. As
such, we have that the probability for a false positive (i.e., a mistake) for a fixed G ∈ U is =/<. Since
we want the size of the table < to be close to =, this is not satisfying.

Using : hash functions. Instead of using a single hash function, let us use : independent hash
functions ℎ1, . . . ℎ: . For an element B ∈ (, we set �[ℎ8 (B)] to 1, for 8 = 1, . . . , :. Given an query G ∈ U, if
�[ℎ8 (G)] is zero, for any 8 = 1, . . . , :, then G ∉ (. Otherwise, if all these : bits are on, the data-structure
returns that G is in (.

Clearly, if the data-structure returns that G is not in (, then it is correct. The data-structure might
make a mistake (i.e., a false positive), if it returns that G is in ( (when is not in ().

We interpret the storing of the elements of ( in �, as an experiment of throwing := balls into <
bins. The probability of a bin to be empty is

? = ?(<, =) = (1 − 1/<):= ≈ exp(−: (=/<)).

Since the number of empty bins is a martingale, we know the number of empty bins is strongly concen-
trated around the expectation ?<, and we can treat ? as the true probability of a bin to be empty.

The probability of a mistake is
5 (:, <, =) = (1 − ?): .

In particular, for : = (</=) ln =, we have that ? = ?(<, =) ≈ 1/2, and 5 (:, <, =) ≈ 1/2(</=) ln 2 ≈ 0.618</=.

Example 5.4.1. Of course, the above is fictional, as : has to be an integer. But motivated by these
calculations, let < = 3=, and : = 4. We get that ?(<, =) = exp(−4/3) ≈ 0.26359, and 5 (4, 3=, =) ≈
(1 − 0.265)4 ≈ 0.294078. This is better than the naive : = 1 scheme, where the probability of false
positive is 1/3.

Note, that this scheme gets exponentially better over the naive scheme as </= grows.

Example 5.4.2. Consider the setting < = 8= – this is when we allocate a byte for each element stored (the
element of course might be significantly bigger). The above implies we should take : = d(</=) ln 2e = 6.
We then get ?(8=, =) = exp(−6/8) ≈ 0.5352, and 5 (6, 8=, =) ≈ 0.0215. Here, the naive scheme with : = 1,
would give probability of false positive of 1/8 = 0.125. So this is a significant improvement.

Remark 5.4.3. It is important to remember that Bloom filters are competing with direct hashing of the
whole elements. Even if one allocates 8 bits per item, as in the example above, the space it uses is
significantly smaller than regular hashing. A situation when such a Bloom filter makes sense is for a
cache – we might want to decide if an element is in a slow external cache (say SSD drive). Retrieving
item from the cache is slow, but not so slow we are not willing to have a small overhead because of false
positives.
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5.5. Bibliographical notes
Practical Issues Hashing used typically for integers, vectors, strings etc.

• Universal hashing is defined for integers. To implement it for other objects, one needs to map
objects in some fashion to integers.

• Practical methods for various important cases such as vectors, strings are studied extensively. See
http://en.wikipedia.org/wiki/Universal_hashing for some pointers.

• Recent important paper bridging theory and practice of hashing. “The power of simple tabulation
hashing” by Mikkel Thorup and Mihai Patrascu, 2011. See http://en.wikipedia.org/wiki/
Tabulation_hashing
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Chapter 6

Occupancy and Coupon Collector
Problems
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

I built on the sand
And it tumbled down,
I built on a rock
And it tumbled down.
Now when I build, I shall begin
With the smoke from the chimney

Leopold Staff, Foundations

6.1. Preliminaries
Definition 6.1.1 (Variance and Standard Deviation). For a random variable -, let

V[-] = E
[
(- − `-)2

]
= E

[
-2] − `2

-

denote the variance of -, where `- = E[-]. Intuitively, this tells us how concentrated is the distribu-
tion of -. The standard deviation of -, denoted by f- is the quantity

√
V[-].

Observation 6.1.2. (i) For any constant 2 ≥ 0, we have V
[
2-

]
= 22V

[
-
]
.

(ii) For - and . independent variables, we have V
[
- + .

]
= V

[
-
]
+ V

[
.
]
.

Definition 6.1.3 (Bernoulli distribution). Assume, that one flips a coin and get 1 (heads) with probability
?, and 0 (i.e., tail) with probability @ = 1 − ?. Let - be this random variable. The variable - is has
Bernoulli distribution with parameter ?.

We have that E[-] = 1 · ? + 0 · (1 − ?) = ?, and

V
[
-
]
= E

[
-2] − `2

- = E
[
-2] − ?2 = ? − ?2 = ? (1 − ?) = ?@.

Definition 6.1.4 (Binomial distribution). Assume that we repeat a Bernoulli experiment = times (indepen-
dently!). Let -1, . . . , -= be the resulting random variables, and let - = -1 + · · · + -=. The variable - has
the binomial distribution with parameters = and ?. We denote this fact by - ∼ Bin(=, ?). We have

1(:; =, ?) = P
[
- = :

]
=

(
=

:

)
?:@=−: .

Also, E[-] = =?, and V[-] = V
[∑=

8=1 -8
]
=

∑=
8=1V[-8] = =?@.
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Observation 6.1.5. Let �1, . . . , �= be random events (not necessarily independent). Than

P
[
∪=8=1�8

]
≤

=∑
8=1
P[�8] .

(This is usually referred to as the union bound.) If �1, . . . , �= are disjoint events then

P
[
∪=8=1�8

]
=

=∑
8=1
P[�8] .

6.1.1. Geometric distribution
Definition 6.1.6. Consider a sequence -1, -2, . . . of independent Bernoulli trials with probability ? for
success. Let - be the number of trials one has to perform till encountering the first success. The
distribution of - is geometric distribution with parameter ?. We denote this by - ∼ Geom(?).

Lemma 6.1.7. For a variable - ∼ Geom(?), we have, for all 8, that P[- = 8] = (1−?)8−1?. Furthermore,
E[-] = 1/? and V[-] = (1 − ?)/?2.

Proof: The proof of the expectation and variance is included for the sake of completeness, and the
reader is of course encouraged to skip (reading) this proof. So, let 5 (G) = ∑∞

8=0 G
8 = 1

1−G , and observe
that 5 ′(G) = ∑∞

8=1 8G
8−1 = (1 − G)−2. As such, we have

E[-] =
∞∑
8=1

8 (1 − ?)8−1? = ? 5 ′(1 − ?) = ?

(1 − (1 − ?))2
=

1
?
,

and V[-] = E
[
-2] − 1

?2 =
∞∑
8=1

82 (1 − ?)8−1? − 1
?2 . = ? + ?(1 − ?)

∞∑
8=2

82 (1 − ?)8−2 − 1
?2 .

Observe that

5 ′′(G) =
∞∑
8=2

8(8 − 1)G8−2 =
(
(1 − G)−1)′′ = 2

(1 − G)3 .

As such, we have that

Δ (G) =
∞∑
8=2

82G8−2 =
∞∑
8=2

8(8 − 1)G8−2 +
∞∑
8=2

8G8−2 = 5 ′′(G) + 1
G

∞∑
8=2

8G8−1 = 5 ′′(G) + 1
G
( 5 ′(G) − 1)

=
2

(1 − G)3 +
1
G

(
1

(1 − G)2 − 1
)
=

2
(1 − G)3 +

1
G

(
1 − (1 − G)2
(1 − G)2

)
=

2
(1 − G)3 +

1
G
· G(2 − G)(1 − G)2

=
2

(1 − G)3 +
2 − G
(1 − G)2 .

As such, we have that

V[-] = ? + ?(1 − ?)Δ (1 − ?) −
1
?2 = ? + ?(1 − ?)

(
2
?3 +

1 + ?
?2

)
− 1
?2 = ? +

2(1 − ?)
?2 + 1 − ?2

?
− 1
?2

=
?3 + 2(1 − ?) + ? − ?3 − 1

?2 =
1 − ?
?2 . �
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6.1.2. Some needed math
Lemma 6.1.8. For any positive integer =, we have:
(i) (1 + 1/=)= ≤ 4.
(ii) (1 − 1/=)=−1 ≥ 4−1.
(iii) =! ≥ (=/4)=.

(iv) For any : ≤ =, we have:
(=
:

) :
≤

(
=

:

)
≤

(=4
:

) :
.

Proof: (i) Indeed, 1 + 1/= ≤ exp(1/=), since 1 + G ≤ 4G, for G ≥ 0. As such (1 + 1/=)= ≤ exp(=(1/=)) = 4.
(ii) Rewriting the inequality, we need to prove

(
=−1
=

)=−1 ≥ 1
4
. This is equivalence to proving 4 ≥(

=
=−1

)=−1
=

(
1 + 1

=−1
)=−1, which is our friend from (i).

(iii) Indeed,

==

=! ≤
∞∑
8=0

=8

8! = 4
=,

by the Taylor expansion of 4G =
∑∞
8=0

G8

8! . This implies that (=/4)= ≤ =!, as required.
(iv) For any : ≤ =, we have =

:
≤ =−1

:−1 since := − = = =(: − 1) ≤ : (= − 1) = := − :. As such, =
:
≤ =−8

:−8 ,
for 1 ≤ 8 ≤ : − 1. As such,(=

:

) :
≤ =
:
· = − 1
: − 1 · · ·

= − 8
: − 8 · · ·

= − : + 1
1 =

=!
(= − :)!:! =

(
=

:

)
.

As for the other direction, by (iii), we have(
=

:

)
≤ =

:

:! ≤
=:

(:/4):
=

(=4
:

) :
, �

6.2. Occupancy Problems
Problem 6.2.1. We are throwing < balls into = bins randomly (i.e., for every ball we randomly and
uniformly pick a bin from the = available bins, and place the ball in the bin picked). There are many
natural questions one can ask here:
(A) What is the maximum number of balls in any bin?
(B) What is the number of bins which are empty?
(C) How many balls do we have to throw, such that all the bins are non-empty, with reasonable

probability?

Let -8 be the number of balls in the 8th bins, when we throw = balls into = bins (i.e., < = =). Clearly,

E[-8] =
=∑
9=1
P
[
The 9th ball fall in 8th bin

]
= = · 1

=
= 1,

by linearity of expectation. The probability that the first bin has exactly 8 balls is(
=

8

) (
1
=

) 8 (
1 − 1

=

)=−8
≤

(
=

8

) (
1
=

) 8
≤

(=4
8

) 8 (1
=

) 8
=

( 4
8

) 8
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This follows by Lemma 6.1.8 (iv).
Let � 9 (:) be the event that the 9th bin has : or more balls in it. Then,

P
[
�1(:)

]
≤

=∑
8=:

( 4
8

) 8
≤

( 4
:

) : (
1 + 4

:
+ 4

2

:2 + . . .
)
=

( 4
:

) : 1
1 − 4/: .

For :∗ = 2 ln =/ln ln =, we have

P
[
�1(:∗)

]
≤

( 4
:∗

) :∗ 1
1 − 4/:∗ ≤ 2 exp

(
:∗(1 − ln :∗)

)
≤ 2 exp

(
− :
∗ ln :∗

2

)
≤ 2 exp

(
− 2 ln =

2 ln ln = ln 2 ln =
ln ln =︸    ︷︷    ︸
≈ln ln =

)
≤ 2 exp

(
−2 ln =

4

)
≤ 1
=2 ,

for = sufficiently large.
Let us redo this calculation more carefully (yuk!). For :∗ = d(3 ln =)/ln ln =e. Then,

P
[
�1(:∗)

]
≤

( 4
:∗

) :∗ 1
1 − 4/:∗ ≤ 2

(
4

(3 ln =)/ln ln =

) :∗
= 2

(
exp

( <0︷  ︸︸  ︷
1 − ln 3 − ln ln = + ln ln ln =

) ) :∗
≤ 2exp

(
(− ln ln = + ln ln ln =):∗

)
≤ 2 exp

(
−3 ln = + 6 ln = ln ln ln =

ln ln =

)
≤ 2 exp(−2.5 ln =) ≤ 1

=2 ,

for = large enough. We conclude, that since there are = bins and they have identical distributions that

P[any bin contains more than :∗ balls] ≤
=∑
8=1

�8 (:∗) ≤
1
=
.

Theorem 6.2.2. With probability at least 1 − 1/=, no bin has more than :∗ =
⌈

3 ln =
ln ln =

⌉
balls in it.

Exercise 6.2.3. Show that when throwing < = = ln = balls into = bins, with probability 1 − >(1), every
bin has $ (log =) balls.

6.2.1. The Probability of all bins to have exactly one ball
Next, we are interested in the probability that all < balls fall in distinct bins. Let -8 be the event that
the 8th ball fell in a distinct bin from the first 8 − 1 balls. We have:

P
[
∩<8=2-8

]
= P[-2]

<∏
8=3
P
[
-8

��� ∩8−1
9=2- 9

]
≤

<∏
8=2

(
= − 8 + 1

=

)
≤

<∏
8=2

(
1 − 8 − 1

=

)
≤

<∏
8=2

4−(8−1)/= ≤ exp
(
−<(< − 1)

2=

)
,

thus for < =

⌈√
2= + 1

⌉
, the probability that all the < balls fall in different bins is smaller than 1/4.

This is sometime referred to as the birthday paradox. You have < = 30 people in the room, and
you ask them for the date (day and month) of their birthday (i.e., = = 365). The above shows that the
probability of all birthdays to be distinct is exp(−30 · 29/730) ≤ 1/4. Namely, there is more than 50%
chance for a birthday collision, a simple but counter-intuitive phenomena.
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6.3. The Coupon Collector’s Problem
There are = types of coupons, and at each trial one coupon is picked in random. How many trials one
has to perform before picking all coupons? Let < be the number of trials performed. We would like to
bound the probability that < exceeds a certain number, and we still did not pick all coupons.

Let �8 ∈
{
1, . . . , =

}
be the coupon picked in the 8th trial. The 9th trial is a success, if � 9 was not

picked before in the first 9 − 1 trials. Let -8 denote the number of trials from the 8th success, till after
the (8 + 1)th success. Clearly, the number of trials performed is

- =

=−1∑
8=0

-8 .

Now, the probability of -8 to succeed in a trial is ?8 = (= − 8)/=, and -8 has the geometric distribution
with probability ?8. As such E[-8] = 1/?8, and V[-8] = @/?2 = (1 − ?8)/?2

8
.

Thus,

E[-] =
=−1∑
8=0
E[-8] =

=−1∑
8=0

=

= − 8 = =�= = =(ln = + Θ(1)) = = ln = +$ (=),

where �= =
∑=
8=1 1/8 is the =th Harmonic number.

As for variance, using the independence of -0, . . . , -=−1, we have

V[-] =
=−1∑
8=0
V[-8] =

=−1∑
8=0

1 − ?8
?2
8

=

=−1∑
8=0

1 − (= − 8)/=(
=−8
=

)2 =

=−1∑
8=0

8/=(
=−8
=

)2 =
=−1∑
8=0

8

=

( =

= − 8

)2

= =

=−1∑
8=0

8

(= − 8)2 = =
=∑
8=1

= − 8
82

= =

(
=∑
8=1

=

82
−

=∑
8=1

1
8

)
= =2

=∑
8=1

1
82
− =�=.

Since, lim=→∞
∑=
8=1

1
82
= c2/6, we have lim

=→∞
V[-]
=2 =

c2

6 .

Corollary 6.3.1. Let - be the number of rounds till we collection all = coupons. Then, V[-] ≈
(
c2/6

)
=2

and its standard deviation is f- ≈ (c/
√

6)=.

This implies a weak bound on the concentration of -, using Chebyshev inequality, we have

P
[
- ≥ = log = + = + C · = c√

6

]
≤ P

[��- − E[-]�� ≥ Cf- ] ≤ 1
C2
,

Note, that this is somewhat approximate, and hold for = sufficiently large.

6.4. Notes
The material in this note covers parts of [MR95, sections 3.1,3.2,3.6]
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Chapter 7

Sampling, Estimation, and More on the
Coupon’s Collector Problems II
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

There is not much talking now. A silence falls upon them all. This is no time to talk of hedges and fields, or the
beauties of any country. Sadness and fear and hate, how they well up in the heart and mind, whenever one opens
the pages of these messengers of doom. Cry for the broken tribe, for the law and custom that is gone. Aye, and cry
aloud for the man who is dead, for the woman and children bereaved. Cry, the beloved country, these things are
not yet at an end. The sun pours down on the earth, on the lovely land that man cannot enjoy. He knows only the
fear of his heart.

Alan Paton, Cry, the beloved country

7.1. Randomized selection – Using sampling to learn the world

7.1.1. Sampling
One of the big advantages of randomized algorithms, is that they sample the world; that is, learn how
the input looks like without reading all the input. For example, consider the following problem: We are
given a set of * of = objects D1, . . . , D=. and we want to compute the number of elements of * that have
some property. Assume, that one can check if this property holds, in constant time, for a single object,
and let k(D) be the function that returns 1 if the property holds for the element D. and zero otherwise.
Now, let Γ be the number of objects in * that have this property. We want to reliably estimate Γ
without computing the property for all the elements of *.

A natural approach, would be to pick a random sample R of < objects, A1, . . . , A< from * (with
replacement), and compute . =

∑<
8=1 k(A1). The estimate for Γ is V = (=/<). . It is natural to ask how

far is V from the true value Γ.

Lemma 7.1.1. Let * be a set of = elements, with Γ of them having a certain property k. Let R be a
uniform random sample from * (with repetition) of size <, and let . be the number of elements in R
that have the property k, and let / = (=/<). be the estimate for Γ. Then, for any C ≥ 1, we have that

P
[
Γ − C =

2
√
<
≤ / ≤ Γ + C =

2
√
<

]
≥ 1 − 1

C2
.

Similarly, we have that P
[
E[. ] − C

√
</2 ≤ . ≤ E[. ] + C

√
</2

]
≥ 1 − 1/C2.
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Proof: Let .8 = k(A8) be an indicator variable that is 1 if the 8th sample A8 has the property k. Consider
the random variable . =

∑
8 .8, and the estimate / = (=/<). for Γ. In particular, we have E[/] = Γ.

The variable . is a binomial distribution with probability ? = Γ/=, and < samples; that is, . ∼
Bin(<, ?). We saw in the previous lecture that, E[. ] = <?, V[. ] = <?(1 − ?), and its standard
deviation is f. =

√
<?(1 − ?) ≤

√
</2, as

√
?(1 − ?) is maximized for ? = 1/2.

By Chebychev’s inequality, we have that P
[
|. − E[. ] | ≥ Cf.

]
≤ 1/C2, Since (=/<) E[. ] = E[/] = Γ,

this implies that

1
C2
≥ P

[��� =
<
. − =

<
E[. ]

��� ≥ =

<
Cf.

]
= P

[
|/ − Γ| ≥ =

<
Cf.

]
≥ P

[
|/ − Γ| ≥ =

<
C ·
√
<

2

]
= P

[
|/ − Γ| ≥ C =

2
√
<

]
. �

7.1.1.1. Inverse estimation

We are given a set * = {D1, . . . , D=} of = distinct numbers. Let *〈8〉 denote the 8th smallest number in *
– that is *〈8〉 is the number of rank 8 in *.

Lemma 7.1.2. Given a set * of = numbers, a number :, and parameters C ≥ 1 and <, one can compute,
in $ (< log<) time, two numbers A−, A+ ∈ *, such that:
(A) The number of rank : in * is in the interval I = [A−, A+].
(B) There are at most 8C=/

√
< numbers of * in I.

The above two properties hold with probability ≥ 1 − 3/C2.

Proof: (A) Compute a sample R of * in $ (<) time (assuming the input numbers are given in an array,
say). Next sort the numbers of R in $ (= log =) time. Let

ℓ− =

⌊
<
:

=
− C
√
</2

⌋
− 1 and ℓ+ =

⌈
<
:

=
+ C
√
</2

⌉
+ 1.

Set A− = R[ℓ−] and A+ = R[ℓ+].
Let . be the number of elements in the sample R that are ≤ *〈:〉. By Lemma 7.1.1, we have

P
[
E[. ] − C

√
</2 ≤ . ≤ E[. ] + C

√
</2

]
≥ 1 − 1/C2. In particular, if this happens, then A− ≤ *〈:〉 ≤ A+.

(B) Let 6 = : − C =√
<
−3 =

<
, and let 6R be the number of elements in R that are smaller than *〈6〉. Arguing

as above, we have that P
[
6R ≤

6

=
< + C

√
</2

]
≥ 1 − 1/C2. Now

6

=
< + C

√
</2 = <

=

(
: − C =√

<
− 3 =

<

)
+ C
√
</2 = : <

=
− C
√
< − 3 + C

√
</2 = : <

=
− C
√
</2 − 3 < ℓ−.

This implies that the 6 smallest numbers in * are outside the interval [A−, A+] with probability ≥ 1−1/C2.
Next, let ℎ = : + C =√

<
+ 3 =

<
. A similar argument, shows that all the = − ℎ largest numbers in * are

too large to be in [A−, A+]. This implies that

| [A−, A+] ∩* | ≤ ℎ − 6 + 1 = 6 =
<
+ 2C =√

<
≤ 8 C=√

<
. �

58



7.1.1.2. Inverse estimation – intuition

Here we are trying to give some intuition to the proof of the previous lemma. Feel free to skip this part
if you feel you already understand what is going on.

Given :, we are interested in estimating B: = *〈:〉 quickly. So, let us take a sample R of size <. Let
R≤B: be the set of all the numbers in R that are ≤ B: . For . =

��R≤B: ��, we have that ` = E[. ] = < :
=
.

Furthermore, for any C ≥ 1, Lemma 7.1.1 implies that P
[
` − C
√
</2 ≤ . ≤ ` + C

√
</2

]
≥ 1 − 1/C2. In

particular, with probability ≥ 1 − 1/C2 the number A− = R〈ℓ−〉, for ℓ− =
⌊
` − C
√
</2

⌋
− 1, is smaller than

B: , and similarly, the number A+ = R〈ℓ+〉 of rank ℓ+ =
⌈
` + C
√
</2

⌉
+ 1 in R is larger than B: .

One can conceptually think about the interval I(:) = [A−, A+] as confidence interval – we know that
B: ∈ I(:) with probability ≥ 1 − 1/C2. But how heavy is this interval? Namely, how many elements are
there in I(:) ∩*?

To this end, consider the interval of ranks, in the sample, that might contain the :th element. By the
above, this is I(:, C) = : <

=
+

[
−C
√
</2 − 1, C

√
</2 + 1

]
. In particular, consider the maximum a ≤ :, such

that I(a, C) and I(:, C) are disjoint. We have the condition that a<
=
+ C
√
</2 + 1 ≤ : <

=
− C
√
</2 − 1 =⇒

a ≤ : − C =√
<
− 2 =

<
. Let 6 = : − C =√

<
− 2 =

<
and ℎ = : + C =√

<
+ 2 =

<
. We have that I(6, C), I(:, C) and I(ℎ, C)

are all disjoint with probability ≥ 1 − 3/C2.
To this end, let 6 = : −

⌈
2
(
C =

2
√
<

)⌉
and ℎ = : +

⌈
2
(
C =

2
√
<

)⌉
. It is easy to verify (using the same

argumentation as above) that with probability at least 1− 3/C2, the three confidence I(6), I(:) and I(ℎ)
do not intersect. As such, we have

��I(:) ∩* �� ≤ ℎ − 6 ≤ 4
(
C =

2
√
<

)
.

7.1.2. Randomized selection

7.1.2.1. The algorithm

Given an array ( of = numbers, and the rank :. The algorithm needs to compute (〈:〉. To this end, set
C =

⌈
=1/8⌉, and < =

⌈
=3/4⌉.

Using the algorithm of Lemma 7.1.2, in $ (< log<) time, we get two numbers A− and A+, such that
(〈:〉 ∈ [A8, A+], and

|( ∩ (A8, A+)︸       ︷︷       ︸
(<

| = $ (C=/
√
<) = $

(
=1/8=/<3/8

)
= $ (=3/4).

To this end, we break ( into three sets:
(i) (< = {B ∈ ( | B ≤ A−},
(ii) (< = {B ∈ ( | A− < B < A+},
(iii) (> = {B ∈ ( | A+ ≤ B}.
This three way partition can be done using 2= comparisons and in linear time. We now can readily
compute the rank of A− in ( (it is |(< |) and the rank of A+ in ( (it is |(< | + |(< | + 1). If rank(A−, () > : or
rank(A+, () < : then the algorithm failed. The other possibility for failure is that (< is too large – (i.e.,
larger than 8C=/

√
< = $ (=3/4). If any of these failures happened, then we rerun this algorithm from

scratch.
Otherwise, the algorithm need to compute the element of rank : − |(< | in the set (<, and this can

be done in $ ( |(< | log |(< |) = $ (=3/4 log =) time by using sorting.
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LazySelect((, :)
Input: ( - set of = elements, : - index of element to be output.
repeat

R←
{
Sample with replacement of =3/4 elements from (

}
∪ {−∞, +∞}.

Sort '.
ℓ ← max

(
1,

⌊
:=−1/4 −

√
=
⌋ )
, ℎ← min

(
=3/4,

⌊
:=−1/4 +

√
=
⌋ )

0 ← R[ℓ], 1 ← R[ℎ].
Compute the ranks A( (0) and A( (1) of 0 and 1 in (

/* using 2= comparisons */
%←

{
H ∈ (

�� 0 ≤ H ≤ 1 }
/* done when computing the rank of 0 and 1 */

Until (A( (0) ≤ : ≤ A( (1)) and
(
|% | ≤ 8=3/4 + 2

)
Sort % in $ (=3/4 log =) time.
return %[: − A( (0) + 1]

Figure 7.1: The LazySelect algorithm.

7.1.2.2. Analysis

The correctness is easy – the algorithm clearly returns the desired element. As for running time, observe
that by Lemma 7.1.2, by probability ≥ 1 − 1/=1/4, we succeeded in the first try, and then the running
time is $ (= + (< log<)) = $ (=). More generally, the probability that the algorithm failed in the first U
tries to get a good interval [A−, A+] is at most 1/=U/4.
Exercise 7.1.3. Given numbers A−, A+, show how to compute the sets (<, (<, (> using (only!) 1.5= com-
parisons.

Theorem 7.1.4. Given an array ( with = numbers and a rank :, one can compute the element of rank :
in ( in expected linear time. Formally, the resulting algorithm performs in expectation 1.5=+$ (=3/4 log =)
comparisons.

Proof: Let - be the random variable that is the number of iteration till the interval is good. We have
that - is a geometric variable with probability of success [≥ 1 − 1/=1/4. As such, the expected number
of rounds till success is ≤ 1/? ≤ 1 + 2/=1/4. As such, the expected number of comparisons performed by
the algorithm is E

[
- ·

(
1.5= +$ (=3/4 log =)

)]
= 1.5= +$ (=3/4 log =). �

7.2. Randomized selection – a more direct presentation
We are given a set ( of = distinct elements, with an associated ordering. For C ∈ (, let A( (C) denote the
rank of C (the smallest element in ( has rank 1). Let (〈8〉 denote the 8th element in the sorted list of (.

Given :, we would like to compute (: (i.e., select the :th element). The code of LazySelect is
depicted in Figure 7.1.

Exercise 7.2.1. Show how to compute the ranks of A( (0) and A( (1), such that the expected number of
comparisons performed is 1.5=.
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Consider the element ((:) and where it is mapped to in the random sample '. Consider the interval
of values

I( 9) =
[
'(U( 9)) , '(V( 9))

]
=

{
'(:)

��U( 9) ≤ : ≤ V( 9) } ,
where U( 9) = 9 · =−1/4 −

√
= and V( 9) = 9 · =−1/4 +

√
=.

Lemma 7.2.2. For a fixed 9 , we have that P
[
(( 9) ∈ I( 9)

]
≥ 1 − 1/(4=1/4).

Proof: There are two possible bad events: (i) (( 9) < 'U( 9) and (ii) 'V( 9) < (( 9). Let -8 be an indicator
variable which is 1 if the 8th sample is smaller equal to (( 9), otherwise 0. We have ? = P[-8]] = 9/=
and @ = 1 − 9/=. The random variable - =

∑=3/4
8=1 -8 is the rank of (( 9) in the random sample. Clearly,

- ∼ �
(
=3/4, 9/=

)
(i.e., - has a binomial distribution with ? = 9/=, and =3/4 trials). As such, we have

E[-] = ?=3/4 and V[-] = =3/4?@.
Now, by Chebyshev inequality

P
[��- − ?=3/4�� ≥ C√=3/4?@

]
≤ 1
C2
.

Since ?=3/4 = 9=−1/4 and
√
=3/4( 9/=) (1 − 9/=) ≤ =3/8/2, we have that the probability of 0 > (( 9) or

1 > (( 9) is

P
[
(( 9) < 'U( 9) or 'V( 9) < (( 9)

]
= P

[
- < ( 9=−1/4 −

√
=) or - > ( 9=−1/4 +

√
=)

]
= P

[
|- − 9=−1/4 | ≥ 2=1/8 · =

3/8

2

]
≤ 1(

2=1/8)2 =
1

4=1/4 . �

Lemma 7.2.3. LazySelect succeeds with probability ≥ 1 − $ (=−1/4) in the first iteration. And it
performs only 2= + >(=) comparisons.

Proof: By Lemma 7.2.2, we know that ((:) ∈ I(:) with probability ≥ 1 − 1/(4=1/4). This in turn
implies that ((:) ∈ %. Thus, the only possible bad event is that the set % is too large. To this end,
set :− = : − 3=3/4 and :+ = : + 3=3/4, and observe that, by definition, it holds I(:−) ∩ I(:) = ∅ and
I(:) ∩ I(:+) = ∅. As such, we know by Lemma 7.2.2, that ((:−) ∈ I(:−) and ((:+) ∈ I(:+), and this holds
with probability ≥ 1 − 2

4=1/4 . As such, the set %, which is by definition contained in the range I(:), has
only elements that are larger than ((:−) and smaller than ((:+). As such, the size of % is bounded by
:+ − :− = 6=3/4. Thus, the algorithm succeeds in the first iteration, with probability ≥ 1 − 3

4=1/4 .
As for the number of comparisons, an iteration requires

$ (=3/4 log =) + 2= +$ (=3/4 log =) = 2= + >(=)

comparisons �

Any deterministic selection algorithm requires 2= comparisons, and LazySelect can be changed to
require only 1.5= + >(=) comparisons (expected).
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7.3. The Coupon Collector’s Problem Revisited

7.3.1. Some technical lemmas

Unfortunately, in Randomized Algorithms, many of the calculations are awful¬. As such, one has to be
dexterous in approximating such calculations. We present quickly a few of these estimates.

Lemma 7.3.1. For G ≥ 0, we have 1−G ≤ exp(−G) and 1+G ≤ 4G. Namely, for all G, we have 1+G ≤ 4G.

Proof: For G = 0 we have equality. Next, computing the derivative on both sides, we have that we need
to prove that −1 ≤ − exp(−G) ⇐⇒ 1 ≥ exp(−G) ⇐⇒ 4G ≥ 1, which clearly holds for G ≥ 0.

A similar argument works for the second inequality. �

Lemma 7.3.2. For any H ≥ 1, and |G | ≤ 1, we have
(
1 − G2) H ≥ 1 − HG2.

Proof: Observe that the inequality holds with equality for G = 0. So compute the derivative of G of both
sides of the inequality. We need to prove that

H(−2G)
(
1 − G2) H−1 ≥ −2HG ⇐⇒

(
1 − G2) H−1 ≤ 1,

which holds since 1 − G2 ≤ 1, and H − 1 ≥ 0. �

Lemma 7.3.3. For any H ≥ 1, and |G | ≤ 1, we have
(
1 − G2H

)
4GH ≤ (1 + G)H ≤ 4GH.

Proof: The right side of the inequality is standard by now. As for the left side. Observe that

(1 − G2)4G ≤ 1 + G,

since dividing both sides by (1+G)4G, we get 1−G ≤ 4−G, which we know holds for any G. By Lemma 7.3.2,
we have (

1 − G2H
)
4GH ≤

(
1 − G2) H4GH = ( (

1 − G2)4G ) H ≤ (
1 + G

) H
≤ 4GH . �

7.3.2. Back to the coupon collector’s problem
There are = types of coupons, and at each trial one coupon is picked in random. How many trials one
has to perform before picking all coupons? Let < be the number of trials performed. We would like to
bound the probability that < exceeds a certain number, and we still did not pick all coupons.

In the previous lecture, we showed that

P

[
# of trials ≥ = log = + = + C · = c√

6

]
≤ 1
C2
,

for any C.
A stronger bound, follows from the following observation. Let /A

8
denote the event that the 8th

coupon was not picked in the first A trials. Clearly,

P
[
/A8

]
=

(
1 − 1

=

)A
≤ exp

(
− A
=

)
.

¬"In space travel," repeated Slartibartfast, "all the numbers are awful." – Life, the Universe, and Everything Else,
Douglas Adams.
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Thus, for A = V= log =, we have P
[
/A8

]
≤ exp

(
− V= log =

=

)
= =−V. Thus,

P
[
- > V= log =

]
≤ P

[⋃
8

/
V= log =
8

]
≤ = · P

[
/1

]
≤ =−V+1.

Lemma 7.3.4. Let the random variable - denote the number of trials for collecting each of the = types
of coupons. Then, we have P

[
- > = ln = + 2=

]
≤ 4−2.

Proof: The probability we fail to pick the first type of coupon is U = (1 − 1/=)< ≤ exp
(
−= ln =+2=

=

)
=

exp(−2)/=. As such, using the union bound, the probability we fail to pick all = types of coupons is
bounded by =U = exp(−2), as claimed. �

In the following, we show a slightly stronger bound on the probability, which is 1 − exp(−4−2). To
see that it is indeed stronger, observe that 4−2 ≥ 1 − exp(−4−2).

7.3.3. An asymptotically tight bound
Lemma 7.3.5. Let 2 > 0 be a constant, < = = ln = + 2= for a positive integer =. Then for any constant

:, we have lim
=→∞

(
=

:

) (
1 − :

=

)<
=

exp(−2:)
:! .

Proof: By Lemma 7.3.3, we have(
1 − :

2<

=2

)
exp

(
− :<
=

)
≤

(
1 − :

=

)<
≤ exp

(
− :<
=

)
.

Observe also that lim
=→∞

(
1 − :

2<

=2

)
= 1, and exp

(
− :<
=

)
= =−: exp(−2:). Also,

lim
=→∞

(
=

:

)
:!
=:
= lim
=→∞

=(= − 1) · · · (= − : + 1)
=:

= 1.

Thus, lim
=→∞

(
=

:

) (
1 − :

=

)<
= lim
=→∞

=:

:! exp
(
− :<
=

)
= lim
=→∞

=:

:! =
−: exp(−2:) = exp(−2:)

:! . �

Theorem 7.3.6. Let the random variable - denote the number of trials for collecting each of the = types
of coupons. Then, for any constant 2 ∈ R, and < = = ln =+2=, we have lim=→∞ P

[
- > <

]
= 1−exp

(
−4−2

)
.

Before dwelling into the proof, observe that 1−exp(−4−2) ≈ 1− (1 − 4−2) = 4−2. Namely, in the limit,
the upper bound of Lemma 7.3.4 is tight.

Proof: We have P
[
- > <

]
= P

[
∪8/<8

]
. By inclusion-exclusion, we have

P

[⋃
8

/<8

]
=

=∑
8=1
(−1)8+1%=8 ,
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where %=9 =
∑

1≤81<82<...<8 9≤=
P

[
9⋂

E=1
/<8E

]
. Let (=

:
=

∑:
8=1(−1)8+1%=

8
. We know that (=2: ≤ P

[⋃
8 /

<
8

]
≤ (=2:+1.

By symmetry,

%=: =

(
=

:

)
P

[
:⋂
E=1

/<E

]
=

(
=

:

) (
1 − :

=

)<
,

Thus, %: = lim=→∞ %=: = exp(−2:)/:!, by Lemma 7.3.5. Thus, we have

(: =

:∑
9=1
(−1) 9+1% 9 =

:∑
9=1
(−1) 9+1 · exp(−2 9)

9 ! .

Observe that lim:→∞ (: = 1 − exp(−4−2) by the Taylor expansion of exp(G) (for G = −4−2). Indeed,

exp
(
G

)
=

∞∑
9=0

G 9

9 ! =
∞∑
9=0

(−4−2) 9

9 ! = 1 +
∞∑
9=1

(−1) 9exp(−2 9)
9 ! .

Clearly, lim=→∞ (=: = (: and lim:→∞ (: = 1 − exp(−4−2). Thus, (using fluffy math), we have

lim
=→∞
P
[
- > <

]
= lim
=→∞
P
[
∪=8=1/

<
8

]
= lim
=→∞

lim
:→∞

(=: = lim
:→∞

(: = 1 − exp(−4−2). �
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Chapter 8

Concentration of Random Variables –
Chernoff’s Inequality
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

8.1. Concentration of mass and Chernoff’s inequality

8.1.1. Example: Binomial distribution

Consider the binomial distribution Bin(=, 1/2) for various values of = as depicted in Figure 8.1 – here
we think about the value of the variable as the number of heads in flipping a fair coin = times. Clearly,
as the value of = increases the probability of getting a number of heads that is significantly smaller or
larger than =/2 is tiny. Here we are interested in quantifying exactly how far can we divert from this
expected value. Specifically, if - ∼ Bin(=, 1/2), then we would be interested in bounding the probability
P[- > =/2 + Δ], where Δ = Cf- = C

√
=/2 (i.e., we are C standard deviations away from the expectation).

For C > 2, this probability is roughly 2−C , which is what we prove here.
More surprisingly, if you look only on the middle of the distribution, it looks the same after clipping

away the uninteresting tails, see Figure 8.2; that is, it looks more and more like the normal distribution.
This is a universal phenomena known the central limit theorem – every sum of nicely behaved random
variables behaves like the normal distribution. We unfortunately need a more precise quantification of
this behavior, thus the following.

8.1.2. A restricted case of Chernoff inequality via games

8.1.2.1. Chernoff games

The game. Consider the game where a player starts with .0 = 1 dollars. At every round, the player
can bet a certain amount G (fractions are fine). With probability half she loses her bet, and with
probability half she gains an amount equal to her bet. The player is not allowed to go all in – because
if she looses then the game is over. So it is natural to ask what her optimal betting strategy is, such
that in the end of the game she has as much money as possible.
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Figure 8.1: The binomial distribution for different values of =. It pretty quickly concentrates around its
expectation.

0
0.05
0.1

0.15
0.2

0 2 4 6 8 10 12 14 16

00.020.040.060.080.10.120.140.16

5 10 15 20 25

0
0.02
0.04
0.06
0.08
0.1

20 25 30 35 40 45

00.010.020.030.040.050.060.070.08

45 50 55 60 65 70 75 80 85

= = 16 = = 32 = = 64 = = 128

0
0.01
0.02
0.03
0.04
0.05

10
0

11
0

12
0

13
0

14
0

15
0

16
0

00.0050.010.0150.020.0250.030.0350.04

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

0
0.005
0.01

0.015
0.02

0.025

46
0

48
0

50
0

52
0

54
0

56
0

0
0.002
0.004
0.006
0.008
0.01

39
50

40
00

40
50

41
00

41
50

42
00

42
50

= = 256 = = 512 = = 1024 = = 8192

Figure 8.2: The “middle” of the binomial distribution for different values of =. It very quickly converges
to the normal distribution (under appropriate rescaling and translation.
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-8 ∈ {−1, +1}
P[-8 = −1] = P[-8 = 1] = 1/2

P
[
. ≥ Δ

]
≤ exp

(
−Δ2/2=

)
Theorem 8.1.7

P
[
. ≤ −Δ

]
≤ exp

(
−Δ2/2=

)
Theorem 8.1.7

-8 ∈ {0, 1}
P[-8 = 0] = P[-8 = 1] = 1/2

P
[
|. − =/2| ≥ Δ

]
≤ 2 exp

(
−2Δ2/=

)
Corollary 8.1.9

-8 ∈ {0, 1} P[-8 = 1] = ?8 P[-8 = 0] = 1 − ?8

X ≥ 0 % = P
[
. > (1 + X)`

]
<

(
4X

/
(1 + X)1+X

)`
Theorem 8.2.1

X ∈ (0, 1) % < exp
(
−`X2/3

)
Lemma 8.2.4

X ∈ (0, 4) % < exp
(
−`X2/4

)
Lemma 8.2.5

X ∈ (0, 6) % < exp
(
−`X2/5

)
Lemma 8.2.6

X ≥ 24 − 1 % < 2−`(1+X) Lemma 8.2.7
X ≥ 42 % < exp

(
−(`X/2) ln X

)
Lemma 8.2.8

X ≥ 0, i ∈ (0, 1] P
[
. > (1 + X)` + 3 ln i−1

X2

]
< i. Lemma 8.2.9

X ≥ 0

P[. < (1 − X)`] <(
4−X

/
(1 − X)1−X

)`
P[. < (1 − X)`] < exp

(
−`X2/2

) Theorem 8.2.3

Δ ≥ 0 P
[
. − ` ≥ Δ

]
≤ exp

(
−2Δ2/=

)
P
[
. − ` ≤ −Δ

]
≤ exp

(
−2Δ2/=

)
.

Corollary 8.3.5

g ≥ 1 P[. < `/g] < exp ( − [
1 − 1+ln g

g

]
`) Theorem 8.2.3

-8 ∈ [0, 1] Arbitrary independent distributions

X ∈ [0, 1]
P
[
. ≥ (1 + X)`

]
≤ exp

(
−X2`/4

)
P
[
. ≤ (1 − X)`

]
≤ exp

(
−X2`/2

)
.

Theorem 8.3.6

Δ ≥ 0 P
[
. − ` ≥ Δ

]
≤ exp

(
−2Δ2/=

)
P
[
. − ` ≤ −Δ

]
≤ exp

(
−2Δ2/=

)
.

Corollary 8.3.5

-8 ∈ [08, 18] Arbitrary independent distributions

Δ ≥ 0 P
[
|. − ` | ≥ Δ

]
≤ 2 exp

(
− 2Δ2∑=

8=1(18 − 08)2

)
Theorem 8.4.3

Table 8.1: Summary of Chernoff type inequalities covered. Here we have = independent random variables
-1, . . . , -=, . =

∑
8 -8 and ` = E[. ].
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Is the game pointless? So, let .8−1 be the money the player has in the end of the (8 − 1)th round,
and she bets an amount k8 ≤ .8−1 in the 8th round. As such, in the end of the 8th round, she has

.8 =

{
.8−1 − k8 lose: probability half
.8−1 + k8 win: probability half

dollars. This game, in expectation, does not change the amount of money the player has. Indeed, we
have

E
[
.8

��.8−1
]
=

1
2 (.8−1 − k8) +

1
2 (.8−1 + k8) = .8−1.

And as such, we have that E
[
.8

]
= E

[
E
[
.8

��.8−1
] ]
= E

[
.8−1

]
= · · · = E

[
.0

]
= 1. In particular, E[.=] = 1

– namely, on average, independent of the player strategy she is not going to make any money in this
game (and she is allowed to change her bets after every round). Unless, she is lucky¬...

What about a lucky player? The player believes she will get lucky and wants to develop a strategy
to take advantage of it. Formally, she believes that she can win, say, at least (1 + X)/2 fraction of her
bets (instead of the predicted 1/2) – for example, if the bets are in the stock market, she can improve
her chances by doing more research on the companies she is investing in. Unfortunately, the player
does not know which rounds she is going to be lucky in – so she still needs to be careful.

In a search of a good strategy. Of course, there are many safe strategies the player can use, from
not playing at all, to risking only a tiny fraction of her money at each round. In other words, our quest
here is to find the best strategy that extracts the maximum benefit for the player out of her inherent
luck.

Here, we restrict ourselves to a simple strategy – at every round, the player would bet V fraction
of her money, where V is a parameter to be determined. Specifically, in the end of the 8th round, the
player would have

.8 =

{
(1 − V).8−1 lose
(1 + V).8−1 win.

By our assumption, the player is going to win in at least " = (1 + X)=/2 rounds. Our purpose here is to
figure out what the value of V should be so that player gets as rich as possible®. Now, if the player is
successful in ≥ " rounds, out of the = rounds of the game, then the amount of money the player has,
in the end of the game, is

.= ≥ (1 − V)=−" (1 + V)" = (1 − V)=/2−(X/2)= (1 + V)=/2+(X/2)= =
(
(1 − V) (1 + V)

)=/2−(X/2)=
(1 + V)X=

=

(
1 − V2

)=/2−(X/2)=
(1 + V)X= ≥ exp

(
−2V2)=/2−(X/2)=exp(V/2)X= = exp

( (
−V2 + V2X + VX/2

)
=
)
.

To maximize this quantity, we choose V = X/4 (there is a better choice, see Lemma 8.1.6, but we use this

value for the simplicity of exposition). Thus, we have that .= ≥ exp
((
− X

2

16 +
X3

16 +
X2

8

)
=

)
≥ exp

(
X2

16=
)
,

proving the following.
¬“I would rather have a general who was lucky than one who was good.” – Napoleon Bonaparte.
“I am a great believer in luck, and I find the harder I work, the more I have of it.” – Thomas Jefferson.
®This optimal choice is known as Kelly criterion, see Remark 8.1.3.
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Lemma 8.1.1. Consider a Chernoff game with = rounds, starting with one dollar, where the player
wins in ≥ (1 + X)=/2 of the rounds. If the player bets X/4 fraction of her current money, at all rounds,
then in the end of the game the player would have at least exp

(
=X2/16

)
dollars.

Remark 8.1.2. Note, that Lemma 8.1.1 holds if the player wins any ≥ (1 + X)=/2 rounds. In particular,
the statement does not require randomness by itself – for our application, however, it is more natural
and interesting to think about the player wins as being randomly distributed.

Remark 8.1.3. Interestingly, the idea of choosing the best fraction to bet is an old and natural question
arising in investments strategies, and the right fraction to use is known as Kelly criterion, going back
to Kelly’s work from 1956 [Kel56].

8.1.2.2. Chernoff’s inequality

The above implies that if a player is lucky, then she is going to become filthy rich¯. Intuitively, this
should be a pretty rare event – because if the player is rich, then (on average) many other people have
to be poor. We are thus ready for the kill.

Theorem 8.1.4 (Chernoff’s inequality). Let -1, . . . , -= be = independent random variables, where
-8 = 0 or -8 = 1 with equal probability. Then, for any X ∈ (0, 1/2), we have that

P
[∑
8

-8 ≥ (1 + X)
=

2

]
≤ exp

(
− X

2

16=
)
.

Proof: Imagine that we are playing the Chernoff game above, with V = X/4, starting with 1 dollar, and
let .8 be the amount of money in the end of the 8th round. Here -8 = 1 indicates that the player won
the 8th round. We have, by Lemma 8.1.1 and Markov’s inequality, that

P
[∑
8

-8 ≥ (1 + X)
=

2

]
≤ P

[
.= ≥ exp

(=X2

16

)]
≤ E[.=]

exp(=X2/16)
=

1
exp(=X2/16)

= exp
(
− X

2

16=
)
. �

This is crazy – so intuition maybe? If the player is (1+X)/2-lucky then she can make a lot of money;
specifically, at least 5 (X) = exp

(
=X2/16

)
dollars by the end of the game. Namely, beating the odds has

significant monetary value, and this value grows quickly with X. Since we are in a “zero-sum” game
settings, this event should be very rare indeed. Under this interpretation, of course, the player needs to
know in advance the value of X – so imagine that she guesses it somehow in advance, or she plays the
game in parallel with all the possible values of X, and she settles on the instance that maximizes her
profit.

Can one do better? No, not really. Chernoff inequality is tight (this is a challenging homework
exercise) up to the constant in the exponent. The best bound I know for this version of the inequality
has 1/2 instead of 1/16 in the exponent. Note, however, that no real effort was taken to optimize the
constants – this is not the purpose of this write-up.

¯Not that there is anything wrong with that – many of my friends are filthy,
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8.1.2.3. Some low level boring calculations

Above, we used the following well known facts.

Lemma 8.1.5. (A) Markov’s inequality. For any positive random variable - and C > 0, we have
P[- ≥ C] ≤ E[-] /C. (B) For any two random variables - and . , we have that E

[
-

]
= E

[
E
[
-

��. ] ]
.

(C) For G ∈ (0, 1), 1 + G ≥ 4G/2. (D) For G ∈ (0, 1/2), 1 − G ≥ 4−2G.

Lemma 8.1.6. The quantity exp
( (
−V2 + V2X + VX/2

)
=
)
is maximal for V = X

4(1−X) .

Proof: We have to maximize 5 (V) = −V2 + V2X + VX/2 by choosing the correct value of V (as a function
of X, naturally). 5 ′(V) = −2V + 2VX + X/2 = 0 ⇐⇒ 2(X − 1)V = −X/2 ⇐⇒ V = X

4(1−X) . �

8.1.3. A proof for −1/+1 case
Theorem 8.1.7. Let -1, . . . , -= be = independent random variables, such that P[-8 = 1] = P[-8 = −1] =
1
2 , for 8 = 1, . . . , =. Let . =

∑=
8=1 -8. Then, for any Δ > 0, we have

P
[
. ≥ Δ

]
≤ exp

(
−Δ2/2=

)
.

Proof: Clearly, for an arbitrary C, to specified shortly, we have

P[. ≥ Δ] = P[exp(C. ) ≥ exp(CΔ)] ≤ E[exp(C. )]
exp(CΔ) ,

the first part follows by the fact that exp(·) preserve ordering, and the second part follows by the Markov
inequality.

Observe that

E[exp(C-8)] =
1
24

C + 1
24
−C =

4C + 4−C
2

=
1
2

(
1 + C

1! +
C2

2! +
C3

3! + · · ·
)

+ 1
2

(
1 − C

1! +
C2

2! −
C3

3! + · · ·
)

=

(
1 + + C

2

2! + + · · · + C2:

(2:)! + · · ·
)
,

by the Taylor expansion of exp(·). Note, that (2:)! ≥ (:!)2: , and thus

E[exp(C-8)] =
∞∑
8=0

C28

(28)! ≤
∞∑
8=0

C28

28 (8!) =
∞∑
8=0

1
8!

(
C2

2

) 8
= exp

(
C2/2

)
,

again, by the Taylor expansion of exp(·). Next, by the independence of the -8s, we have

E[exp(C. )] = E

[
exp

(∑
8

C-8

)]
= E

[∏
8

exp(C-8)
]
=

=∏
8=1
E[exp(C-8)] ≤

=∏
8=1

4C
2/2 = 4=C

2/2.
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We have P[. ≥ Δ] ≤
exp

(
=C2/2

)
exp(CΔ) = exp

(
=C2/2 − CΔ

)
.

Next, by minimizing the above quantity for C, we set C = Δ/=. We conclude,

P[. ≥ Δ] ≤ exp
(
=

2

(
Δ

=

)2
− Δ
=
Δ

)
= exp

(
−Δ

2

2=

)
. �

By the symmetry of . , we get the following:

Corollary 8.1.8. Let -1, . . . , -= be = independent random variables, such that P[-8 = 1] = P[-8 = −1] =
1
2 , for 8 = 1, . . . , =. Let . =

∑=
8=1 -8. Then, for any Δ > 0, we have P[|. | ≥ Δ] ≤ 2 exp

(
−Δ2/2=

)
.

Corollary 8.1.9. Let -1, . . . , -= be = independent coin flips, such that P[-8 = 0] = P[-8 = 1] = 1
2 , for

8 = 1, . . . , =. Let . =
∑=
8=1 -8. Then, for any Δ > 0, we have P[|. − =/2| ≥ Δ] ≤ 2 exp

(
−2Δ2/=

)
.

Remark 8.1.10. Before going any further, it is might be instrumental to understand what this inequalities
imply. Consider then case where -8 is either zero or one with probability half. In this case ` = E[. ] = =/2.
Set X = C

√
= (√` is approximately the standard deviation of - if ?8 = 1/2). We have by

P
[���. − =2 ��� ≥ Δ]

≤ 2 exp
(
−2Δ2/=

)
= 2 exp

(
−2(C
√
=)2/=

)
= 2 exp

(
−2C2

)
.

Thus, Chernoff inequality implies exponential decay (i.e., ≤ 2−C) with C standard deviations, instead of
just polynomial (i.e., ≤ 1/C2) by the Chebychev’s inequality.

8.2. The Chernoff Bound — General Case
Here we present the Chernoff bound in a more general settings.

Theorem 8.2.1. Let -1, . . . , -= be = independent variables, where P
[
-8 = 1

]
= ?8 and P

[
-8 = 0

]
= @8 =

1 − ?8, for all 8. Let - =
∑1
8=1 -8. ` = E

[
-
]
=

∑
8 ?8. For any X > 0, we have

P
[
- > (1 + X)`

]
<

(
4X

/
(1 + X)1+X

)`
.

Proof: We have P[- > (1 + X)`] = P
[
4C- > 4C (1+X)`

]
. By the Markov inequality, we have:

P
[
- > (1 + X)`

]
<
E
[
4C-

]
4C (1+X)`

On the other hand,

E
[
4C-

]
= E

[
4C (-1+-2...+-=)

]
= E

[
4C-1

]
· · ·E

[
4C-=

]
.

Namely,

P[- > (1 + X)`] <
∏=
8=1 E

[
4C-8

]
4C (1+X)`

=

∏=
8=1

(
(1 − ?8)40 + ?84C

)
4C (1+X)`

=

∏=
8=1

(
1 + ?8 (4C − 1)

)
4C (1+X)`

.
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Let H = ?8 (4C − 1). We know that 1 + H < 4H (since H > 0). Thus,

P[- > (1 + X)`] <
∏=
8=1 exp(?8 (4C − 1))

4C (1+X)`
=

exp
(∑=

8=1 ?8 (4C − 1)
)

4C (1+X)`

=
exp

(
(4C − 1)∑=

8=1 ?8
)

4C (1+X)`
=

exp
(
(4C − 1)`

)
4C (1+X)`

=

(exp
(
4C − 1

)
4C (1+X)

)`
=

(
exp(X)
(1 + X) (1+X)

)`
,

if we set C = log(1 + X). �

8.2.1. The lower tail
We need the following low level lemma.

Lemma 8.2.2. For G ∈ [0, 1), we have (1 − G)1−G ≥ exp(−G + G2/2).

Proof: For G ∈ [0, 1), we have, by the Taylor expansion, that ln(1 − G) = −∑∞
8=1(G8/8). As such, we have

(1 − G) ln(1 − G) = −(1 − G)
∞∑
8=1

G8

8
= −

∞∑
8=1

G8

8
+
∞∑
8=1

G8+1

8
= −G +

∞∑
8=2

(
G8

8 − 1 −
G8

8

)
= −G +

∞∑
8=2

G8

8(8 − 1) .

This implies that (1 − G) ln(1 − G) ≥ −G + G2/2, which implies the claim by exponentiation. �

Theorem 8.2.3. Let -1, . . . , -= be = independent random variables, where P
[
-8 = 1

]
= ?8, P

[
-8 = 0

]
=

@8 = 1 − ?8, for all 8. For - =
∑=
8=1 -8, its expectation is ` = E

[
-
]
=

∑
8 ?8. We have that

P
[
- < (1 − X)`

]
<

[ 4−X

(1 − X)1−X
] `

or alternatively P
[
- < (1 − X)`

]
< exp

(
−`X2/2

)
.

For any positive g > 1, we have that P
[
- < `/g

]
≤ exp

(
−
(
1 − 1+ln g

g

)
`

)
.

Proof: We follow the same proof template seen already. For C = − ln(1− X) > 0, we have E[exp(−C-8)] =
(1 − ?8)40 + ?84−C = 1 − ?8 + ?8 (1 − X) = 1 − ?8X ≤ exp(−?8X). As such, we have

P
[
- < (1 − X)`

]
= P

[
−- > −(1 − X)`

]
= P

[
exp(−C-) > exp(−C (1 − X)`)

]
≤

∏=
8=1 E[exp(−C-8)]

exp(−C (1 − X)`)

≤
exp

(
−∑=

8=1 ?8X
)

exp(−C (1 − X)`) =
[ 4−X

(1 − X)1−X
] `
.

The alternative simplified form, follows readily from Lemma 8.2.2, since

P
[
- < (1 − X)`

]
≤

[ 4−X

(1 − X)1−X
] `
≤

[ 4−X

exp(−X + X2/2)

] `
≤ exp(−`X2/2).

For the last inequality, set X = 1 − 1/g, and observe that

P
[
- < (1 − X)`

]
≤

[ 4−X

(1 − X)1−X
] `
=

[exp(−1 + 1/g)
(1/g)1/g

] `
= exp

(
−
(
1 − 1 + ln g

g

)
`

)
. �
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8.2.2. A more convenient form of Chernoff’s inequality
Lemma 8.2.4. Let -1, . . . , -= be = independent Bernoulli trials, where P[-8 = 1] = ?8, and P[-8 = 0] =
1 − ?8, for 8 = 1, . . . , =. Let - =

∑1
8=1 -8, and ` = E

[
-
]
=

∑
8 ?8. For X, ∈ (0, 1), we have

P
[
- > (1 + X)`

]
< exp

(
−`X2/3

)
.

Proof: By Theorem 8.2.1, it is sufficient to prove, for X ∈ [0, 1], that(
4X

(1 + X)1+X

)`
≤ exp

(
−`X

2

2

)
⇐⇒ `

(
X − (1 + X) ln(1 + X)

)
≤ −`X2/2

⇐⇒ 5 (X) = X2/2 + X − (1 + X) ln(1 + X) ≤ 0.

We have
5 ′(X) = 2X/2 − ln(1 + X). and 5 ′′(X) = 2/2 − 1

1 + X .

For 2 = 3, we have 5 ′′(X) ≤ 0 for X ∈ [0, 1/2], and 5 ′′(X) ≥ 0 for X ∈ [1/2, 1]. Namely, 5 ′(X) achieves its
maximum either at 0 or 1. As 5 ′(0) = 0 and 5 ′(1) = 2/3 − ln 2 ≈ −0.02 < 0, we conclude that 5 ′(X) ≤ 0.
Namely, 5 is a monotonically decreasing function in [0, 1], which implies that 5 (X) ≤ 0, for all X in this
range, thus implying the claim. �

Lemma 8.2.5. Let -1, . . . , -= be = independent Bernoulli trials, where P[-8 = 1] = ?8, and P[-8 = 0] =
1 − ?8, for 8 = 1, . . . , =. Let - =

∑1
8=1 -8, and ` = E

[
-
]
=

∑
8 ?8. For X ∈ (0, 4), we have

P
[
- > (1 + X)`

]
< exp

(
−`X2/4

)
,

Proof: Lemma 8.2.4 implies a stronger bound, so we need to prove the claim only for X ∈ (1, 4]. Con-
tinuing as in the proof of Lemma 8.2.4, for case 2 = 4, we have to prove that

5 (X) = X2/4 + X − (1 + X) ln(1 + X) ≤ 0,

where 5 ′′(X) = 1/2 − 1
1+X .

For X > 1, we have 5 ′′(X) > 0. Namely 5 (·) is convex for X ≥ 1, and it achieves its maximum on
the interval [1, 4] on the endpoints. In particular, 5 (1) ≈ −0.13, and 5 (4) ≈ −0.047, which implies the
claim. �

Lemma 8.2.6. Let -1, . . . , -= be = independent random variables, where P[-8 = 1] = ?8, and P[-8 = 0] =
1 − ?8, for 8 = 1, . . . , =. Let - =

∑1
8=1 -8, and ` = E

[
-
]
=

∑
8 ?8. For X ∈ (0, 6), we have

P
[
- > (1 + X)`

]
< exp

(
−`X2/5

)
,

Proof: Lemma 8.2.5 implies a stronger bound, so we need to prove the claim only for X ∈ (4, 5]. Con-
tinuing as in the proof of Lemma 8.2.4, for case 2 = 5, we have to prove that

5 (X) = X2/5 + X − (1 + X) ln(1 + X) ≤ 0,

where 5 ′′(X) = 2/5− 1
1+X . For X ≥ 4, we have 5 ′′(X) > 0. Namely 5 (·) is convex for X ≥ 4, and it achieves

its maximum on the interval [4, 6] on the endpoints. In particular, 5 (4) ≈ −0.84, and 5 (6) ≈ −0.42,
which implies the claim. �
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Lemma 8.2.7. Let -1, . . . , -= be = independent Bernoulli trials, where P[-8 = 1] = ?8, and P[-8 = 0] =
1−?8, for 8 = 1, . . . , =. Let - =

∑1
8=1 -8, and ` = E

[
-
]
=

∑
8 ?8. For X > 24−1, we have P

[
- > (1 + X)`

]
<

2−`(1+X).
Proof: By Theorem 8.2.1, we have( 4

1 + X

) (1+X)`
≤

( 4

1 + 24 − 1

) (1+X)`
≤ 2−(1+X)`,

since X > 24 − 1. �

Lemma 8.2.8. Let -1, . . . , -= be = independent Bernoulli trials, where P[-8 = 1] = ?8, and P[-8 = 0] =
1 − ?8, for 8 = 1, . . . , =. Let - =

∑1
8=1 -8, and ` = E

[
-
]
=

∑
8 ?8. For X > 42, we have P

[
- > (1 + X)`

]
<

exp
(
− `X ln X

2

)
.

Proof: Observe that

P
[
- > (1 + X)`

]
<

(
4X

(1 + X)1+X

)`
= exp

(
`X − `(1 + X) ln(1 + X)

)
. (8.1)

As such, we have

P
[
- > (1 + X)`

]
< exp

(
−`(1 + X)

(
ln(1 + X) − 1

) )
≤ exp

(
−`Xln 1 + X

4

)
≤ exp

(
−`X ln X

2

)
,

since for G ≥ 42 we have that 1 + G
4
≥
√
G ⇐⇒ ln 1 + G

4
≥ ln G

2 . �

8.2.2.1. Bound when the expectation is small

Lemma 8.2.9. Let -1, . . . , -= be = independent Bernoulli trials, where P[-8 = 1] = ?8, and P[-8 = 0] =
1 − ?8, for 8 = 1, . . . , =. Let . =

∑1
8=1 -8, and ` = E[. ] =

∑
8 ?8. For X ∈ (0, 1], and i ∈ (0, 1], we have

P

[
. > (1 + X)` + 3 ln i−1

X2

]
< i.

Proof: Let b = X + 3 ln i−1

`X2 . If b ≥ 24 − 1 ≈ 4.43, by Lemma 8.2.7, we have

U = P

[
. > (1 + X)` + 3 ln i−1

X2

]
= P

[
. > (1 + b)`

]
≤ 2−`(1+b) < i,

since −`(1 + b) > −`b > ` 3 ln i−1

`X2 > log2 i
−1, since X ∈ (0, 1].

If b ≤ 6, then by Lemma 8.2.6, we have
U = P

[
. > (1 + b)`

]
≤ exp

(
−`b2/5

)
≤ i,

since

−`5 b
2 = −`5

(
X + 3 ln i−1

`X2

)2
> −`5

(
2 · X · 3 ln i−1

`X2

)
= −6

5 ·
ln i
X

> − ln i. �

Example 8.2.10. Let -1, . . . , -= be = independent Bernoulli trials, where P[-8 = 1] = ?8, and P[-8 = 0] =
1 − ?8, for 8 = 1, . . . , =. Let . =

∑1
8=1 -8, and ` = E[. ] =

∑
8 ?8. Assume that ` ≤ 1/2. Setting X = 1, We

have, for C > 6, that

P[. > 1 + C] ≤ P
[
. > (1 + X)` + 3 ln exp(C/3)

X2

]
≤ exp(−C/3),

by Lemma 8.2.9.
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8.3. A special case of Hoeffding’s inequality
In this section, we prove yet another version of Chernoff inequality, where each variable is randomly
picked according to its own distribution in the range [0, 1]. We prove a more general version of this
inequality in Section 8.4, but the version presented here does not follow from this generalization.

Theorem 8.3.1. Let -1, . . . , -= ∈ [0, 1] be = independent random variables, let - =
∑=
8=1 -8, and let

` = E[-]. We have that P
[
- − ` ≥ [

]
≤

(
`

` + [

)`+[ (
= − `

= − ` − [

)=−`−[
.

Proof: Let B ≥ 1 be some arbitrary parameter. By the standard arguments, we have

W = P
[
- ≥ ` + [

]
= P

[
B- ≥ B`+[

]
≤
E
[
B-

]
B`+[

= B−`−[
=∏
8=1
E
[
B-8

]
.

By calculations, see Lemma 8.3.7 below, one can show that E
[
B-1

]
≤ 1 + (B − 1) E[-8]. As such, by the

AM-GM inequality°, we have that

=∏
8=1
E
[
B-8

]
≤

=∏
8=1

(
1 + (B − 1) E[-8]

)
≤

(
1
=

=∑
8=1

(
1 + (B − 1) E[-8]

))=
=

(
1 + (B − 1) `

=

)=
.

Setting B = (` + [) (= − `)
`(= − ` − [) =

`= − `2 + [= − [`
`= − `2 − [` we have that

1 + (B − 1) `
=
= 1 + [=

`= − `2 − [` ·
`

=
= 1 + [

= − ` − [ =
= − `

= − ` − [ .

As such, we have that

W ≤ B−`−[
=∏
8=1
E
[
B-8

]
=

(
`(= − ` − [)
(` + [) (= − `)

)`+[ (
= − `

= − ` − [

)=
=

(
`

(` + [)

)`+[ (
= − `

= − ` − [

)=−`−[
. �

Remark 8.3.2. Setting B = (` + [)/` in the proof of Theorem 8.3.1, we have

P
[
- − ` ≥ [

]
≤

(
`

`+[

)`+[ (
1 +

(
`+[
`
− 1

)
`

=

)=
=

(
`

`+[

)`+[ (
1 + [

=

)=
.

Corollary 8.3.3. Let -1, . . . , -= ∈ [0, 1] be = independent random variables, let - =
∑=
8=1 -8/=, ? =

E
[
-

]
= `/= and @ = 1 − ?. Then, we have that P

[
- − ? ≥ C

]
≤ exp

(
= 5 (C)

)
, for

5 (C) = (? + C) ln ?

? + C + (@ − C) ln
@

@ − C . (8.2)

Theorem 8.3.4. Let -1, . . . , -= ∈ [0, 1] be = independent random variables, let - = (∑=
8=1 -8)/=, and

let ? = E[-]. We have that P
[
- − ? ≥ C

]
≤ exp

(
−2=C2

)
and P

[
- − ? ≤ −C

]
≤ exp

(
−2=C2

)
.

°The inequality between arithmetic and geometric means: (∑=
8=1 G8)/= ≥ =

√
G1 · · · G=.
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Proof: Let ? = `/=, @ = 1 − ?, and let 5 (C) be the function from Eq. (8.2), for C ∈ (−?, @). Now, we
have that

5 ′(C) = ln ?

? + C + (? + C)
? + C
?

(
− ?

(? + C)2

)
− ln @

@ − C − (@ − C)
@ − C
@

@

(@ − C)2 = ln ?

? + C − ln @

@ − C

= ln ?(@ − C)
@(? + C) .

As for the second derivative, we have

5 ′′(C) = @XXXX(? + C)
?(@ − C) ·

?

@
· (? + C) (−1) − (@ − C)

(? + C)A2
. =
−? − C − @ + C
(@ − C) (? + C) = −

1
(@ − C) (? + C) ≤ −4.

Indeed, C ∈ (−?, @) and the denominator is minimized for C = (@ − ?)/2, and as such (@ − C) (? + C) ≤(
2@ − (@ − ?)

) (
2? + (@ − ?)

)
/4 = (? + @)2/4 = 1/4.

Now, 5 (0) = 0 and 5 ′(0) = 0, and by Taylor’s expansion, we have that 5 (C) = 5 (0)+ 5 ′(0)C+ 5
′′(G)
2 C2 ≤

−2C2, where G is between 0 and C.
The first bound now readily follows from plugging this bound into Corollary 8.3.3. The second bound

follows by considering the random variants .8 = 1 − -8, for all 8, and plugging this into the first bound.
Indeed, for . = 1 − -, we have that @ = E

[
.

]
, and then - − ? ≤ −C ⇐⇒ C ≤ ? − - ⇐⇒ C ≤

1 − @ − (1 − . ) = . − @. Thus, P
[
- − ? ≤ −C

]
= P

[
. − @ ≥ C

]
≤ exp

(
−2=C2

)
. �

Corollary 8.3.5. Let -1, . . . , -= ∈ [0, 1] be = independent random variables, let . =
∑=
8=1 -8, and let

` = E[-]. For any Δ > 0, we have P
[
. − ` ≥ Δ

]
≤ exp

(
−2Δ2/=

)
and P

[
. − ` ≤ −Δ

]
≤ exp

(
−2Δ2/=

)
.

Proof: For - = ./=, ? = `/=, and C = Δ/=, by Theorem 8.3.4, we have

P
[
. − ` ≥ Δ

]
= P

[
- − ? ≥ C

]
≤ exp

(
−2=C2

)
= exp

(
−2Δ2/=

)
. �

Theorem 8.3.6. Let -1, . . . , -= ∈ [0, 1] be = independent random variables, let - = (∑=
8=1 -8), and let

` = E[-]. We have that P
[
- − ` ≥ Y`

]
≤ exp

(
−Y2`/4

)
and P

[
- − ` ≤ −Y`

]
≤ exp

(
−Y2`/2

)
.

Proof: Let ? = `/=, and let 6(G) = 5 (?G), for G ∈ [0, 1] and G? < @. As before, computing the derivative
of 6, we have

6′(G) = ? 5 ′(G?) = ? ln ?(@ − G?)
@(? + G?) = ? ln @ − G?

@(1 + G) ≤ ? ln 1
1 + G ≤ −

?G

2 ,

since (@ − G?)/@ is maximized for G = 0, and ln 1
1+G ≤ −G/2, for G ∈ [0, 1], as can be easily verified±.

Now, 6(0) = 5 (0) = 0, and by integration, we have that 6(G) =
∫ G

H=0 6
′(H)dH ≤

∫ G

H=0(−?H/2)dH = −?G
2/4.

Now, plugging into Corollary 8.3.3, we get that the desired probability P
[
- − ` ≥ Y`

]
is

P
[
- − ? ≥ Y?

]
≤ exp

(
= 5 (Y?)

)
= exp

(
=6(Y)

)
≤ exp

(
−?=Y2/4

)
= exp

(
−`Y2/4

)
.

±Indeed, this is equivalent to 1
1+G ≤ 4

−G/2 ⇐⇒ 4G/2 ≤ 1 + G, which readily holds for G ∈ [0, 1].
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As for the other inequality, set ℎ(G) = 6(−G) = 5 (−G?). Then

ℎ′(G) = −? 5 ′(−G?) = −? ln ?(@ + G?)
@(? − G?) = ? ln @(1 − G)

@ + G? = ? ln @ − G@
@ + G? = ? ln

(
1 − G ? + @

@ + G?

)
= ? ln

(
1 − G 1

@ + G?

)
≤ ? ln(1 − G) ≤ −?G,

since 1− G ≤ 4−G. By integration, as before, we conclude that ℎ(G) ≤ −?G2/2. Now, plugging into Corol-
lary 8.3.3, we get P

[
- − ` ≤ −Y`

]
= P

[
- − ? ≤ −Y?

]
≤ exp

(
= 5 (−Y?)

)
≤ exp

(
=ℎ(Y)

)
≤ exp

(
−=?Y2/2

)
≤

exp
(
−`Y2/2

)
. �

8.3.1. Some technical lemmas
Lemma 8.3.7. Let - ∈ [0, 1] be a random variable, and let B ≥ 1. Then E

[
B-

]
≤ 1 + (B − 1) E[-].

Proof: For the sake of simplicity of exposition, assume that - is a discrete random variable, and that
there is a value U ∈ (0, 1/2), such that V = P[- = U] > 0. Consider the modified random variable
-′, such that P[-′ = 0] = P[- = 0] + V/2, and P[-′ = 2U] = P[- = U] + V/2. Clearly, E[-] = E[-′].
Next, observe that E

[
B-
′] − E[B- ] = (V/2) (B2U + B0) − VBU ≥ 0, by the convexity of BG. We conclude

that E
[
B-

]
achieves its maximum if takes only the values 0 and 1. But then, we have that E

[
B-

]
=

P[- = 0]B0 + P[- = 1]B1 = (1 − E[-]) + E[-] B = 1 + (B − 1) E[-] , as claimed. �

8.4. Hoeffding’s inequality
In this section, we prove a generalization of Chernoff’s inequality. The proof is considerably more
tedious, and it is included here for the sake of completeness.

Lemma 8.4.1. Let - be a random variable. If E[-] = 0 and 0 ≤ - ≤ 1, then for any B > 0, we have
E
[
4B-

]
≤ exp

(
B2(1 − 0)2/8

)
.

Proof: Let 0 ≤ G ≤ 1 and observe that G can be written as a convex combination of 0 and 1. In
particular, we have

G = _0 + (1 − _)1 for _ =
1 − G
1 − 0 ∈ [0, 1] .

Since B > 0, the function exp(BG) is convex, and as such

4BG ≤ 1 − G
1 − 0 4

B0 + G − 0
1 − 0 4

B1,

since we have that 5 (_G + (1−_)H) ≤ _ 5 (G) + (1−_) 5 (H) if 5 (·) is a convex function. Thus, for a random
variable -, by linearity of expectation, we have

E
[
4B-

]
≤ E

[
1 − -
1 − 0 4

B0 + - − 0
1 − 0 4

B1

]
=
1 − E[-]
1 − 0 4B0 + E[-] − 0

1 − 0 4B1

=
1

1 − 0 4
B0 − 0

1 − 0 4
B1,
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since E[-] = 0.
Next, set ? = − 0

1 − 0 and observe that 1 − ? = 1 + 0

1 − 0 =
1

1 − 0 and

−?B(1 − 0) = −
(
− 0

1 − 0

)
B(1 − 0) = B0.

As such, we have

E
[
4B-

]
≤ (1 − ?)4B0 + ?4B1 = (1 − ? + ?4B(1−0))4B0

= (1 − ? + ?4B(1−0))4−?B(1−0)

= exp
(
−?B(1 − 0) + ln

(
1 − ? + ?4B(1−0)

))
= exp(−?D + ln(1 − ? + ?4D)),

for D = B(1 − 0). Setting

q(D) = −?D + ln(1 − ? + ?4D),

we thus have E
[
4B-

]
≤ exp(q(D)). To prove the claim, we will show that q(D) ≤ D2/8 = B2(1 − 0)2/8.

To see that, expand q(D) about zero using Taylor’s expansion. We have

q(D) = q(0) + Dq′(0) + 1
2D

2q′′(\) (8.3)

where \ ∈ [0, D], and notice that q(0) = 0. Furthermore, we have

q′(D) = −? + ?4D

1 − ? + ?4D ,

and as such q′(0) = −? + ?

1−?+? = 0. Now,

q′′(D) = (1 − ? + ?4
D)?4D − (?4D)2

(1 − ? + ?4D)2
=
(1 − ?)?4D

(1 − ? + ?4D)2
.

For any G, H ≥ 0, we have (G + H)2 ≥ 4GH as this is equivalent to (G − H)2 ≥ 0. Setting G = 1 − ? and
H = ?4D, we have that

q′′(D) = (1 − ?)?4D

(1 − ? + ?4D)2
≤ (1 − ?)?4

D

4(1 − ?)?4D =
1
4 .

Plugging this into Eq. (8.3), we get that

q(D) ≤ 1
8D

2 =
1
8 (B(1 − 0))

2 and E
[
4B-

]
≤ exp(q(D)) ≤ exp

(
1
8 (B(1 − 0))

2
)
,

as claimed. �

Lemma 8.4.2. Let - be a random variable. If E[-] = 0 and 0 ≤ - ≤ 1, then for any B > 0, we have

P[- > C ] ≤
exp

(
B2 (1−0)2

8

)
4BC

.
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Proof: Using the same technique we used in proving Chernoff’s inequality, we have that

P[- > C ] = P
[
4B- > 4BC

]
≤
E
[
4B-

]
4BC

≤
exp

(
B2 (1−0)2

8

)
4BC

. �

Theorem 8.4.3 (Hoeffding’s inequality). Let -1, . . . , -= be independent random variables, where
-8 ∈ [08, 18], for 8 = 1, . . . , =. Then, for the random variable ( = -1 + · · · + -= and any [ > 0, we have

P
[���( − E[(] ��� ≥ [] ≤ 2 exp

(
− 2 [2∑=

8=1(18 − 08)2

)
.

Proof: Let /8 = -8 − E[-8], for 8 = 1, . . . , =. Set / =
∑=
8=1 /8, and observe that

P[/ ≥ [] = P
[
4B/ ≥ 4B[

]
≤ E[exp(B/)]

exp(B[) ,

by Markov’s inequality. Arguing as in the proof of Chernoff’s inequality, we have

E[exp(B/) ] = E

[
=∏
8=1

exp(B/8)
]
=

=∏
8=1
E[exp(B/8)] ≤

=∏
8=1

exp
(
B2(18 − 08)2

8

)
,

since the /8s are independent and by Lemma 8.4.1. This implies that

P[/ ≥ [] ≤ exp(−B[)
=∏
8=1

4B
2 (18−08)2/8 = exp

(
B2

8

=∑
8=1
(18 − 08)2 − B[

)
.

The upper bound is minimized for B = 4[/
(∑

8 (18 − 08)2
)
, implying

P[/ ≥ [] ≤ exp
(
− 2[2∑(18 − 08)2

)
.

The claim now follows by the symmetry of the upper bound (i.e., apply the same proof to −/). �

8.5. Bibliographical notes

Some of the exposition here follows more or less the exposition in [MR95]. Exercise 8.6.1 (without
the hint) is from [Mat99]. McDiarmid [McD89] provides a survey of Chernoff type inequalities, and
Theorem 8.3.6 and Section 8.3 is taken from there (our proof has somewhat weaker constants).

A more general treatment of such inequalities and tools is provided by Dubhashi and Panconesi
[DP09].
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8.6. Exercises
Exercise 8.6.1 (Chernoff inequality is tight.). Let ( =

∑=
8=1 (8 be a sum of = independent random variables

each attaining values +1 and −1 with equal probability. Let %(=,Δ) = P[( > Δ]. Prove that for Δ ≤ =/�,

%(=,Δ) ≥ 1
�

exp
(
−Δ

2

�=

)
,

where � is a suitable constant. That is, the well-known Chernoff bound %(=,Δ) ≤ exp(−Δ2/2=)) is close
to the truth.

Exercise 8.6.2 (Chernoff inequality is tight by direct calculations.). For this question use only basic argu-
mentation – do not use Stirling’s formula, Chernoff inequality or any similar “heavy” machinery.

(A) Prove that
=−:∑
8=0

(
2=
8

)
≤ =

4:2 22=.

Hint: Consider flipping a coin 2= times. Write down explicitly the probability of this coin to have
at most = − : heads, and use Chebyshev inequality.

(B) Using (A), prove that
(2=
=

)
≥ 22=/4

√
= (which is a pretty good estimate).

(C) Prove that
(

2=
= + 8 + 1

)
=

(
1 − 28 + 1

= + 8 + 1

) (
2=
= + 8

)
.

(D) Prove that
(

2=
= + 8

)
≤ exp

(
−8(8 − 1)

2=

) (
2=
=

)
.

(E) Prove that
(

2=
= + 8

)
≥ exp

(
−882
=

) (
2=
=

)
.

(F) Using the above, prove that
(
2=
=

)
≤ 222=
√
=
for some constant 2 (I got 2 = 0.824... but any reasonable

constant will do).
(G) Using the above, prove that

(C+1)
√
=∑

8=C
√
=+1

(
2=
= − 8

)
≤ 222= exp

(
−C2/2

)
.

In particular, conclude that when flipping fair coin 2= times, the probability to get less than =−C
√
=

heads (for C an integer) is smaller than 2′ exp
(
−C2/2

)
, for some constant 2′.

(H) Let - be the number of heads in 2= coin flips. Prove that for any integer C > 0 and any X > 0
sufficiently small, it holds that P[- < (1 − X)=] ≥ exp

(
−2′′X2=

)
, where 2′′ is some constant. Namely,

the Chernoff inequality is tight in the worst case.

Exercise 8.6.3 (Tail inequality for geometric variables). Let -1, . . . , -< be < independent random variables
with geometric distribution with probability ? (i.e., P[-8 = 9] = (1 − ?) 9−1?). Let . =

∑
8 -8, and let

` = E[. ] = </?. Prove that P
[
. ≥ (1 + X)`

]
≤ exp

(
−<X2/8

)
.
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Chapter 9

Applications of Chernoff’s Inequality
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

9.1. QuickSort is Quick
We revisit QuickSort. We remind the reader that the running time ofQuickSort is proportional to the
number of comparisons performed by the algorithm. Next, consider an arbitrary element D being sorted.
Consider the 8th level recursive subproblem that contains D, and let (8 be the set of elements in this
subproblems. We consider D to be successful in the 8th level, if |(8+1 | ≤ |(8 | /2. Namely, if D is successful,
then the next level in the recursion involving D would include a considerably smaller subproblem. Let
-8 be the indicator variable which is 1 if D is successful.

We first observe that if QuickSort is applied to an array with = elements, then D can be successful
at most ) = dlg =e times, before the subproblem it participates in is of size one, and the recursion stops.
Thus, consider the indicator variable -8 which is 1 if D is successful in the 8th level, and zero otherwise.
Note that the -8s are independent, and P[-8 = 1] = 1/2.

If D participates in E levels, then we have the random variables -1, -2, . . . , -E. To make things
simpler, we will extend this series by adding independent random variables, such that P[‘]-8 = 1 = 1/2,
for 8 ≥ E. Thus, we have an infinite sequence of independent random variables, that are 0/1 and get 1
with probability 1/2. The question is how many elements in the sequence we need to read, till we get
) ones.

Lemma 9.1.1. Let -1, -2, . . . be an infinite sequence of independent random 0/1 variables. Let " be
an arbitrary parameter. Then the probability that we need to read more than 2" + 4C

√
" variables of

this sequence till we collect " ones is at most 2 exp
(
−C2

)
, for C ≤

√
". If C ≥

√
" then this probability

is at most 2 exp
(
−C
√
"

)
.

Proof: Consider the random variable . =
∑!
8=1 -8, where ! = 2" + 4C

√
". Its expectation is !/2, and

using the Chernoff inequality, we get

U = P
[
. ≤ "

]
≤ P

[
|. − !/2| ≥ !/2 − "

]
≤ 2 exp

(
− 2
!
(!/2 − ")2

)
≤ 2 exp

(
−2

(
" + 2C

√
" − "

)2/!
)
≤ 2 exp

(
−2

(
2C
√
"

)2/!
)
= 2 exp

(
−8C2"

!

)
,

by Corollary 8.1.9. For C ≤
√
" we have that ! = 2" + 4C

√
" ≤ 8", as such in this case P[. ≤ "] ≤

2 exp
(
−C2

)
.
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If C ≥
√
", then U = 2 exp

(
− 8C2"

2" + 4C
√
"

)
≤ 2 exp

(
− 8C2"

6C
√
"

)
≤ 2 exp

(
−C
√
"

)
. �

Going back to the QuickSort problem, we have that if we sort = elements, the probability that D will
participate in more than ! = (4+2) dlg =e = 2 dlg =e +42

√
lg =

√
lg =, is smaller than 2 exp

(
−2

√
lg =

√
lg =

)
≤

1/=2, by Lemma 9.1.1. There are = elements being sorted, and as such the probability that any element
would participate in more than (4 + 2 + 1) dlg =e recursive calls is smaller than 1/=2.

Lemma 9.1.2. For any 2 > 0, the probability that QuickSort performs more than (6 + 2)= lg =, is
smaller than 1/=2.

9.2. How many times can the minimum change?
Let Π = c1 . . . c= be a random permutation of {1, . . . , =}. Let E8 be the event that c8 is the minimum
number seen so far as we read Π; that is, E8 is the event that c8 = min8

:=1 c: . Let -8 be the indicator
variable that is one if E8 happens. We already seen, and it is easy to verify, that E[-8] = 1/8. We are
interested in how many times the minimum might change¬; that is / =

∑
8 -8, and how concentrated is

the distribution of / . The following is maybe surprising.

Lemma 9.2.1. The events E1, . . . ,E= are independent (as such, the variables -1, . . . , -= are indepen-
dent).

Proof: Exercise. �

Theorem 9.2.2. Let Π = c1 . . . c= be a random permutation of 1, . . . , =, and let / be the number of
times, that c8 is the smallest number among c1, . . . , c8, for 8 = 1, . . . , =. Then, we have that for C ≥ 24
that P[/ > C ln =] ≤ 1/=C ln 2, and for C ∈

[
1, 24

]
, we have that P

[
/ > C ln =

]
≤ 1/=(C−1)2/4.

Proof: Follows readily from Chernoff’s inequality, as / =
∑
8 -8 is a sum of independent indicator vari-

ables, and, since by linearity of expectations, we have

` = E
[
/
]
=

∑
8

E
[
-8

]
=

=∑
8=1

1
8
≥

∫ =+1

G=1

1
G

dG = ln(= + 1) ≥ ln =.

Next, we set X = C − 1, and use Theorem 8.2.1p71. �

9.3. Routing in a Parallel Computer
Let G be a graph of a network, where every node is a processor. The processor communicate by sending
packets on the edges. Let

[
0, . . . , # − 1

]
denote be vertices (i.e., processors) of G, where # = 2=, and G

is the hypercube. As such, each processes is identified with a binary string 1112 . . . 1= ∈ {0, 1}=. Two
nodes are connected if their binary string differs only in a single bit. Namely, G is the binary hypercube
over = bits.

We want to investigate the best routing strategy for this topology of network. We assume that every
processor need to send a message to a single other processor. This is represented by a permutation

¬The answer, my friend, is blowing in the permutation.
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RandomRoute( E0, . . . , E#−1)
// E8: Packet at node 8 to be routed to node 3 (8).

(i) Pick a random intermediate destination f(8) from [1, . . . , #]. Packet E8 travels to
f(8).

// Here random sampling is done with replacement.
// Several packets might travel to the same destination.

(ii) Wait till all the packets arrive to their intermediate destination.
(iii) Packet E8 travels from f(8) to its destination 3 (8).

Figure 9.1: The routing algorithm

c, and we would like to figure out how to send the messages encoded by the permutation while create
minimum delay/congestion.

Specifically, in our model, every edge has a FIFO queue of the packets it has to transmit. At every
clock tick, one message get sent. All the processors start sending the packets in their permutation in
the same time.

A routing scheme is oblivious if every node that has to forward a packet, inspect the packet, and
depending only on the content of the packet decides how to forward it. That is, such a routing scheme
is local in nature, and does not take into account other considerations. Oblivious routing is of course a
bad idea – it ignores congestion in the network, and might insist routing things through regions of the
hypercube that are “gridlocked”.

Theorem 9.3.1 ([KKT91]). For any deterministic oblivious permutation routing algorithm on a net-
work of # nodes each of out-degree =, there is a permutation for which the routing of the permutation
takes Ω

(√
#/=

)
units of time (i.e., ticks).

Proof: (Sketch.) The above is implied by a nice averaging argument – construct, for every possible
destination, the routing tree of all packets to this specific node. Argue that there must be many edges
in this tree that are highly congested in this tree (which is NOT the permutation routing we are looking
for!). Now, by averaging, there must be a single edge that is congested in “many” of these trees. Pick
a source-destination pair from each one of these trees that uses this edge, and complete it into a full
permutation in the natural way. Clearly, the congestion of the resulting permutation is high. For the
exact details see [KKT91]. �

How do we send a packet? We use bit fixing. Namely, the packet from the 8 node, always go to
the current adjacent node that have the first different bit as we scan the destination string 3 (8). For
example, packet from (0000) going to (1101), would pass through (1000), (1100), (1101).

The routing algorithm. We assume each edge have a FIFO queue. The routing algorithm is depicted
in Figure 9.1.

9.3.1. Analysis
We analyze only step (i) in the algorithm, as (iii) follows from the same analysis. In the following, let
d8 denote the route taken by E8 in (i).

First in, first out queue. I sure hope you already knew that.
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Exercise 9.3.2. Once a packet E 9 that travel along a path d 9 can not leave a path d8, and then join it
again later. Namely, d8 ∩ d 9 is (maybe an empty) path.

Lemma 9.3.3. Let the route of a message c follow the sequence of edges c = (41, 42, . . . , 4: ). Let ( be
the set of packets whose routes pass through at least one of (41, . . . , 4: ). Then, the delay incurred by c
is at most |( |.

Proof: A packet in ( is said to leave c at that time step at which it traverses an edge of c for the last
time. If a packet is ready to follow edge 4 9 at time C, we define its lag at time C to be C − 9 . The lag of c
is initially zero, and the delay incurred by c is its lag when it traverse 4: . We will show that each step
at which the lag of c increases by one can be charged to a distinct member of (.

We argue that if the lag of c reaches ℓ + 1, some packet in ( leaves c with lag ℓ. When the lag of c
increases from ℓ to ℓ + 1, there must be at least one packet (from () that wishes to traverse the same
edge as c at that time step, since otherwise c would be permitted to traverse this edge and its lag would
not increase. Thus, ( contains at least one packet whose lag reach the value ℓ.

Let g be the last time step at which any packet in ( has lag ℓ. Thus there is a packet d ready to
follow edge 4` at g, such that g − ` = ℓ. We argue that some packet of ( leaves c at g; this establishes
the lemma since once a packet leaves c, it would never join it again and as such will never again delay
c.

Since d is ready to follow 4` at g, some packet l (which may be d itself) in ( traverses 4` at time g.
Now l leaves c at time g; if not, some packet will follow 4`+1 at step ` + 1 with lag still at ℓ, violating
the maximality of g. We charge to l the increase in the lag of c from ℓ to ℓ + 1; since l leaves c, it
will never be charged again. Thus, each member of ( whose route intersects c is charge for at most one
delay, establishing the lemma. �

Let �8 9 be an indicator variable that is 1 if d8 and d 9 share an edge, and 0 otherwise. The total
delay for E8 is at most ≤ ∑

9 �8 9 .
Crucially, for a fixed 8, the variables �81, . . . , �8# are independent. Indeed, imagine first picking the

destination of E8, and let the associated path be d8. Now, pick the destinations of all the other packets in
the network. Since the sampling of destinations is done with replacements, whether or not, the path of
E 9 intersects d8 or not, is independent of whether E: intersects d8. Of course, the probabilities P

[
�8 9 = 1

]
and P

[
�8: = 1

]
are probably different. Confusingly, however, �11, . . . , �## are not independent. Indeed,

imagine : and 9 being close vertices on the hypercube. If �8 9 = 1 then intuitively it means that d8 is
traveling close to the vertex E 9 , and as such there is a higher probability that �8: = 1.

Let d8 = (41, . . . , 4: ), and let ) (4) be the number of packets (i.e., paths) that pass through 4. We
have that

#∑
9=1

�8 9 ≤
:∑
9=1
) (4 9 ) and thus E

[
#∑
9=1

�8 9

]
≤ E

[
:∑
9=1
) (4 9 )

]
.

Because of symmetry, the variables ) (4) have the same distribution for all the edges of G. On the other
hand, the expected length of a path is =/2, there are # packets, and there are #=/2 edges. We conclude
� [) (4)] = 1. Thus

` = E

[
#∑
9=1

�8 9

]
≤ E

[
:∑
9=1
) (4 9 )

]
= E

[
|d8 |

]
≤ =2 .

By the Chernoff inequality, we have

P

[∑
9

�8 9 > 7=
]
≤ P

[∑
9

�8 9 > (1 + 13)`
]
< 2−13` ≤ 2−6=.
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Since there are # = 2= packets, we know that with probability ≤ 2−5= all packets arrive to their temporary
destination in a delay of most 7=.

Theorem 9.3.4. Each packet arrives to its destination in ≤ 14= stages, in probability at least 1 − 1/#
(note that this is very conservative).

9.4. Faraway Strings
Consider the Hamming distance between binary strings. It is natural to ask how many strings of
length = can one have, such that any pair of them, is of Hamming distance at least C from each other.
Consider two random strings, generated by picking at each bit randomly and independently. Thus,
E[3� (G, H)] = =/2, where 3� (G, H) denote the hamming distance between G and H. In particular, using
the Chernoff inequality, we have that

P[3� (G, H) ≤ =/2 − Δ] ≤ exp
(
−2Δ2/=

)
.

Next, consider generating " such string, where the value of " would be determined shortly. Clearly,
the probability that any pair of strings are at distance at most =/2 − Δ, is

U ≤
(
"

2

)
exp

(
−2Δ2/=

)
< "2 exp

(
−2Δ2/=

)
.

If this probability is smaller than one, then there is some probability that all the " strings are of
distance at least =/2 − Δ from each other. Namely, there exists a set of " strings such that every pair
of them is far. We used here the fact that if an event has probability larger than zero, then it exists.
Thus, set Δ = =/4, and observe that

U < "2 exp
(
−2=2/16=

)
= "2 exp(−=/8).

Thus, for " = exp(=/16), we have that U < 1. We conclude:

Lemma 9.4.1. There exists a set of exp(=/16) binary strings of length =, such that any pair of them
is at Hamming distance at least =/4 from each other.

This is our first introduction to the beautiful technique known as the probabilistic method — we
will hear more about it later in the course.

This result has also interesting interpretation in the Euclidean setting. Indeed, consider the sphere
S of radius

√
=/2 centered at (1/2, 1/2, . . . , 1/2) ∈ R=. Clearly, all the vertices of the binary hypercube

{0, 1}= lie on this sphere. As such, let % be the set of points on S that exists according to Lemma 9.4.1.
A pair ?, @ of points of % have Euclidean distance at least

√
3� (?, @) =

√
=4 =

√
=/2 from each other.

We conclude:

Lemma 9.4.2. Consider the unit hypersphere S in R=. The sphere S contains a set & of points, such
that each pair of points is at (Euclidean) distance at least one from each other, and |& | ≥ exp(=/16).

9.5. Bibliographical notes
Section 9.3 is based on Section 4.2 in [MR95]. A similar result to Theorem 9.3.4 is known for the case
of the wrapped butterfly topology (which is similar to the hypercube topology but every node has a
constant degree, and there is no clear symmetry). The interested reader is referred to [MU05].
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9.6. Exercises
Exercise 9.6.1 (More binary strings. More!). To some extent, Lemma 9.4.1 is somewhat silly, as one can
prove a better bound by direct argumentation. Indeed, for a fixed binary string G of length =, show
a bound on the number of strings in the Hamming ball around G of radius =/4 (i.e., binary strings of
distance at most =/4 from G). (Hint: interpret the special case of the Chernoff inequality as an inequality
over binomial coefficients.)

Next, argue that the greedy algorithm which repeatedly pick a string which is in distance ≥ =/4 from
all strings picked so far, stops after picking at least exp(=/8) strings.
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Chapter 10

Closest Pair
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

The events of September 8 prompted Foch to
draft the later legendary signal: “My centre is
giving way, my right is in retreat, situation
excellent. I attack.” It was probably never sent.

John Keegan, The first world war

10.1. How many times can a minimum change?
Let 01, . . . , 0= be a set of = numbers, and let us randomly permute them into the sequence 11, . . . , 1=.
Next, let 28 = min8

:=1 18, and let - be the random variable which is the number of distinct values that
appears in the sequence 21, . . . , 2=. What is the expectation of -?

Lemma 10.1.1. In expectation, the number of times the minimum of a prefix of = randomly permuted
numbers change, is $ (log =). That is E[-] = $ (log =).

Proof: Consider the indicator variable -8, such that -8 = 1 if 28 ≠ 28−1. The probability for that is ≤ 1/8,
since this is the probability that the smallest number of 11, . . . , 18 is 18. (Why is this probability not

simply equal to 1/8?) As such, we have - =
∑
8 -8, and E[-] =

∑
8

E[-8] =
=∑
8=1

1
8
= $ (log =). �

10.2. Closest Pair
Assumption 10.2.1. Throughout the discourse, we are going to assume that every hashing operation takes
(worst case) constant time. This is quite a reasonable assumption when true randomness is available
(using for example perfect hashing [CLRS01]). We will revisit this issue later in the course.

For a real positive number A and a point p = (G, H) in R2, define

GA (p) :=
( ⌊G
A

⌋
A ,

⌊ H
A

⌋
A

)
∈ R2.

The number A is the width of the grid GA . Observe that GA partitions the plane into square regions,
which are grid cells. Formally, for any 8, 9 ∈ Z, the intersection of the half-planes G ≥ A8, G < A (8 + 1),
H ≥ A 9 and H < A ( 9 + 1) is a grid cell. Further a grid cluster is a block of 3 × 3 contiguous grid cells.

For a point set P, and a parameter A, the partition of P into subsets by the grid GA , is denoted by
GA (P). More formally, two points p, q ∈ P belong to the same set in the partition GA (P), if both points
are being mapped to the same grid point or equivalently belong to the same grid cell.
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Note, that every grid cell � of GA , has a unique ID; indeed, let p = (G, H) be any point in �, and
consider the pair of integer numbers id� = id(p) = (bG/Ac , bH/Ac). Clearly, only points inside � are going
to be mapped to id� . This is useful, as one can store a set P of points inside a grid efficiently. Indeed,
given a point p, compute its id(p). We associate with each unique id a data-structure that stores all the
points falling into this grid cell (of course, we do not maintain such data-structures for grid cells which
are empty). For our purposes here, the grid-cell data-structure can simply be a linked list of points. So,
once we computed id(p), we fetch the data structure for this cell, by using hashing. Namely, we store
pointers to all those data-structures in a hash table, where each such data-structure is indexed by its
unique id. Since the ids are integer numbers, we can do the hashing in constant time.

We are interested in solving the following problem.

Problem 10.2.2. Given a set P of = points in the plane, find the pair of points closest to each other.
Formally, return the pair of points realizing CP(P) = minp,q∈% ‖p − q‖.

We need the following easy packing lemma.

Lemma 10.2.3. Let P be a set of points contained inside a square �, such that
the sidelength of � is U = CP(P). Then |P| ≤ 4.

Proof: Partition � into four equal squares �1, . . . ,�4, and observe that each of
these squares has diameter

√
2U/2 < U, and as such each can contain at most

one point of P; that is, the disk of radius U centered at a point p ∈ P completely
covers the subsquare containing it; see the figure on the right.

Note that the set P can have four points if it is the four corners of �. �

α
p

Lemma 10.2.4. Given a set P of = points in the plane, and a distance A, one can verify in linear time,
whether or not CP(P) < A or CP(P) ≥ A.

Proof: Indeed, store the points of P in the grid GA . For every non-empty grid cell, we maintain a linked
list of the points inside it. Thus, adding a new point ? takes constant time. Indeed, compute id(?),
check if id(?) already appears in the hash table, if not, create a new linked list for the cell with this ID
number, and store ? in it. If a data-structure already exist for id(?), just add ? to it.

This takes $ (=) time. Now, if any grid cell in GA (P) contains more than four points of P, then, by
Lemma 10.2.3, it must be that the CP(P) < A.

Thus, when inserting a point ?, the algorithm fetch all the points of P that were already inserted,
for the cell of ?, and the 8 adjacent cells. All those cells must contain at most 4 points of P (otherwise,
we would already have stopped since the CP(·) of the inserted points is smaller than A). Let ( be the
set of all those points, and observe that |( | ≤ 4 · 9 = $ (1). Thus, we can compute by brute force the
closest point to ? in (. This takes $ (1) time. If d(?, () < A, we stop and return this distance (together
with the two points realizing d(?, () as a proof that the distance is too short). Otherwise, we continue
to the next point, where d(?, () = minB∈( ‖? − B‖.

Overall, this takes $ (=) time. As for correctness, first observe that if CP(P) > A then the algorithm
would never make a mistake, since it returns ‘CP(P) < A’ only after finding a pair of points of P with
distance smaller than A. Thus, assume that ?, @ are the pair of points of P realizing the closest pair, and
‖? − @‖ = CP(P) < A. Clearly, when the later of them, say ?, is being inserted, the set ( would contain
@, and as such the algorithm would stop and return “CP(P) < A”. �
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Lemma 10.2.4 hints to a natural way to compute CP(P). Indeed, permute the points of P, in an
arbitrary fashion, and let % = 〈?1, . . . , ?=〉. Next, let A8 = CP

(
{?1, . . . , ?8}

)
. We can check if A8+1 < A8, by

just calling the algorithm for Lemma 10.2.4 on P8+1 and A8. If A8+1 < A8, the algorithm of Lemma 10.2.4,
would give us back the distance A8+1 (with the other point realizing this distance).

So, consider the “good” case where A8+1 = A8 = A8−1. Namely, the length of the shortest pair does not
change. In this case we do not need to rebuild the data structure of Lemma 10.2.4 for each point. We
can just reuse it from the previous iteration. Thus, inserting a single point takes constant time as long
as the closest pair (distance) does not change.

Things become bad, when A8 < A8−1. Because then we need to rebuild the grid, and reinsert all the
points of P8 = 〈?1, . . . , ?8〉 into the new grid GA8 (P8). This takes $ (8) time.

So, if the closest pair radius, in the sequence A1, . . . , A=, changes only : times, then the running time
of the algorithm would be $ (=:). But we can do even better!

Theorem 10.2.5. Let P be a set of = points in the plane. One can compute the closest pair of points
of P in expected linear time.

Proof: Pick a random permutation of the points of P, and let 〈?1, . . . , ?=〉 be this permutation. Let
A2 = ‖?1 − ?2‖, and start inserting the points into the data structure of Lemma 10.2.4. In the 8th
iteration, if A8 = A8−1, then this insertion takes constant time. If A8 < A8−1, then we rebuild the grid and
reinsert the points. Namely, we recompute GA8 (P8).

To analyze the running time of this algorithm, let -8 be the indicator variable which is 1 if A8 ≠ A8−1,
and 0 otherwise. Clearly, the running time is proportional to

' = 1 +
=∑
8=2
(1 + -8 · 8).

Thus, the expected running time is

E
[
'
]
= 1 + E

[
1 +

∑=

8=2
(1 + -8 · 8)

]
= = +

=∑
8=2

(
E[-8] · 8

)
= = +

=∑
8=2

8 · P[-1 = 1],

by linearity of expectation and since for an indicator variable -8, we have that E[-8] = P[-8 = 1].
Thus, we need to bound P[-8 = 1] = P[A8 < A8−1]. To bound this quantity, fix the points of P8, and

randomly permute them. A point q ∈ P8 is critical if CP(P8 \ {q}) > CP(P8).
(A) If there are no critical points, then A8−1 = A8 and then P[-8 = 1] = 0.
(B) If there is one critical point, than P[-8 = 1] = 1/8, as this is the probability that this critical point

would be the last point in a random permutation of P8.
(C) If there are two critical points, and let p, q be this unique pair of points of P8 realizing CP(P8).

The quantity A8 is smaller than A8−1, if either p or q are ?8. But the probability for that is 2/8 (i.e.,
the probability in a random permutation of 8 objects, that one of two marked objects would be
the last element in the permutation).

Observe, that there can not be more than two critical points. Indeed, if p and q are two points that
realize the closest distance, than if there is a third critical point r, then CP(P8 \ {r}) = ‖p − q‖, and r is
not critical.

We conclude that

E
[
'
]
= = +

=∑
8=2

8 · P[-1 = 1] ≤ = +
=∑
8=2

8 · 2
8
≤ 3=.

As such, the expected running time of this algorithm is $ (E[']) = $ (=). �
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Theorem 10.2.5 is a surprising result, since it implies that uniqueness (i.e., deciding if = real
numbers are all distinct) can be solved in linear time. However, there is a lower bound of Ω(= log =) on
uniqueness, using the comparison tree model. This reality dysfunction, can be easily explained, once
one realizes that the model of computation of Theorem 10.2.5 is considerably stronger, using hashing,
randomization, and the floor function.

10.3. Bibliographical notes
The closest-pair algorithm follows Golin et al. [GRSS95]. This is in turn a simplification of a result of the
celebrated result of Rabin [Rab76]. Smid provides a survey of such algorithms [Smi00]. A generalization
of the closest pair algorithm was provided by Har-Peled and Raichel [HR15].

Surprisingly, Schönhage [Sch79] showed that assuming that the floor function is allowed, and the
standard arithmetic operation can be done in constant time, then every problem in PSPACE can be
solved in polynomial time. Since PSPACE includes NPC, this is bad news, as it implies that one can
solve NPC problem in polynomial time (finally!). The basic idea is that one can pack huge number of
bits into a single number, and the floor function enables one to read a single bit of this number. As such,
a real RAM model that allows certain operations, and put no limit on the bit complexity of numbers,
and assume that each operation can take constant time, is not a reasonable model of computation (but
we already knew that).
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Chapter 11

Backwards analysis
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

The idea of backwards analysis (or backward analysis) is a technique to analyze randomized algo-
rithms by imagining as if it was running backwards in time, from output to input. Most of the more
interesting applications of backward analysis are in Computational Geometry, but nevertheless, there
are some other applications that are interesting and we survey some of them here.

11.1. How many times can the minimum change?
Let Π = c1 . . . c= be a random permutation of {1, . . . , =}. Let E8 be the event that c8 is the minimum
number seen so far as we read Π; that is, E8 is the event that c8 = min8

:=1 c: . Let -8 be the indicator
variable that is one if E8 happens. We already seen, and it is easy to verify, that E[-8] = 1/8. We are
interested in how many times the minimum might change¬; that is / =

∑
8 -8, and how concentrated is

the distribution of / . The following is maybe surprising.

Lemma 11.1.1. The events E1, . . . ,E= are independent (as such, variables -1, . . . , -= are independent).

Proof: The trick is to think about the sampling process in a different way, and then the result readily
follows. Indeed, we randomly pick a permutation of the given numbers, and set the first number to be
c=. We then, again, pick a random permutation of the remaining numbers and set the first number as
the penultimate number (i.e., c=−1) in the output permutation. We repeat this process till we generate
the whole permutation.

Now, consider 1 ≤ 81 < 82 < . . . < 8: ≤ =, and observe that P
[
E81

��E82 ∩ . . . ∩ E8: ] = P[E81 ] , since by
our thought experiment, E81 is determined after all the other variables E82 , . . . ,E8: . In particular, the
variable E81 is inherently not effected by these events happening or not. As such, we have

P
[
E81 ∩ E82 ∩ . . . ∩ E8:

]
= P

[
E81

��E82 ∩ . . . ∩ E8: ] P[E82 ∩ . . . ∩ E8: ]
= P

[
E81

]
P
[
E82 ∩ E82 ∩ . . . ∩ E8:

]
=

:∏
9=1
P
[
E8 9

]
=

:∏
9=1

1
8 9
,

by induction. �

¬The answer, my friend, is blowing in the permutation.

91



Theorem 11.1.2. Let Π = c1 . . . c= be a random permutation of 1, . . . , =, and let / be the number of
times, that c8 is the smallest number among c1, . . . , c8, for 8 = 1, . . . , =. Then, we have that for C ≥ 24
that P

[
/ > C ln =

]
≤ 1/=C ln 2, and for C ∈

[
1, 24

]
, we have that P

[
/ > C ln =

]
≤ 1/=(C−1)2/4.

Proof: Follows readily from Chernoff’s inequality, as / =
∑
8 -8 is a sum of independent indicator vari-

ables, and, since by linearity of expectations, we have

` = E
[
/

]
=

∑
8

E
[
-8

]
=

=∑
8=1

1
8
≥

∫ =+1

G=1

1
G

dG = ln(= + 1) ≥ ln =.

Next, we set X = C − 1, and use Chernoff inequality. �

11.2. Computing a good ordering of the vertices of a graph
We are given a G = (V, E) be an edge-weighted graph with = vertices and < edges. The task is to
compute an ordering c = 〈c1, . . . , c=〉 of the vertices, and for every vertex E ∈ V, the list of vertices !E,
such that c8 ∈ ŁE, if c8 is the closet vertex to E in the 8th prefix 〈c1, . . . , c8〉.

This situation can arise for example in a streaming scenario, where we install servers in a network.
In the 8th stage there 8 servers installed, and every client in the network wants to know its closest server.
As we install more and more servers (ultimately, every node is going to be server), each client needs to
maintain its current closest server.

The purpose is to minimize the total size of these lists L = ∑
E∈V |!E |.

11.2.1. The algorithm
Take a random permutation c1, . . . , c= of the vertices V of G. Initially, we set X(E) = +∞, for all E ∈ V.

In the 8th iteration, set X(c8) to 0, and start Dijkstra from the 8th vertex c8. The Dijkstra propagates
only if it improves the current distance associated with a vertex. Specifically, in the 8th iteration, we
update X(D) to dG(c8, D) if and only if dG(c8, D) < X(D) before this iteration started. If X(D) is updated,
then we add c8 to !D. Note, that this Dijkstra propagation process might visit only small portions of
the graph in some iterations – since it improves the current distance only for few vertices.

11.2.2. Analysis

Lemma 11.2.1. The above algorithm computes a permutation c, such that E
[
|L|

]
= $ (= log =), and

the expected running time of the algorithm is $
(
(= log = + <) log =

)
, where = = |+ (G) | and < = |E(G) |.

Note, that both bounds also hold with high probability.

Proof: Fix a vertex E ∈ V = {E1, . . . , E=}. Consider the set of = numbers {dG(E, E1), . . . , dG(E, E=)}.
Clearly, dG(E, c1), . . . , dG(E, c=) is a random permutation of this set, and by Lemma 11.1.1 the random
permutation c changes this minimum $ (log =) time in expectations (and also with high probability).
This readily implies that |!E | = $ (log =) both in expectations and high probability.

The more interesting claim is the running time. Consider an edge DE ∈ E(G), and observe that
X(D) or X(E) changes $ (log =) times. As such, an edge gets visited $ (log =) times, which implies overall
running time of $ (= log2 = + < log =), as desired.
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Indeed, overall there are $ (= log =) changes in the value of X(·). Each such change might require
one delete-min operation from the queue, which takes $ (log =) time operation. Every edge, by the
above, might trigger $ (log =) decrease-key operations. Using Fibonacci heaps, each such operation
takes $ (1) time. �

11.3. Computing nets

11.3.1. Basic definitions
Definition 11.3.1. A metric space is a pair (X, d) where X is a set and d : X ×X→ [0,∞) is a metric
satisfying the following axioms: (i) d(G, H) = 0 if and only if G = H, (ii) d(G, H) = d(H, G), and (iii)
d(G, H) + d(H, I) ≥ d(G, I) (triangle inequality).

For example, R2 with the regular Euclidean distance is a metric space. In the following, we assume
that we are given black-box access to dM . Namely, given two points p, q ∈ X, we assume that d(p, q)
can be computed in constant time.

Another standard example for a finite metric space is a graph G with non-negative weights l(·)
defined on its edges. Let dG(G, H) denote the shortest path (under the given weights) between any
G, H ∈ + (G). It is easy to verify that dG(·, ·) is a metric. In fact, any finite metric (i.e., a metric
defined over a finite set) can be represented by such a weighted graph.

11.3.1.1. Nets

Definition 11.3.2. For a point set P in a metric space with a metric d, and a parameter A > 0, an A-net
of P is a subset C ⊆ P, such that
(i) for every p, q ∈ C, p ≠ q, we have that d(p, q) ≥ A, and
(ii) for all p ∈ P, we have that minq∈C d(p, q) < A.

Intuitively, an A-net represents P in resolution A.

11.3.2. Computing an A-net in a sparse graph
Given a G = (V, E) be an edge-weighted graph with = vertices and < edges, and let A > 0 be a parameter.
We are interested in the problem of computing an A-net for G. That is, a set of vertices of G that complies
with Definition 11.3.2p93.

11.3.2.1. The algorithm

We compute an A-net in a sparse graph using a variant of Dijkstra’s algorithm with the sequence of
starting vertices chosen in a random permutation.

Let c8 be the 8th vertex in a random permutation c of V. For each vertex E we initialize X(E) to +∞.
In the 8th iteration, we test whether X(c8) ≥ A, and if so we do the following steps:
(A) Add c8 to the resulting net N .
(B) Set X(c8) to zero.
(C) Perform Dijkstra’s algorithm starting from c8, modified to avoid adding a vertex D to the priority

queue unless its tentative distance is smaller than the current value of X(D). When such a vertex
D is expanded, we set X(D) to be its computed distance from c8, and relax the edges adjacent to D
in the graph.
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11.3.2.2. Analysis

While the analysis here does not directly uses backward analysis, it is inspired to a large extent by such
an analysis as in Section 11.2p92.

Lemma 11.3.3. The set N is an A-net in G.

Proof: By the end of the algorithm, each E ∈ V has X(E) < A, for X(E) is monotonically decreasing, and
if it were larger than A when E was visited then E would have been added to the net.

An induction shows that if ℓ = X(E), for some vertex E, then the distance of E to the set N is at most
ℓ. Indeed, for the sake of contradiction, let 9 be the (end of) the first iteration where this claim is false.
It must be that c 9 ∈ N , and it is the nearest vertex in N to E. But then, consider the shortest path
between c 9 and E. The modified Dijkstra must have visited all the vertices on this path, thus computing
X(E) correctly at this iteration, which is a contradiction.

Finally, observe that every two points in N have distance ≥ A. Indeed, when the algorithm handles
vertex E ∈ N , its distance from all the vertices currently in N is ≥ A, implying the claim. �

Lemma 11.3.4. Consider an execution of the algorithm, and any vertex E ∈ V. The expected number
of times the algorithm updates the value of X(E) during its execution is $ (log =), and more strongly the
number of updates is $ (log =) with high probability.

Proof: For simplicity of exposition, assume all distances in G are distinct. Let (8 be the set of all the
vertices G ∈ V, such that the following two properties both hold:
(A) dG(G, E) < dG(E,Π8), where Π8 = {c1, . . . , c8}.
(B) If c8+1 = G then X(E) would change in the (8 + 1)th iteration.

Let B8 = |(8 |. Observe that (1 ⊇ (2 ⊇ · · · ⊇ (=, and |(= | = 0.
In particular, let E8+1 be the event that X(E) changed in iteration (8 + 1) – we will refer to such an

iteration as being active. If iteration (8 + 1) is active then one of the points of (8 is c8+1. However, c8+1
has a uniform distribution over the vertices of (8, and in particular, if E8+1 happens then B8+1 ≤ B8/2,
with probability at least half, and we will refer to such an iteration as being lucky. (It is possible that
B8+1 < B8 even if E8+1 does not happen, but this is only to our benefit.) After $ (log =) lucky iterations
the set (8 is empty, and we are done. Clearly, if both the 8th and 9th iteration are active, the events
that they are each lucky are independent of each other. By the Chernoff inequality, after 2 log = active
iterations, at least dlog2 =e iterations were lucky with high probability, implying the claim. Here 2 is a
sufficiently large constant. �

Interestingly, in the above proof, all we used was the monotonicity of the sets (1, . . . , (=, and that if
X(E) changes in an iteration then the size of the set (8 shrinks by a constant factor with good probability
in this iteration. This implies that there is some flexibility in deciding whether or not to initiate Dijkstra’s
algorithm from each vertex of the permutation, without damaging the number of times of the values of
X(E) are updated.

Theorem 11.3.5. Given a graph G = (V, E), with = vertices and < edges, the above algorithm computes
an A-net of G in $ ((= log = + <) log =) expected time.

Proof: By Lemma 11.3.4, the two X values associated with the endpoints of an edge get updated $ (log =)
times, in expectation, during the algorithm’s execution. As such, a single edge creates $ (log =) decrease-
key operations in the heap maintained by the algorithm. Each such operation takes constant time if we
use Fibonacci heaps to implement the algorithm. �
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11.4. Bibliographical notes
Backwards analysis was invented/discovered by Raimund Seidel, and the QuickSort example is taken
from Seidel [Sei93]. The number of changes of the minimum result of Section 11.1 is by now folklore.

The good ordering of Section 11.2 is probably also folklore, although a similar idea was used by
Mendel and Schwob [MS09] for a different problem.

Computing a net in a sparse graph, Section 11.3.2, is from [EHS14]. While backwards analysis fails
to hold in this case, it provide a good intuition for the analysis, which is slightly more complicated and
indirect.
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Chapter 12

Discrepancy and Derandomization
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

“Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible
discovered Gustible’s planet. The discovery turned out to be a tragic mistake.
Gustible’s planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They
immediately mind-read Angary J. Gustible’s entire mind and life history, and embarrassed him very deeply by
making up an opera concerning his recent divorce.”

Gustible’s Planet, Cordwainer Smith

12.1. Discrepancy

Consider a set system (X,R), where = = |X|, and R ⊆ 2X. A natural task is to partition X into two sets
(, ) , such that for any range r ∈ R, we have that j(r) =

��|( ∩ r| − |) ∩ r|
�� is minimized. In a perfect

partition, we would have that j(r) = 0 – the two sets (, ) partition every range perfectly in half. A
natural way to do so, is to consider this as a coloring problem – an element of X is colored by +1 if it is
in (, and −1 if it is in ) .

Definition 12.1.1. Consider a set system S = (X,R), and let j : X → {−1, +1} be a function (i.e., a
coloring). The discrepancy of r ∈ R is j(r) = |∑G∈r j(G) |. The discrepancy of j is the maximum
discrepancy over all the ranges – that is

disc(j) = max
r∈R

j(r).

The discrepancy of S is
disc(S) = min

j:X→{−1,+1}
disc(j).

Bounding the discrepancy of a set system is quite important, as it provides a way to shrink the size
of the set system, while introducing small error. Computing the discrepancy of a set system is generally
quite challenging. A rather decent bound follows by using random coloring.

Definition 12.1.2. For a vector v = (E1, . . . , E=) ∈ R=, ‖v‖∞ = max8 |E8 |.

For technical reasons, it is easy to think about the set system as an incidence matrix.

Definition 12.1.3. For a < × = a binary matrix M (i.e., each entry is either 0 or 1), consider a vector
b ∈ {−1, +1}=. The discrepancy of b is ‖Mb‖∞ ≤ 4

√
= log<.
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Theorem 12.1.4. Let M be an =× = binary matrix (i.e., each entry is either 0 or 1), then there always
exists a vector b ∈ {−1, +1}=, such that ‖Mb‖∞ ≤ 4

√
= log =. Specifically, a random coloring provides

such a coloring with high probability.

Proof: Let E = (E1, . . . , E=) be a row of M. Chose a random b = (11, . . . , 1=) ∈ {−1, +1}=. Let 81, . . . , 8g
be the indices such that E8 9 = 1, and let

. = 〈E, b〉 =
=∑
8=1

E818 =

g∑
9=1
E8 918 9 =

g∑
9=1

18 9 .

As such . is the sum of < independent random variables that accept values in {−1, +1}. Clearly,

E[. ] = E
[
〈E, b〉

]
= E

[∑
8

E818

]
=

∑
8

E[E818] =
∑
8

E8 E[18] = 0.

By Chernoff inequality and the symmetry of . , we have that, for Δ = 4
√
= ln<, it holds

P
[
|. | ≥ Δ

]
= 2P

[
〈E, b〉 ≥ Δ

]
= 2P

[ g∑
9=1

18 9 ≥ Δ
]
≤ 2 exp

(
−Δ

2

2g

)
= 2 exp

(
−8= ln<

g

)
≤ 2
<8 .

Thus, the probability that any entry in M1 exceeds 4
√
= ln, is smaller than 2/<7. Thus, with probability

at least 1 − 2/<7, all the entries of M1 have absolute value smaller than 4
√
= ln<.

In particular, there exists a vector b ∈ {−1, +1}= such that ‖Mb ‖∞ ≤ 4
√
= ln<. �

We might spend more time on discrepancy later on – it is a fascinating topic, well worth its own
course.

12.2. The Method of Conditional Probabilities
In previous lectures, we encountered the following problem.

Problem 12.2.1 (Set Balancing/Discrepancy). Given a binary matrix M of size = × =, find a vector v ∈
{−1, +1}=, such that ‖Mv‖∞ is minimized.

Using random assignment and the Chernoff inequality, we showed that there exists v, such that
‖Mv‖∞ ≤ 4

√
= ln =. Can we derandomize this algorithm? Namely, can we come up with an efficient

deterministic algorithm that has low discrepancy?
To derandomize our algorithm, construct a computation tree of depth =, where in the 8th level we

expose the 8th coordinate of v. This tree ) has depth =. The root represents all possible random choices,
while a node at depth 8, represents all computations when the first 8 bits are fixed. For a node E ∈ ) , let
%(E) be the probability that a random computation starting from E succeeds – here randomly assigning
the remaining bits can be interpreted as a random walk down the tree to a leaf.

Formally, the algorithm is successful if ends up with a vector v, such that ‖Mv‖∞ ≤ 4
√
= ln =.

Let E; and EA be the two children of E. Clearly, %(E) = (%(E;)+%(EA))/2. In particular, max(%(E;), %(EA)) ≥
%(E). Thus, if we could compute %(·) quickly (and deterministically), then we could derandomize the
algorithm.
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Let �+< be the bad event that r< · v > 4
√
= log =, where r< is the <th row of M. Similarly, �−< is the

bad event that r< · v < −4
√
= log =, and let �< = �+< ∪ �−<. Consider the probability, P

[
�+<

�� v1, . . . , v:
]

(namely, the first : coordinates of v are specified). Let r< = (A1, . . . , A=). We have that

P
[
�+<

�� v1, . . . , v:
]
= P

[
=∑

8=:+1
v8A8 > 4

√
= log = −

:∑
8=1

v8A8

]
= P

[ ∑
8≥:+1,A8≠0

v8A8 > !
]
= P

[ ∑
8≥:+1,A8=1

v8 > !
]
,

where ! = 4
√
= log = −∑:

8=1 v8A8 is a known quantity (since v1, . . . , v: are known). Let + =
∑
8≥:+1,A8=1 1.

We have,

P
[
�+<

�� v1, . . . , v:
]
= P


∑
8≥:+1
U8=1

(v8 + 1) > ! ++
 = P


∑
8≥:+1
U8=1

v8 + 1
2 >

! ++
2

 ,
The last quantity is the probability that in + flips of a fair 0/1 coin one gets more than (! ++)/2 heads.
Thus,

%+< = P
[
�+<

�� v1, . . . , v:
]
=

V∑
8=d(!++)/2e

(
V
8

)
1
2= =

1
2=

V∑
8=d(!++)/2e

(
V
8

)
.

This implies, that we can compute %+< in polynomial time! Indeed, we are adding + ≤ = numbers,
each one of them is a binomial coefficient that has polynomial size representation in =, and can be
computed in polynomial time (why?). One can define in similar fashion %−<, and let %< = %+< + %−<.
Clearly, %< can be computed in polynomial time, by applying a similar argument to the computation
of %−< = P

[
�−<

�� v1, . . . , v:
]
.

For a node E ∈ ) , let vE denote the portion of v that was fixed when traversing from the root of )
to E. Let %(E) = ∑=

<=1 P
[
�<

�� vE ] . By the above discussion %(E) can be computed in polynomial time.
Furthermore, we know, by the previous result on discrepancy that %(A) < 1 (that was the bound used
to show that there exist a good assignment).

As before, for any E ∈ ) , we have %(E) ≥ min(%(E;), %(EA)). Thus, we have a polynomial deterministic
algorithm for computing a set balancing with discrepancy smaller than 4

√
= log =. Indeed, set E =

A>>C ()). And start traversing down the tree. At each stage, compute %(E;) and %(EA) (in polynomial
time), and set E to the child with lower value of %(·). Clearly, after = steps, we reach a leaf, that
corresponds to a vector v′ such that ‖�v′‖∞ ≤ 4

√
= log =.

Theorem 12.2.2. Using the method of conditional probabilities, one can compute in polynomial time
in =, a vector v ∈ {−1, 1}=, such that ‖�v‖∞ ≤ 4

√
= log =.

Note, that this method might fail to find the best assignment.

12.3. Bibliographical Notes
There is a lot of nice work on discrepancy in geometric settings. See the books [Cha01, Mat99].
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Chapter 13

Dimension Reduction
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

13.1. Introduction to dimension reduction

Given a set % of = points in R3, we need =3 numbers to describe them. In many scenarios, 3 might
be quite large, or even larger than =. If we care only about the distances between any pairs of points,
then all we need to store are the pairwise distances between the points. This would require roughly =2

numbers, if we just write down the distance matrix.
But can we do better? (I.e., use less space.) A natural idea is to reduce the dimension of the points.

Namely, replace the 8th point p8 ∈ %, by a point q8 ∈ R: , where : � 3 and : � =. We would like : to
be small. If we can do that, then we compress the data from size 3= to size :=, which might be a large
compression.

Of course, one can do such compression of information without losing some information. In particular,
we are willing to let the distances to be a bit off. Formally, we would like to have the property that
(1 − Y)

p8 − p 9 ≤ q8 − q 9 ≤ (1 + Y) p8 − p 9 , for all 8, 9 , where q8 is the image of p8 ∈ % after the
dimension reduction.

To this end, we generate a random matrix M of dimensions 3 × :, where : = Θ(Y−2 log =) (the exact
details of how to generate this matrix are below, but informally every entry is going to be picked from
a normal distribution and scaled appropriately). We then set q8 = Mp8, for all p8 ∈ %.

Before dwelling on the details, we need to better understand the normal distribution.

13.2. Normal distribution
The standard normal distribution has

5 (G) = 1
√

2c
exp

(
−G2/2

)
(13.1)

as its density function. We denote that - is distributed according to such distribution, using - ∼ N(0, 1).
It is depicted in Figure 13.1.

Somewhat strangely, it would be convenient to consider two such independent variables - and .
together. Their probability space (-,. ) is the plane, and it defines a two dimensional density function

6(G, H) = 5 (G) 5 (H) = 1
2c exp

(
−(G2 + H2)/2

)
. (13.2)
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Figure 13.1

The key property of this function is that 6(G, H) = 6(G′, H′) ⇐⇒ ‖(G, H)‖2 = G2 + H2 = ‖(G′, H′)‖2.
Namely, 6(G, H) is symmetric around the origin (i.e., all the points in the same distance from the origin
have the same density). We next use this property in verifying that 5 (·) it is indeed a valid density
function.

Lemma 13.2.1. We have � =
∫ ∞
−∞ 5 (G) dG = 1.

Proof: Observe that

�2 =
(∫ ∞

G=−∞
5 (G) dG

)2
=

(∫ ∞

G=−∞
5 (G) dG

) (∫ ∞

H=−∞
5 (H) dH

)
=

∫ ∞

G=−∞

∫ ∞

H=−∞
5 (G) 5 (H) 3G 3H

=

∫ ∞

G=−∞

∫ ∞

H=−∞
6(G, H) dG dH.

Change the variables to G = A cosU, H = A sin U, and observe that the determinant of the Jacobian is

� = det

����� mGmA mG
mU

mH

mA

mH

mU

����� = det
����cosU −A sin U
sin U A cosU

���� = A (cos2 U + sin2 U
)
= A.

As such,

�2 =
1

2c

∫ ∞

A=0

∫ 2c

U=0
exp

(
−A

2

2

)
|� | 3U 3A = 1

2c

∫ ∞

A=0

∫ 2c

U=0
exp

(
−A

2

2

)
A 3U 3A

=

∫ ∞

A=0
exp

(
−A

2

2

)
A 3A =

[
− exp

(
−A

2

2

)]A=∞
A=0

= − exp(−∞) − (− exp(0)) = 1. �

Lemma 13.2.2. For - ∼ N(0, 1), we have that E[-] = 0 and V[-] = 1.

Proof: The density function of -, see Eq. (13.2) is symmetric around 0, which implies that E[-] = 0.
As for the variance, we have V[-] = E

[
-2] − (E[-])2 = 1√

2c

∫ ∞
−∞ G

2 exp(−G2/2) d-. Observing that

G2 exp
(
−G2/2

)
=

(
−G exp(−G2/2)

)′
+ exp

(
−G2/2

)
,

implies (using integration by guessing) that

V[-] =
1
√

2c

[
−G exp(−G2/2)

]∞
−∞
+ 1
√

2c

∫ ∞

−∞
exp(−G2/2) dG = 0 + 1 = 1. �
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13.2.1. The standard multi-dimensional normal distribution
The multi-dimensional normal distribution, denoted by N3, is the distribution in R3 that assigns
a point p = (p1, . . . , p3) the density

6(p) = 1
(2c)3/2

exp
(
−1

2

3∑
8=1

p2
8

)
.

It is easy to verify, using the above, that
∫
R3
6(p)3p = 1. Furthermore, we have the following useful

but easy properties.¬

Lemma 13.2.3. (A) Consider 3 independent variables -1, . . . , -3 ∼ N(0, 1), the point q = (-1, . . . , -3)
has the multi-dimensional normal distribution N3.

(B) The multi-dimensional normal distribution is symmetric; that is, for any two points p, q ∈ R3
such that ‖p‖ = ‖q‖ we have that 6(p) = 6(q), where 6(·) is the density function of the multi-dimensional
normal distribution N3.

(C) The projection of the normal distribution on any direction (i.e., any vector of length 1) is a
one-dimensional normal distribution.

Proof: (A) Let 5 (·) denote the density function of N(0, 1), and observe that the density function of q is
5 (-1) 5 (-2) · · · 5 (-3),= 1√

2c
exp

(
−-2

1/2
)
· · · 1√

2c
exp

(
−-2

3
/2

)
, which readily implies the claim.

(B) Readily follows from observing that 6(p) = 1
(2c)3/2

exp
(
− ‖p‖2 /2

)
.

(C) Let p = (-1, . . . , -3), where -1, . . . , -3 ∼ N(0, 1). Let E be any unit vector in R3, and observe
that by the symmetry of the density function, we can (rigidly) rotate the space around the origin in any
way we want, and the measure of sets does not change. In particular rotate space so that E becomes
the unit vector (1, 0, . . . , 0). We have that

P[〈E, p〉 ≤ U] = P[〈(1, 0, . . . , 0), p〉 ≤ U] = P[-1 ≤ U],

which implies that 〈E, p〉 ∼ -1 ∼ N(0, 1). �

The generalized multi-dimensional distribution is aGaussian. Fortunately, we only need the simpler
notion.

13.3. Dimension reduction

13.3.1. The construction
The input is a set % ⊆ R3 of = points (where 3 is potentially very large), and let Y > 0 be an approxi-
mation parameter. For

: =
⌈
24Y−2 ln =

⌉
(13.3)

we pick : vectors D1, . . . , D: independently from the 3-dimensional normal distribution N3. Given a
point p ∈ R3, its image is

ℎ(E) = 1
√
:

(
〈D1, p〉 , · · · , 〈D: , p〉

)
.

¬The normal distribution has such useful properties that it seems that the only thing normal about it is its name.
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In matrix notation, let

M =
1
√
:

©«
D1
D2
...

D:

ª®®®®¬
.

For every point p8 ∈ %, we set q8 = ℎ(p8) = Mp8.

13.3.2. Analysis
13.3.2.1. A single unit vector is preserved

Consider a vector E of length one in R3. The natural question is what is the value of : needed, so that
the length of ℎ(E) is a good approximation to E. Since 〈D8, E〉 ∼ N(0, 1), by Lemma 13.2.3, this question
can boil down to the following: Given : variables -1, . . . , -: ∼ N(0, 1), sampled independently, how
concentrated is the random variable

. = ‖(-1, . . . , -: )‖2 =
:∑
8=1

-2
8 .

We have that E[. ] = : E
[
-2
8

]
= : V[-8] = :, since -8 ∼ N(0, 1), for any 8. The distribution of . is

known as the chi-square distribution with : degrees of freedom.

Lemma 13.3.1. Let i ∈ (0, 1), and Y ∈ (0, 1/2) be parameters, and let : ≥
⌈

16
Y2 ln 2

i

⌉
be an integer.

Then, for : independent random variables -1, . . . , -: ∼ N(0, 1), we have that / =
∑
8 -

2
8
/: is strongly

concentrated. Formally, we have that P[/ ≤ 1 + Y] ≥ 1 − i.

Proof: Arguing as in the proof of Chernoff’s inequality, using C = Y/4 < 1/2, we have

P[/ ≥ 1 + Y] ≤ P
[
exp(C:/) ≥ exp

(
C: (1 + Y)

) ]
≤ E[exp(C:/)]

exp
(
C: (1 + Y)

) = :∏
8=1

E
[
exp(C-2

8
)
]

exp
(
C (1 + Y)

)
Using substitution (i.e., H = G√

1−2C
), and C = Y/4, we have

E
[
exp(C-2

8 )
]
=

∫ ∞

−∞

exp(CG2)
√

2c
exp

(
−G

2

2

)
dG = 1

√
2c

∫
exp

(
−(1 − 2C) G

2

2

)
dG

=
1
√

2c

∫ ∞

−∞

1
√

1 − 2C
exp

(
− H

2

2

)
dH = 1

√
1 − 2C

=
1√

1 − Y/2
≤ exp

(
1
2

∞∑
8=1

(Y
2

) 8)
.

since 1
1−I =

∑∞
8=0 I

8, for 0 ≤ I < 1, and thus

1
1−Y/2 =

∑
8

(Y
2

) 8
≤

(
1 + 1

2

∞∑
8=1

(Y
2

) 8)2

≤ exp
(
1
2

∞∑
8=1

(Y
2

) 8)2

.

As such, we have

P[/ ≥ 1 + Y] ≤ exp
(
1
2

∞∑
8=1

(Y
2

) 8
− Y4 (1 + Y)

) :
= exp

(
−Y

2

8 +
1
2

∞∑
8=3

(Y
2

) 8) :
≤ exp

(
− :Y

2

16

)
≤ i2 ,
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since, for Y < 1/2, we have 1
2
∑∞
8=3

(
Y
2
) 8 ≤ ( Y2 )3 ≤ Y2

16 . The last step in the above inequality follows by
substituting in the lower bound on the value of :. �

The other direction we need follows in a similar fashion. We state the needed result without proof
[LM00, Lemma 1] (which also yields better constants):
Lemma 13.3.2. Let .1, . . . , .: be : independent random variables with .8 ∼ N(0, 1). Let / = ∑:

8=1.
2
8
/:.

For any G > 0, we have that

P
[
/ ≤ 1 − 2

√
G/:

]
≤ exp(−G) and P

[
/ ≥ 1 + 2

√
G/: + 2G/:

]
≤ exp(−G).

For our purposes, we require that exp(−G) ≤ i/2, which implies G = ln(2/i). We further require that
2
√
G/: ≤ Y and 2

√
G/: + 2G/: ≤ Y, which hold for : = 8Y−2 ln 2

i
, for Y ≤ 1. We thus get the following

result.
Corollary 13.3.3. Let i ∈ (0, 1), and Y ∈ (0, 1/2) be parameters, and let : ≥

⌈
8
Y2 ln 2

i

⌉
be an integer.

Then, for : independent random variables -1, . . . , -: ∼ N(0, 1), we have for / =
∑
8 -

2
8
/: that that

P[1 − Y ≤ / ≤ 1 + Y] ≥ 1 − i.

Remark 13.3.4. The result of Corollary 13.3.3 is surprising. It says that if we pick a point according to
the :-dimensional normal distribution, then its distance to the origin is strongly concentrated around√
:. Namely, the normal distribution “converges” to a sphere, as the dimension increases. The mind

boggles.

Lemma 13.3.5. Let E be a unit vector in R3, then

P[1 − Y ≤ ‖ME‖ ≤ 1 + Y] ≥ 1 − 1
=2 .

Proof: Observe that if for a number G, if 1 − Y ≤ G2 ≤ 1 + Y, then 1 − Y ≤ G ≤ 1 + Y. As such, the claim
holds if 1 − Y ≤ ‖ME‖2 ≤ 1 + Y. By Corollary 13.3.3, setting i = 1/=2, we need

: ≥ 8Y−2 ln(2/i) = 8Y−2 ln(2=2) = 24Y−2 ln =,

which holds for the value picked for : in Eq. (13.3). �

13.3.3. All pairwise distances are preserved
Lemma 13.3.6. With probability at least half, for all points p, p′ ∈ %, we have that

(1 − Y) ‖p − p′‖ ≤ ‖Mp −Mq‖ ≤ (1 + Y) ‖p − q‖ .

Proof: The key observation is that M is a linear operator. As such, let E = (p − p′)/‖p − p′‖ be a unit
vector, and observe that

(1 − Y) ‖p − p′‖ ≤ ‖Mp −Mq‖ ≤ (1 + Y) ‖p − q‖ ⇐⇒ (1 − Y) ‖E‖ ≤ ‖ME‖ ≤ (1 + Y) ‖E‖ .

The probability the later condition does not hold is at most 1/=2, by Lemma 13.3.5. As such, for all
possible pairs of points, the probability of failure is

(=
2
)
· 1
=2 ≤ 1/2, as claimed. �

We thus got the famous JL-Lemma.
Theorem 13.3.7 (The Johnson-Lindenstrauss Lemma). Given a set % of = points in R3, and a
parameter Y, one can reduce the dimension of % to : = $ (Y−2 log =) dimensions, such that all pairwise
distances are 1 ± Y preserved.
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13.4. Even more on the normal distribution
The following is not used anywhere in the above, and is provided as additional information about the
normal distribution.

Lemma 13.4.1. Let - ∼ N(0, 1), and let f > 0 and ` be two real numbers. The random variable
. = f- + ` has the density function

5`,f (G) =
1

√
2cf

exp
(
− (G − `)

2

2f2

)
. (13.4)

The variable . has the normal distribution with variance f2, and expectation `, denoted by . ∼
N

(
`, f2).

Proof: We have P[. ≤ U] = P[f- + ` ≤ U] = P
[
- ≤ U−`

f

]
=

∫ (U−`)/f
H=−∞ 5 (H) dH, where 5 (G) = 1√

2c
exp

(
−G2/2

)
.

Substituting H = (G − `)/f, and observing that dH/dG = 1/f, we have

P[. ≤ U] =
∫ U

G=−∞
5

(G − `
f

) 1
f

dG = 1
√

2cf

∫ U

G=−∞
exp

(
− (G − `)

2

2f2

)
dG,

as claimed.
As for the second part, observe that E[. ] = E[f- + `] = f E[-] + ` = ` and V[. ] = V[f- + `] =

V[f-] = f2V[-] = f2. �

Lemma 13.4.2. Consider two independent variables - ∼ N(0, 1) and . ∼ N(0, 1). For U, V > 0, we
have / = U- + V. ∼ N

(
0, f2) , where f = √

U2 + V2.

Proof: Consider the region in the plane �− =
{
(G, H) ∈ R2 �� UG + VH ≤ I} – this is a halfspace bounded

by the line ℓ ≡ UG + VH = I. This line is orthogonal to the vector (−V, U). We have that ℓ ≡ U
f
G + V

f
H = I

f
.

Observe that
( U
f
,
V

f

) = 1, which implies that the distance of ℓ from the origin is 3 = I/f.
Now, we have

P[/ ≤ I] = P[U- + V. ≤ I] = P[�−] =
∫
?=(G,H)∈�−

6(G, H) d?,

see Eq. (13.2). Since, the two dimensional density function 6 is symmetric around the origin. any
halfspace containing the origin, which its boundary is in distance 3 from the origin, has the same
probability. In particular, consider the halfspace ) =

{
(G, H) ∈ R2 �� G ≤ 3}. We have that

P[/ ≤ I] = P[�−] = P[)] = P[- ≤ 3] =
1
√

2c

∫ 3

−∞
exp

(
−G

2

2

)
dG = 1

√
2c

∫ I

H=−∞
exp

(
− H2

2f2

)
dG
dH dH,

=
1
√

2cf

∫ I

H=−∞
exp

(
− H2

2f2

)
dH,

by change of variables G = H/f, and observing that dG/dH = 1/f. By Eq. (13.4), the above integral is
the probability of a variable distributed N

(
0, f2) to be smaller than I, establishing the claim. �

Lemma 13.4.3. Consider two independent variables - ∼ N
(
`1, f

2
1
)
and . ∼ N

(
`2, f

2
2
)
. We have

/ = - + . ∼ N
(
`1 + `2, f

2
1 + f2

2
)
,
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Proof: Let -̂ ∼ N(0, 1) and .̂ ∼ N(0, 1), and observe that we can write - = f1 -̂ + `1 and . = f2.̂ + `2.
As such, we have

/ = - + . = f1 -̂ + f2.̂ + `1 + `2.

The variable , = f1 -̂ + f2.̂ ∼ N
(
0, f2

1 + f2
2
)
, by Lemma 13.4.2. Adding `1 + `2 to , , just shifts its

expectation, implying the claim. �

13.5. Some calculations
Let - ∼ N(0, 1). Then

P
[
-2 ≤ U

]
=

∫ √
U

G=−
√
U

5 (G) dG =
∫ √

U

G=0
2 5 (G) dG =

∫ U

H=0

1
2√H2 5 (√H) dH =

∫ U

H=0

1
√

2cH
exp(−H/2) dH

13.6. Bibliographical notes
The original result is due to Johnson and Lindenstrauss [JL84]. By now there are many proofs of this
lemma. Our proof follows class notes of Anupam Gupta, which in turn follows Indyk and Motwani
[IM98],
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Chapter 14

Streaming and the Multipass Model

I don’t know why it should be, I am sure; but the sight of another man asleep in bed when I am up, maddens me.
It seems to me so shocking to see the precious hours of a man’s life - the priceless moments that will never come
back to him again - being wasted in mere brutish sleep.

Jerome K. Jerome, Three men in a boat598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

14.1. Reservoir sampling: Fishing a sample from a stream
Imagine that you are given a stream of elements B1, B2, . . ., and you need to sample : numbers from this
stream (say, without repetition) – assume that you do not know the length of the stream in advance,
and furthermore, you have only $ (:) space available for you. How to do that efficiently?

There are two natural schemes:
(A) Whenever an element arrives, generate a random number for it in the range [0, 1]. Maintain a

heap with the : elements with the lowest priority. Implemented naively this requires $ (log :)
comparisons after each insertion, but it is not difficult to improve this to $ (1) comparisons in the
amortized sense per insertion. Clearly, the resulting set is the desired random sample

(B) Let (C be the random sample maintained in the Cth iteration. When the 8th element arrives, the
algorithm flip a coin that is heads with probability min(1, :/8). If the coin is heads then it inserts
B8 to (8−1 to get (8. If (8−1 already have : elements, then first randomly delete one of the elements.

Theorem 14.1.1. Given a stream of elements, one can uniformly sample : elements (without repeti-
tion), from the stream using $ (:) space, where $ (1) time is spent for handling each incoming element.

Proof: We implement the scheme (B) above. We only need to argue that this is a uniform random
sample. The claim trivially hold for 8 = :. So assume the claim holds for 8 < C, and we need to prove
that the set after getting Cth element is still a uniform random sample.

So, consider a specific set  ⊆ {B1, . . . , BC} of : elements. The probability of  to be a random
sample of size : from a set of C elements is 1/

( C
:

)
. We need to argue that this probability remains the

same for this scheme.
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So, if BC ∉  , then we have

P[ = (C] = P[ = (C−1 and BC was not inserted] =
1(C−1
:

) (1 − :
C

)
=
:!(C − 1 − :)!(C − :)

(C − 1)!C =
1( C
:

) .
If BC ∈  , then

P
[
 = (C

]
= P


 \ {BC} ⊆ (C−1,
BC was inserted

and (C−1 \  thrown out of (C−1

 =
C − 1 − (: − 1)(C−1

:

) ��:

C

1
��:
=
(C − :):!(C − 1 − :)!

(C − 1)!C =
1( C
:

) ,
as desired. Indeed, there are C − 1 − (: − 1) subsets of size : of {B1, . . . , BC−1} that contains  \ {BC} –
since we fix : − 1 of the C − 1 elements. �

14.2. Sampling and median selection revisited
Let �[1, . . . , =] be a set of = numbers. We would like to estimate the median, without computing it
outright. A natural idea, would be to pick : elements 41, . . . , 4: randomly from �, and return their
median as the guess for the median of �.

In the following, let rank(�, C) be the Cth smallest number in the array �.

Observation 14.2.1. For Y ∈ (0, 1), we have that 1
1−Y ≥ 1 + Y.

Lemma 14.2.2. Let Y ∈ (0, 1/2), and let : =
⌈12
Y2 ln 2

X

⌉
. Let / be the median of the random sample of �

of size :. We have that

P
[
rank

(
�,

1 − Y
2 =

)
≤ / ≤ rank

(
�,

1 + Y
2 =

)]
≥ 1 − X.

Namely, with probability at least 1 − X, the returned value / is (Y/2)= positions away from the true
median.

Proof: Let ! = rank(�, (1 − Y)=/2). Let -8 = 1 if and only if 48 ≤ !. We have that

P[-8 = 1] = (1 − Y)=/2
=

=
1 − Y

2 .

As such, setting . =
∑:
8=1 -8, we have

` = E[. ] =
1 − Y

2 : ≥ :4 ≥
3
Y2 ln 2

X
.

One case is that the algorithm fails, if . ≥ :/2. Since 1
1−Y ≥ 1 + Y, we have that

P[. ≥ :/2] = P
[
. ≥ 1/2

(1 − Y)/2 ·
1 − Y

2 :

]
≤ P[. ≥ (1 + Y)`] ≤ exp

(
−Y

2`

3

)
≤ exp

(
−Y

2

3 ·
3
Y2 ln 2

X

)
≤ X2 .

by Chernoff’s inequality (see Lemma 8.2.4).
This implies that P

[
rank(�, (1 − Y)=/2) > /

]
≤ X/2.

The claim now follows by realizing that by symmetry (i.e., revering the order), we have that
P[/ > rank(�, (1 + Y)=/2)] ≤ X/2, and putting these two inequalities together. �

110



The above already implies that we can get a good estimate for the median. We need something some-
what stronger – we state it without proof since it follows by similarly mucking around with Chernoff’s
inequality.

Lemma 14.2.3. Let Y ∈ (0, 1/2), let � an array of = elements, and let ( = {41, . . . , 4: } be a set of :
samples picked uniformly and randomly from �. Then, for some absolute constant 2, and an integer :,
such that : ≥

⌈
2
Y2 ln 1

X

⌉
, we have that

P
[
rank((, :−) ≤ rank(�, =/2) ≤ rank

(
(, :+

) ]
≥ 1 − X.

for :− = b(1 − Y):/2c, and :+ = b(1 + Y):/2c.
One can prove even a stronger statement:

P[rank(�, (1 − 2Y)=/2) ≤ rank((, (1 − Y):/2) ≤ rank(�, =/2) ≤ rank((, (1 + Y):/2) ≤ rank(�, (1 + 2Y)=/2)] ≥ 1−X

(the constant 2 would have to be slightly bigger).

14.2.1. A median selection with few comparisons
The above suggests a natural algorithm for computing the median (i.e., the element of rank =/2 in �).
Pick a random sample ( of : = $ (=2/3 log =) elements. Next, sort (, and pick the elements ! and ' of
ranks (1 − Y): and (1 + Y): in (, respectively. Next, scan the elements, and compare them to ! and ',
and keep only the elements that are between. In the end of this process, we have computed:
(A) U: The rank of the number ! in the set �.
(B) ) = {G ∈ � | ! ≤ G ≤ �}.

Compute, by brute force (i.e., sorting) the element of rank =/2−U in ) . Return it as the desired median.
If =/2 − U is negative, then the algorithm failed, and it tries again.

Lemma 14.2.4. The above algorithm performs 2= +$ (=2/3 log =) comparisons, and reports the median.
This holds with high probability.

Proof: Set Y = 1/=1/3, and X = 1/=$ (1), and observe that Lemma 14.2.3 implies that with probability
≥ 1− 1/X, we have that the desired median is between ! and �. In addition, Lemma 14.2.3 also implies
that |) | ≤ 4Y= ≤ 4=2/3, which readily implies the correctness of the algorithm.

As for the bound on the number of comparisons, we have, with high probability, that the number of
comparisons is

$ ( |( | log |( | + |) | log |) |) + 2= = $
(√
= log2 = + =2/3 log =

)
+ 2=,

since deciding if an element is between ! and � requires two comparisons. �

Lemma 14.2.5. The above algorithm can be modified to perform (3/2)= + $ (=2/3 log =) comparisons,
and reports the median correctly. This holds with high probability.

Proof: The trick is to randomly compare each element either first to ! or first to � with equal probability.
For elements that are either smaller than ! or bigger than �, this requires (3/2)= comparisons in
expectation. Thus improving the bound from 2= to (3/2)=. �

Lemma 14.2.6. Consider a stream � of = numbers, and assume we can make two passes over the data.
Then, one can compute exactly the median of � using:
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(I) $ (=2/3) space.
(II) 1.5= +$ (=2/3 log =) comparisons.
The algorithm reports the median correctly, and it succeeds with high probability.

Proof: Implement the above algorithm, using the random sampling from Theorem 14.1.1. �

Remark 14.2.7. Interestingly, one can do better if one is more careful. The basic idea is to do thinning
– given two sorted sequence of sizes B, consider merging the sets, and then picking all the even rank
elements into a new sequence. Clearly, the element of rank 8 in the output sequence, has rank 28 in the
union of the two original sequences. A sequence that is the result of 8 such rounds of thinning is of rank
8. We maintain $ (log =) such sequences as we read the stream. At any time, we have two buffers of size
B, that we fill up from the stream. Whenever the two buffers fill up, we perform the thinning operation
on them, creating a sequence of rank 1.

If during this process we store two sequence of the same rank, we merge them and perform thinning
on them. As such, we maintain $ (log =) buffers sequences each of size B. Assume that our stream has
size =, and = is a power for 2. Then in the end of process, we would have only a single sequence of rank
ℎ = log2(=/B). By induction, it is easy to prove that an element of rank A in this sequence, has rank
between 2ℎ (A − 1) and 2ℎA in the original stream.

Thus, setting B =
√
=, we get that after a single pass, using $ (

√
= log =) space, we have a sorted

sequence, where the rank of the elements is roughly
√
= approximation to the true rank. We pick the

two consecutive elements (or more carefully, the predecessor, and successor), and filter the stream again,
keeping only the elements in between these two elements. It is to show that $ (

√
=) would be kept, and

we can extract the median using $ (
√
= log =) time.

We thus got that one can compute the median in two passes using $ (
√
= log =) space. It is not hard

to extend this algorithm to U-passes, where the space required becomes $ (=1/U log =).
This elegant algorithm goes back to 1980, and it is by Munro and Paterson [MP80].

14.3. Big data and the streaming model
Here, we are interested in doing some computational tasks when the amount of data we have to handle
is quite large (think terabytes or larger). The main challenge in many of these cases is that even reading
the data once is expensive. Running times of $ (= log =) might not be acceptable. Furthermore, in many
cases, we can not load all the data into memory.

In the streaming model, one reads the data as it comes in, but one can not afford to keep all the
data. A natural example would be a internet router, which has gazillion of packets going through it
every minute. We might still be interested in natural questions about these packets, but we want to do
this without storing all the packets.

14.4. Heavy hitters
Imagine a stream B1, . . ., where elements might repeat, and we would like to maintain a list of elements
that appear at least Y= times. We present a simple but clever scheme that maintains such a list.

The algorithm. To this end, let
: = d1/Ye .
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At each point in time, we maintain a set ( of : elements, with a counter for each element. Let (C be
the version of ( after C were inserted. When BC+1 arrives, we increase its counter if it is already in (C . If
|(C | < :, then we just insert BC+1 to the set, and set its counter to 1. Otherwise, |(C | = : and BC+1 ∉ (C .
We then decrease all the : counters of elements in (C by 1. If a counter of an element in (C+1 is zero,
then we delete it from the set.
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Chapter 15

Independent set – Turán’s theorem

I don’t know why it should be, I am sure; but the sight of another man asleep in bed when I am up, maddens me.
It seems to me so shocking to see the precious hours of a man’s life - the priceless moments that will never come
back to him again - being wasted in mere brutish sleep.

Jerome K. Jerome, Three men in a boat598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

15.0.1. Statement & proof
I think the following proof is due to Alon and Spencer.

Theorem 15.0.1 (Turán’s theorem). Let � = (+, �) be a graph. The graph � has an independent
set of size =

1 + 3�
, where = = |+ | and 3� is the average vertex degree in �.

Proof: Let c = (c1, . . . , c=) be a random permutation of the vertices of �. Pick the vertex c8 into the
independent set if none of its neighbors appear before it in c. Clearly, E appears in the independent
set if and only if it appears in the permutation before all its 3 (E) neighbors. The probability for this is
1/(1 + 3 (E)). Thus, the expected size of the independent set is (exactly)

g =
∑
E∈+

1
1 + 3 (E) , (15.1)

by linearity of expectations. Thus, by the probabilistic method, there exists an independent set in � of
size at least g.

We remain with the task of proving that g ≥ =
1+3� . Observe that if G + H = U, then

1
1 + G +

1
1 + H =

1 + G + 1 + H
1 + G + H + GH =

2 + U
1 + U + GH ≥

2 + U
1 + U + U2/4 =

2(1 + U/2)
(1 + U/2)2 =

2
1 + U/2 ,

since the quantity GH is maximized when G = H under the condition G + H = U. This implies that the
minimum of Eq. (15.1) is achieved if we replace 3 (E) by the average degree in �, which implies the
theorem. �
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Following a post of this write-up on my blog, readers suggested two modifications. We present an
alternative proof incorporating both suggestion.

Alternative proof of Theorem 15.0.1: We associate a charge of size 1/(3 (E) + 1) with each vertex
of �. Let W(�) denote the total charge of the vertices of �. We prove, using induction, that there is
always an independent set in � of size at least W(�). If � is the empty graph, then the claim trivially
holds. Otherwise, assume that it holds if the graph has at most = − 1 vertices, and consider the vertex
E of lowest degree in �. The total charge of E and its neighbors is

1
3 (E) + 1 +

∑
DE∈�

1
3 (D) + 1 ≤

1
3 (E) + 1 +

∑
DE∈�

1
3 (E) + 1 =

3 (E) + 1
3 (E) + 1 = 1,

since 3 (D) ≥ 3 (E), for all DE ∈ � . Now, consider the graph � resulting from removing E and its neighbors
from �. Clearly, W(�) is larger (or equal) to the total charge of the vertices of + (�) in �, as their degree
had either decreased (or remained the same). As such, by induction, we have an independent set in � of
size at least W(�). Together with E this forms an independent set in � of size at least W(�) + 1 ≥ W(�).
Implying that there exists an independent set in � of size

g =
∑
E∈+

1
1 + 3 (E) , (15.2)

Now, set GE = 1 + 3 (E), and observe that

(= + 2|� |)g =
(∑
E∈+

GE

) (∑
E∈+

1
GE

)
≥

∑
E∈+

GE
1
GE
= =.

Namely, g ≥ =

= + 2|� | =
1

1 + 2|� |/= =
1

1 + 3�
. �

15.0.2. An algorithm for the weighted case
In the weighted case, we associate weight F(E) with each vertex of �, and we are interested in the
maximum weight independent set in �. Deploying the algorithm described in the first proof of Theo-
rem 15.0.1, implies the following.

Lemma 15.0.2. The graph � = (+, �) has an independent set of size ≥
∑
E∈+

F(E)
1 + 3 (E) .

Proof: By linearity of expectations, we have that the expected weight of the independent set computed
is equal to ∑

E∈+
F(E) · P[E in the independent set] =

∑
E∈+

F(E)
1 + 3 (E) , �
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Chapter 16

Frequency Estimation over a Stream

“See? Genuine-sounding indignation. I programmed that myself. It’s the first thing you need in a university
environment: the ability to take offense at any slight, real or imagined.”

Robert Sawyer, Factoring Humanity598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

16.1. Frequency estimation over a stream for the :th moment
Let S = (B1, . . . , B<) be a sequence of elements from # = {1, . . . , =}. Let 58 be the number of times the
number 8 appears in S. For : ≥ 0, let

�: =

=∑
8=1

5 :8

be the :th frequency moment of S. The quantity, �1 = < is the length of the stream S. Similarly,
�0 is the number of distinct elements (where we use the convention that 00 = 0 and any other quantity
to the power 0 is 1). It is natural to define �∞ = max8 58.

Here, we are interested in approximating up to a factor of 1 ± Y the quantity �: , for : ≥ 1 using
small space, and reading the stream S only once.

16.1.1. An estimator

16.1.1.1. Computing the estimate

One can pick a representative element from a stream uniformly at random by using reservoir sampling.
That is, sample the 8th element B8 to be the representative with probability 1/8. Once sampled, the
algorithm counts how many times it see the representative value later on in the stream (the counter
is initialized to 1, to account for the chosen representative itself). In particular, if B? is the chosen
representative in the end of the stream (i.e., the algorithm might change the representative several
times), then the counter A is the size of the set{

9
�� 9 ≥ ? and B 9 = B?

}
.
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the output of the algorithm is the quantity

- = <
(
A : − (A − 1):

)
.

Let + be the random variable that is the value of the representative in the end of the sequence (i.e., +).

16.1.1.2. Analysis

Lemma 16.1.1. We have E[-] = �: .

Proof: Observe that since we choose the representative uniformly at random, we have

E[- | + = 8] =
58∑
9=1

1
58
<

(
9 : − ( 9 − 1):

)
=
<

58

58∑
9=1

(
9 : − ( 9 − 1):

)
=
<

58
5 : .

As such, we have E[-] = E
[
E[- | +]

]
=

∑
8: 58≠0

58
<
<
58
5 :
8
=

∑
8 5

:
8
= �: . �

Remark 16.1.2. In the above, we estimated the function 6(G) = G: , over the frequency numbers 51, . . . , 5: ,
but the above argumentation, on the expectation of -, would work for any function 6(G) such that
6(0) = 0, and 6(G) ≥ 0, for all G ≥ 0.

Lemma 16.1.3. For : > 1, we have
∑=
8=1

(
8: − (8 − 1):

)2 ≤ :=2:−1.

Proof: Observe that for G ≥ 1, we have that G: − (G − 1): ≤ :G:−1. As such, we have
=∑
8=1

(
8: − (8 − 1):

)2
≤

=∑
8=1

:8:−1
(
8: − (8 − 1):

)
≤ :=:−1

=∑
8=1

(
8: − (8 − 1):

)
= :=:−1=: = :=2:−1. �

Lemma 16.1.4. We have E
[
-2] ≤ :<�2:−1.

Proof: By Lemma 16.1.3, we have E
[
-2 �� + = 8] = ∑ 58

9=1
1
58
<2 ( 9 : − ( 9 − 1):

)2 ≤ <2

58
: 5 2:−1
8

= <2: 5 2:−2
8

,

and thus E
[
-2] = E[E[-2 �� + ] ]

=
∑
8: 58≠0

58

<
· <2: 5 2:−2

8 = <:�2:−1. �

Lemma 16.1.5. For any non-negative numbers 51, . . . , 5=, and : ≥ 1, we have
=∑
8=1

58 ≤ =(:−1)/:
( =∑
8=1

5 :8

)1/:
.

Proof: The above is equivalent to proving that
∑
8 58/= ≤

(∑=
8=1 5

:
8
/=

)1/:
. Raising both sides to the power

:, we need to show that (∑8 58/=): ≤
∑=
8=1 5

:
8
/=. Setting 6(G) = G: , we have 6(∑8 58/=) ≤

∑=
8=1 6( 58)/=.

The last inequality holds by the convexity of the function 6(G) (indeed, 6′(G) = :G:−1 and 6′′(G) =
: (: − 1)G:−2 ≥ 0, for G ≥ 0). �

Lemma 16.1.6. For any = numbers 51, . . . , 5= ≥ 0, we have
(∑

8 58

) (∑
8 5

2:−1
8

)
≤ =1−1/:

(∑
8 5

:
8

)2
.
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Proof: Let " = max8 58. We have∑
8

5 2:−1
8 ≤ " :−1

∑
8

5 :8 ≤ " : (:−1)/:
∑
8

5 :8 ≤
(∑
8

5 :8

) (:−1)/: ∑
8

5 :8 ≤
(∑
8

5 :8

) (2:−1)/:
.

By Lemma 16.1.5, we have
∑=
8=1 58 ≤ =(:−1)/:

(∑
8 5

:
8

)1/:
. Multiplying the above two inequality implies

the claim. �

Lemma 16.1.7. We have V[-] ≤ :=1−1/:�2
:
.

Proof: Since < =
∑
8 58, Lemma 16.1.4 and Lemma 16.1.6 together implies that V[-] = E

[
-2]−(E[-])2 ≤

E
[
-2] ≤ :<�2:−2 ≤ :=1−1/:�2

:
. �

16.1.2. An improved estimator
Let i, Y ∈ (0, 1) be parameters. In the following, let

U = 8:=1−1/:/Y2 and V = 4 ln 1
i
.

Let us use U copies of the above estimator (running in parallel), and then take their average, which
results in a new estimator. Let repeat this V times, as such, we get V “average” estimators .1, . . . , .V
(i.e., there are UV independent copies of the simple estimator being executed in parallel). Let / be the
median value of .1, . . . , .V, and we output / as the new estimate.

16.1.2.1. Analysis

Lemma 16.1.8. For 8 = 1, . . . , 9 , we have P[|.8 − �: | > Y�: ] ≤ 1
8 .

Proof: The variable -8, 9 is a basic estimator being computed, for 8 = 1, . . . , V, and 9 = 1, . . . , U. The
variable .8 =

∑U
9=1 -8, 9/U, for all 8. Since all the -8, 9s are independent, and have the same distribution

as -, we have

V
[
.8

]
= V

[ 1
U

U∑
9=1
-8, 9

]
=

1
U2 V

[ U∑
9=1
-8, 9

]
=

1
U2

U∑
9=1
V

[
-8, 9

]
=

1
U2UV[-] =

V[-]
U

.

Similarly, we have E[.8] = E
[∑U

9=1-8, 9/:
]
= E[-]. Namely, the effect of averaging U independent copies

of the same variable is to reduce the variance by a factor of U, while keeping the expectation the same.
Let C = Y�:/f8, where f8 =

√
V[.8]. By Chebychev’s inequality (Theorem 1.3.4) and Lemma 16.1.7,

we have

P[|.8 − �: | > Y�: ] = P[|.8 − �: | > Cf8] ≤
1
C2
=

f2
8

Y2�2
:

=
V[.8]
Y2�2

:

=
V[-]
U
· 1
Y2�2

:

≤
:=1−1/:�2

:

UY2�2
:

.

We want the last quantity to be smaller than 1/8, which requires that :=1−1/:

UY2 ≤ 1/8, which holds for
U = 8:=1−1/:/Y2, which is (surprise, surprise) the value assigned to U. �

Lemma 16.1.9. We have for the estimator / that P[|/ − �: | ≥ Y�: ] ≤ i.
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Proof: The probability of an estimator .8 to be bad, for 8 = 1, . . . , V, is at most 1/8. Let * be the random
variable that is the number of estimators that are bad. The variable * has binomial distribution with
V coin tosses and probability 1/8. As such, we have

P[/ is bad] ≤ P[* ≥ V/2] = P[* ≥ (1 + 3)V/8] ≤ exp(−(V/8)32/4) ≤ exp
(
− ln 1

i

)
= i,

by Chernoff inequality (Lemma 8.2.5), and plugging in the value of V = 4 ln 1
i
. �

In the following, we consider a computer word to be sufficiently large to contain lg = or lg< bits.
This readily implies the following.

Theorem 16.1.10. Let S = (BCA<1, . . . , B=) be a stream of numbers from the set {1, . . . , =}. Let : ≥ 1 be
a parameter. Given Y, i ∈ (0, 1), one can build a data-structure using $ (:=1−1/:Y−2 log i−1) words, such
that one can (1 ± Y)-approximate the :th moment of the elements in the stream; that is, the algorithm
outs a number /, such that (1− Y)�: ≤ / ≤ (1+ Y)�: , where �: =

∑=
8=1 5

:
8
, and 58 is the number of times

8 appears in the stream S. The algorithm succeeds with probability ≥ 1 − i.

16.2. Better estimation for �2

16.2.1. Pseudo-random :-wide independent sequence of signed bits
In the following, assume that we sample $ (log =) bits, such that given an index 8, one can compute
(quickly!) a random signed bit 1(8) ∈ {−1, +1}. We require that the resulting bits 1(1), 1(2), . . . , 1(=)
are 4-wise independent. To this end, pick a prime ?, that is, say bigger than =10. This can easily be done
by sampling a number in the range [=10, =11], and checking if it is prime (which can done in polynomial
time).

Once we have such a prime, we generate a random polynomial 6(8) = ∑5
8=0 28G

8 mod ?, by choosing
20, . . . , 25 from Z? =

{
0, . . . , ? − 1

}
. We had seen that 6(0), 6(1), . . . , 6(=) are uniformly distributed in

Z?, and they are, say, 6-wise independent (see Theorem 3.2.9).
We define

1(8) =


0 6(8) = ? − 1
+1 6(8) is odd
−1 6(8) is even.

Clearly, the sequence 1(1), . . . , 1(=) are 6-wise independent. There is a chance that one of these bits
might be zero, but the probability for that is at most =/?, which is so small, that we just assume it does
not happen. There are known constructions that do not have this issue at all (one of the bits is zero),
but they are more complicated.

Lemma 16.2.1. Given a parameter i ∈ (0, 1), in polynomial time in $ (log(=/i)), one can construct a
function 1(·), requiring $ (log(=/�03%A>1)) bits of storage (or $ (1) words), such that 1(1), . . . , 1(=) ∈
{−1, +1} with equal probability, an they are 6-wise independent. Furthermore, given 8, one can compute
1(8) in $ (1) time.

The probability of this sequence to fail having the desired properties is smaller than i.

Proof: We repeat the above construction, but picking a prime ? in the range, say, =10/i . . . =11/i. �
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16.2.2. Estimator construction for �2

16.2.2.1. The basic estimator

As before we have the stream S = B1. . . . , B< of numbers from the set 1, . . . , =. We compute the 6-wise
independent sequence of random bits of Lemma 16.2.1, and in the following we assume this sequence is
good (i.e., has only −1 and +1 in it). We compute the quantity

) =

<∑
8=1

1(8) 58 =
<∑
9=1

1(B 9 ),

which can be computed on the fly using $ (1) words of memory, and $ (1) time per time in the stream.
The algorithm returns - = )2 as the desired estimate.

Analysis.
Lemma 16.2.2. We have E[-] =

∑
8 5

2
8
= �2 and V[-] ≤ 2�2

2 .

Proof: We have that E[-] = E
[(∑=

8=1 1(8) 58
)2]

, and as such

E[-] = E
[ =∑
8=1
(1(8))2 5 2

8 + 2
∑
8< 9

1(8)1( 9) 58 5 9
]
=

<∑
8=1

5 2
8 + 2

∑
8< 9

58 5 9 E[1(8)1( 9)] =
<∑
8=1

5 2
8 = �2,

since E[1(8)] = 0, E
[
1(8)2

]
= 1, and E[1(8)1( 9)] = E[1(8)] E[1( 9)] = 0 (assuming the sequence

1(1), . . . , 1(=) has not failed), by the 6-wise Independence of the sequence of signed bits.
We next computer E

[
-2] . To this end, let # = {1, . . . , =, and Γ = # × # × # × #. We split this set

into several sets, as follows:
(i) Γ0 =

{
(8, 8, 8, 8) ∈ #4}: All quadruples that are all the same value.

(ii) Γ1: Set of all quadruples (8, 9 , :, ;) where there is at least one value that appears exactly once.
(iii) Γ2: Set of all (8, 9 , :, ℓ) with only two distinct values, each appearing exactly twice.
Clearly, we have #4 = Γ0 ∪ Γ1 ∪ Γ2.

For a tuple (8, 8, 8, 8) ∈ Γ0, we have E[1(8)1(8)1(8)1(8)] = E
[
1(8)4

]
= 1.

For a tuple (8, 9 , :, ℓ) ∈ Γ1 with 8 being the unique value, we have that

E[1(8)1( 9)1(:)1(ℓ)] = E[1(8)] E[1( 9)1(:)1(ℓ)] = 0E[1( 9)1(:)1(ℓ)] = 0,
using that the signed bits are 4-wise independent. The same argumentation implies that E[1(8)1( 9)1(:)1(ℓ)] =
0 for any tuple (8, 9 , :, ℓ) ∈ Γ1.

For a tuple (8, 8, 9 , 9) ∈ Γ2, we have E[1(8)1(8)1( 9)1( 9)] = E
[
1(8)21( 9)2

]
= E

[
1(8)2

]
E
[
1( 9)2

]
= 1,

and the same argumentation applies to any tuple of Γ2. Observe that for any 8 < 9 , there are
(4
2
)
= 6

different tuples in Γ2 that are made out of 8 and 9 . As such, we have

E
[
-2] = E[( =∑

8=1
1(8) 58

)4]
= E

[ ∑
(8, 9 ,:,ℓ)∈Γ

1(8)1( 9)1(:)1(ℓ) 58 5 9 5: 5ℓ
]

=
∑

(8,8,8,8)∈Γ0

E
[
1(8)4

]
5 4
8 +

∑
(8, 9 ,:,ℓ)∈Γ1

58 5 9 5: 5ℓ E[1(8)1( 9)1(:)1(ℓ)] + 6
∑
8< 9

E
[
1(8)21( 9)2

]
5 2
8 5

2
9

=

=∑
8=1

5 4
8 + 6

∑
8< 9

5 2
8 5

2
9
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As such, we have

V[-] = E
[
-2] − (E[-])2 = =∑

8=1
5 4
8 + 6

∑
8< 9

5 2
8 5

2
9 −

( <∑
8=1

5 2
8

)2
= 4

∑
8< 9

5 2
8 5

2
9 ≤ 2�2

2 . �

16.2.3. Improving the estimator
We repeat the same scheme as above. Let i, Y ∈ (0, 1) be parameters. In the following, let

U = 16/Y2 and V = 4 ln 1
i
.

Let -8, 9 be a basic estimator for �2, using the estimator of Section 16.2.2.1, for 8 = 1, . . . , V and
9 = 1, . . . , U. Let .8 =

∑U
9=1 -8, 9/U, for 8 = 1, . . . , V. Let / be the median of .1, . . . , .V, and the algorithm

returns / as the estimator.

Theorem 16.2.3. Given a stream S = B1, . . . , B< of numbers from {1, . . . , =}, and parameters Y, i ∈
(0, 1), one can compute an estimate / for �2(S), such that P[|/ − �2 | > Y�2] ≤ i. This algorithm
requires $ (Y−2 log i−1) space (in words), and this is also the time to handle a new element in the
stream.

Proof: The scheme is described above. As before, using Chebychev’s inequality, we have that

P[|.8 − �2 | > Y�2] = P

[
|.8 − �2 | >

Y�2√
V[.8]

√
V[.8]

]
≤ V[.8]
Y2�2

2
=
V[-] /U
Y2�2

2
≤

2�2
2

UY2�2
2
=

1
8 ,

by Lemma 16.2.2. Let * be the number of estimators in .1, . . . , .V that are outside the acceptable range.
Arguing as in Lemma 16.1.9, we have

P[/ is bad] ≤ P[* ≥ V/2] = P[* ≥ (1 + 3)V/8] ≤ exp(−(V/8)32/4) ≤ exp
(
− ln 1

i

)
= i,

by Chernoff inequality (Lemma 8.2.5), and �

16.3. Bibliographical notes
The beautiful results of this chapter are from a paper from Alon et al. [AMS99].
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Chapter 17

Approximating the Number of Distinct
Elements in a Stream

“See? Genuine-sounding indignation. I programmed that myself. It’s the first thing you need in a university
environment: the ability to take offense at any slight, real or imagined.”

Robert Sawyer, Factoring Humanity598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

17.1. Counting number of distinct elements

17.1.1. First order statistic
Let -1, . . . , -D be D random variables uniformly distributed in [0, 1]. Let . = min(-1, . . . , -D). The
value . is the first order statistic of -1, . . . , -D.
Lemma 17.1.1. We have E[. ] = 1

D+1 , E
[
.2] = 2

(D+1) (D+2) , and V[. ] =
D

(D+1)2 (D+2) .

Proof: Using integration by guessing, we have

E[. ] =
∫ 1

H=0
H P[. = H] dH =

∫ 1

H=0
H ·

(
D

1

)
1(1 − H)D−1 dH =

∫ 1

H=0
DH(1 − H)D−1 dH

=

[
−H(1 − H)D − (1 − H)

D+1

D + 1

]1

H=0
=

1
D + 1 .

Using integration by guessing again, we have

E
[
.2] = ∫ 1

H=0
H2 P[. = H] dH =

∫ 1

H=0
H2 ·

(
D

1

)
1(1 − H)D−1 dH =

∫ 1

H=0
DH2(1 − H)D−1 dH

=

[
−H2(1 − H)D − 2H(1 − H)D+1

D + 1 − 2(1 − H)D+2
(D + 1) (D + 2)

]1

H=0
=

2
(D + 1) (D + 2) .

We conclude that

V[. ] = E
[
-2] − (E[-])2 = 2

(D + 1) (D + 2) −
1

(D + 1)2 =
1

D + 1

(
2

D + 2 −
1

D + 1

)
=

D

(D + 1)2(D + 2) . �
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17.1.2. The algorithm
A single estimator. Assume that we have a perfectly random hash function ℎ that randomly
maps # = {1, . . . , =} to [0, 1]. Assume that the stream has D unique numbers in #. Then the set
{ℎ(B1), . . . , ℎ(B<)} contains D random numbers uniformly distributed in [0.1]. The algorithm as such,
would compute - = min8 ℎ(B8). Bu the above, we have E[-] = 1/(D + 1), ans as such, 1/- − 1 is a
estimator for D.

A better estimator. We are going to compute U = 144/Y2 basic estimators: -1, . . . , -U. Let . be
the average of these variables. We have that E[. ] = 1/(D + 1), and V[. ] = V[-] /U. We require that

3
√
V[. ] ≤

Y

4 E[. ] ⇐⇒ 12
√

D

U(D + 1)2(D + 2) ≤ Y
1

D + 1 ⇐⇒ 12
√

D

U(D + 2) ≤ Y

Now, using Chebychev’s inequality, we have

P
[
|. − E[. ] | >

Y

4 E[. ]
]
≤ P

[
|. − E[. ] | > 3

√
V[. ]

]
≤ 1

9 .

Assume this bad event does not happen. Then we have that

(1 − Y/4) 1
D + 1 ≤ . ≤ (1 + Y/4)

1
D + 1 =⇒ D + 1

1 + Y/4 ≤
1
.
≤ D + 1

1 − Y/4 =⇒ D − Y/4
1 + Y/4 ≤

1
.
− 1 ≤ D + Y/41 − Y/4

=⇒ (1 − Y/4) (D − Y/4) ≤ 1
.
− 1 ≤ (1 + Y/2) (D + Y/4)

=⇒ (1 − Y)D ≤ 1
.
− 1 ≤ (1 + Y)D.

This implies that 1
.
− 1 is a 1 ± Y approximation to the number of distinct values in the stream, with

probability at least 8/9.

A high probability estimator. Given a desired failure probability i, the algorithm maintain V =

$ (log i−1) independent copies of the better estimator. Using Chernoff’s inequality, as we seen before,
implies that the median of these estimators is the desired approximation with probability ≥ 1 − i.

Lemma 17.1.2. Under the unreasonable assumption that we can sample perfectly random functions
from {1, . . . , =} to [0, 1], and storing such a function requires $ (1) words, then one can estimate the
number of unique elements in a stream, using $ (Y−2 log i) words.

17.2. Sampling from a stream with “low quality” randomness

Assume that we have a stream of elements S = B1, . . . , B<, all taken from the set {1, . . . , =}, and we
have a random sequence of bits B ≡ �1, . . . , �=, such that P[�8 = 1] = ?, for some ?. Furthermore, we
can compute �8 efficiently. Assume that the bits of X are pairwise independent. Let �0 = �0(S) be the
number of distinct values in the stream S.
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The sampling algorithm. When the 8th arrives B8, we compute �B8 . If this bit is 1, then we insert
B8 into the random sample R (if it is already in R, there is no need to store a second copy, naturally).

This defines a natural random sample

' = {8 | �8 = 1 and 8 ∈ (} ⊆ (.

Lemma 17.2.1. For the above random sample ', let - = |' |. We have that E[-] = ?a and V[-] =
?a − ?2a.

Proof: Let - = |' |, and we have

E[-] = E
[∑
8∈(
�8

]
=

∑
8∈(
E[�8] = ?a.

E
[
-2] = E[(∑

8∈(
�8)2

]
=

∑
8∈(
E
[
�2
8

]
+ 2

∑
8, 9∈(, 8< 9

E
[
�8� 9

]
= ?a + 2

∑
8, 9∈(, 8< 9

E[�8] E
[
� 9

]
= ?a + 2?2

(
a

2

)
.

As such, we have

V[-] = V[|' |] = E
[
-2] − (E[-])2 = ?a + 2?2

(
a

2

)
− ?2a2 = ?a + 2?2 a(a − 1)

2 − ?2a2

= ?a + ?2a(a − 1) − ?2a2 = ?a − ?2a. �

Lemma 17.2.2. Let Y ∈ (0, 1/4). Given $ (1/Y2) space, and a parameter #, and the task is to estimate
the size (, where we know that |( | > #/4. Then, there is an algorithm that would output one of the
following:
(A) |( | > 2#.
(B) Output a number d such that (1 − Y) |' | ≤ d ≤ (1 + Y) |' |.
(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability
≥ 7/8.

Proof: We set ? = 2
#Y2 , where 2 is a constant to be determined shortly. Let ) = ?# = $ (1/Y2). We

sample a random sample ' from (, by scanning the elements of (, and adding 8 ∈ ( to ' if �8 = 1, If
the random sample is larger than 8) , at any point, then the algorithm outputs that |( | > 2#.

In all other cases, the algorithm outputs |' | /? as the estimate for the size of (, together with '.
To bound the failure probability, consider first the case that #/4 < |( |. In this case, we have by the

above, that

P[|- − E[-] | > Y E[-]] ≤ P

[
|- − E[-] | > Y E

[-]√
V[-]

√
V[-]

]
≤ Y2 V[-]
(E[-])2

≤ 1
8 ,

if V[-]
Y2 (E[-])2 ≤

1
8 , For a = |( | ≥ #/4, this happens if

?a

Y2?2a2 ≤ 1
8 . This in turn is equivalent to 8/Y2 ≤ ?a.

This is in turn happens if
2

#Y2 ·
#

4 ≥
8
Y2 ,

which implies that this holds for 2 = 32. Namely, the algorithm in this case would output a (1 ± Y)-
estimate for |( |.

If the sample get bigger than 8) , then the above readily implies that with probability at least 7/8,
the size of ( is at least (1 − Y)8)/? > 2#, Namely, the output of the algorithm is correct in this case.�
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Lemma 17.2.3. Let Y ∈ (0, 1/4) and i ∈ (0, 1). Given $ (Y−2 log i−1) space, and a parameter #, and
the task is to estimate �0 of S, given that �0 > #/4. Then, there is an algorithm that would output one
of the following:
(A) �0 > 2#.
(B) Output a number d such that (1 − Y)�0 ≤ d ≤ (1 + Y)�0.
(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability
≥ 1 − i.

Proof: We run $ (log i−1) copies of the of Lemma 17.2.2. If half of them returns that �0 > 2#, then the
algorithm returns that �0 > 2#. Otherwise, the algorithm returns the median of the estimates returned,
and return it as the desired estimated. The correctness readily follows by a repeated application of
Chernoff’s inequality. �

Lemma 17.2.4. Let Y ∈ (0, 1/4). Given $ (Y−2 log2 =) space, one can read the stream S once, and
output a number d, such that (1 − Y)�0 ≤ d ≤ (1 + Y)�0. The estimate is correct with high probability
(i.e., ≥ 1 − 1/=$ (1)).

Proof: Let #8 = 28, for 8 = 1, . . . , " = dlg =e. Run " copies of Lemma 17.2.3, for each value of #8, with
i = 1/=$ (1). Let .1, . . . , ." be the outputs of these algorithms for the stream. A prefix of these outputs,
are going to be “�0 > 2#8”, Let 9 be the first . 9 that is a number. Return this number as the desired
estimate. The correctness is easy – the first estimate that is a number, is a correct estimate with high
probability. Since #" ≥ =, it also follows that ." must be a number. As such, there is a first number
in the sequence, and the algorithm would output an estimate.

More precisely, there is an index 8, such that #8/4 ≤ �0 ≤ 2�0, and .8 is a good estimate, with high
probability. If any of the . 9 , for 9 < 8, is an estimate, then it is correct (again) with high probability. �

17.3. Bibliographical notes

126



Chapter 18

Approximate Nearest Neighbor (ANN)
Search in High Dimensions
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

Possession of anything new or expensive only
reflected a person’s lack of theology and
geometry; it could even cast doubts upon one’s
soul.

A confederacy of Dunces, John Kennedy
Toole

18.1. ANN on the hypercube

18.1.1. ANN for the hypercube and the Hamming distance

Definition 18.1.1. The set of points H3 = {0, 1}3 is the 3-dimensional hypercube. A point p =

(p1, . . . , p3) ∈ H3 can be interpreted, naturally, as a binary string p1p2 . . . p3. TheHamming distance
d� (p, q) between p, q ∈ H3 is the number of coordinates where p and q disagree.

It is easy to verify that the Hamming distance, being the !1-norm, complies with the triangle
inequality and is thus a metric.

As we saw previously, to solve the (1 + Y)-ANN problem efficiently, it is sufficient to solve the
approximate near neighbor problem. Namely, given a set P of = points in H3, a radius A > 0, and
parameter Y > 0, we want to decide for a query point q whether d� (q,P) ≤ A or d� (q,P) ≥ (1 + Y)A,
where d� (q,P) = minp∈P d� (q, p).
Definition 18.1.2. For a set P of points, a data-structure D = D≈Near(P, A, (1 + Y)A) solves the approxi-
mate near neighbor problem if, given a query point q, the data-structure works as follows.

• Near: If d� (q,P) ≤ A, then D outputs a point p ∈ P such that d� (p, q) ≤ (1 + Y)A.
• Far: If d� (q,P) ≥ (1 + Y)A, then D outputs “d� (q,P) ≥ A”.
• Don’t care: If A ≤ d(q,P) ≤ (1 + Y)A, then D can return either of the above answers.

Given such a data-structure, one can construct a data-structure that answers the approximate near-
est neighbor query using $

(
log

(
Y−1 log 3

) )
queries using an approximate near neighbor data-structure.

Indeed, the desired distance d� (q,P) is an integer number in the range 0, 1, . . . , 3. We can build a
D≈Near data-structure for distances (1 + Y)8, for 8 = 1, . . . , ", where " = $

(
Y−1 log 3

)
. Performing a

binary search over these distances would resolve the approximate nearest neighbor query and requires
$ (log") queries.

As such, in the following, we concentrate on constructing the approximate near neighbor data-
structure (i.e., D≈Near).
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18.1.2. Preliminaries
Definition 18.1.3. Consider a sequence < of :, not necessarily distinct, integers 81, 82, . . . , 8: ∈ J3K, where
J3K = {1, . . . , 3}. For a point p = (?1, . . . , ?3) ∈ R3, its projection by <, denoted by <p is the
point

(
?81 , . . . , ?8:

)
∈ R: . Similarly, the projection of a point set P ⊆ R3 by < is the point set <P =

{<p | p ∈ P}.

Given two sequences < = 81, . . . , 8: and D = 91, . . . , 9: ′, let < |D denote the concatenated sequence
< |D = 81, . . . , 8: , 91, . . . , 9: ′ . Given a probability i, a natural way to create such a projection, is to
include the 8th coordinate, for 8 = 1, . . . , 3, with probability i. Let Di denote the distribution of such
sequences of indices.

Definition 18.1.4. Let D)
i denote the distribution resulting from concatenating ) independent sequences

sampled from Di. The length of a sampled sequence is 3) .

Observe that for a point p ∈ {0, 1}3, and " ∈ D)
i , the projection "p might be higher dimensional

than the original point p, as it might contain repeated coordinates of the original point.

18.1.2.1. Algorithm

18.1.2.1.1. Input. The input is a set P of = points in the hypercube {0, 1}3, and parameters A and Y.

18.1.2.1.2. Preprocessing. We set parameters as follows:

V =
1

1 + Y ∈ (0, 1), i = 1 − exp
(
−1
A

)
≈ 1
A
, ) = V ln =, and ! = $ (=V log =).

We randomly and independently pick ! sequences "1, . . . , "! ∈ D)
i . Next, the algorithm computes

the point sets Q8 = "8P8, for 8 = 1, . . . , !, and stores them each in a hash table, denoted by �8, for
8 = 1, . . . , !.

18.1.2.1.3. Answering a query. Given a query point q ∈ {0, 1}3, the algorithm computes q8 = "8q,
for 8 = 1, . . . , !. From each �8, the algorithm retrieves a list ℓ8 of all the points that collide with q8.
The algorithm scans the points in the lists ℓ1, . . . , ℓ!. If any of these points is in Hamming distance
smaller than (1 + Y)A, the algorithm returns it as the desired near-neighbor (and stops). Otherwise, the
algorithm returns that all the points in P are in distance at least A from q.

18.1.2.2. Analysis

Lemma 18.1.5. Let  be a set of A marked/forbidden coordinates. The probability that a sequence
" = (<1, . . . , <) ) sampled from D)

i does not sample any of the coordinates of  is 1/=V. This probability
increases if  contains fewer coordinates.

Proof: For any 8, the probability that <8 does not contain any of these coordinates is (1−i)A =
(
4−1/A

)A
=

1/4. Since this experiment is repeated ) times, the probability is 4−) = 4−V ln = = =−V. �

Lemma 18.1.6. Let p be the nearest-neighbor to q in P. If d� (q, p) ≤ A then, with high probability, the
data-structure returns a point that is in distance ≤ (1 + Y)A from q.
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Proof: The good event here is that p and q collide under one of the sequences of "1, . . . , "!. However,
the probability that "8p = "8q is at least 1/=V, by Lemma 18.1.5, as this is the probability that "8 does
not sample any of the (at most A) coordinates where p and q disagree. As such, the probability that all
! data-structures fail (i.e., none of the lists ℓ1, . . . , ℓ! contains p), is at most (1 − 1/=V)! < 1/=$ (1), as
! = $

(
=V log =

)
. �

Lemma 18.1.7. In expectation, the total number of points in ℓ1, . . . , ℓ! that are in distance ≥ (1 + Y)A
from q is ≤ !.

Proof: Let P≥ be the set of points in P that are in distance ≥ (1 + Y)A from q. For a point q ∈ P≥, with
Δ = d� (q, q), we have that the probability for " ∈ D)

i misses all the Δ coordinates, where q and q
differ, is

(1 − i)Δ) ≤ (1 − i) (1+Y)A) =
(
4−1/A

) (1+Y)A)
= exp(−(1 + Y)V ln =) = 1

=
,

as i = 1 − 4−1/A , ) = V ln =, and V = 1/(1 + Y). But then, for any 8, we have

E
[
|ℓ8 |

]
=

∑
p∈P≥

Pr
"8

[
"8p = "8q

]
≤

��P≥�� 1
=
≤ 1.

As such, the total number of far points in the lists is at most ! · 1 = !, implying the claim. �

18.1.2.3. Running time

For each 8, the query computes "8q and that takes $ (3)) = $ (3 log =) time. Repeated ! times, this takes
$ (!3 log =) time overall. Let - be the random variable that is the number of points in the extracted
lists that are in distance ≥ (1+Y)A from the query point. The time to scan the lists is $

(
3 (- + 1)

)
, since

the algorithm stops as soon as it finds a near point. As such, by Lemma 18.1.7, the expected query time
is $ (!3 log = + !3) = $

(
3=1/(1+Y) log2 =

)
.

18.1.2.3.1. Improving the performance (a bit). Observe that for " ∈ D)
i , and any two points

p, q ∈ {0, 1}3, all the algorithm cares about is whether "p = "q. As such, if a coordinate is probed many
times by ", we might as well probe this coordinate only once. In particular, for a sequence " ∈ D)

i ,
let "′ = uniq(") be the projection sequence resulting from removing replications in ". Significantly,
"′ is only of length ≤ 3, and as such, computing "′p, for a point p, takes only $ (3) time. It is not
hard to verify that one can also sample directly uniq("), for " ∈ D)

i , in $ (3) time. This improves the
query and processing by a logarithmic factor.

We thus get the following result.

Theorem 18.1.8. Given a set % of = points in {0, 1}3, and parameters A, Y, one can preprocess % in
$ (3=1+1/(1+Y) log =) time and space, such that given a query point q, the algorithm returns, in expected
$ (3=1/(1+Y) log =) time, one of the following:
(A) a point p ∈ % such that d� (q, p) ≤ (1 + Y)A, or
(B) the distance of q from % is larger than A.
The algorithm may return either result if the distance of q from % is in the range [A, (1 + Y)A]. The
algorithm succeeds with high probability (per query).
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One can also get a high-probability guarantee on the query time. For a parameter X > 0, create
$ (log X−1) LSH data-structures as above. Perform the query as above, except that when the query
time exceeds (say) twice the expected time, move on to redo the query in the next LSH data-structure.
The probability that the query had failed on one of these LSH data-structures is ≤ 1/2, by Markov’s
inequality. As such, overall, the query time becomes $ (3=1/(1+Y) log = log X−1), with probability ≥ 1 − X.

18.2. LSH for the hypercube: An elaborate construction
We next present a similar scheme in a more systematic fashion – this would provide some intuition how
we came up with the above construction.

18.2.0.1. On sense and sensitivity

Let P = {p1, . . . , p=} be a subset of vertices of the hypercube in 3 dimensions. In the following we
assume that 3 = =$ (1). Let A, Y > 0 be two prespecified parameters. We are interested in building an
approximate near neighbor data-structure (i.e., D≈Near) for balls of radius A in the Hamming distance.

Definition 18.2.1. A family F of functions (defined overH3) is
(
A, ', Û, V̂

)
-sensitive if for any q, r ∈ H3,

we have the following
(A) If q ∈ b(r, A), then P[ 5 (q) = 5 (r)] ≥ Û.
(B) If q ∉ b(r, '), then P[ 5 (q) = 5 (r)] ≤ V̂.

In (A) and (B), 5 is a randomly picked function from F , A < ', and Û > V̂.

Intuitively, if we can construct an (A, ', U, V)-sensitive family, then we can distinguish between two
points which are close together and two points which are far away from each other. Of course, the
probabilities U and V might be very close to each other, and we need a way to do amplification.
A simple sensitive family.

A priori it is not even clear such a sensitive family exists, but it turns out that the family randomly
exposing one coordinate is sensitive.

Lemma 18.2.2. Let 58 (p) denote the function that returns the 8th coordinate of p, for 8 = 1, . . . , 3.
Consider the family of functions F = { 51, . . . , 53}. Then, for any A > 0 and Y, the family F is
(A, (1 + Y)A, U, V)-sensitive, where U = 1 − A/3 and V = 1 − A (1 + Y)/3.

Proof: If q, r ∈ {0, 1}3 are within distance smaller than A from each other (under the Hamming distance),
then they differ in at most A coordinates. The probability that a random ℎ ∈ F would project into a
coordinate that q and r agree on is ≥ 1 − A/3.

Similarly, if d� (q, r) ≥ (1+Y)A, then the probability that a random ℎ ∈ F would map into a coordinate
that q and r agree on is ≤ 1 − (1 + Y)A/3. �

A family with a large sensitivity gap.
Let : be a parameter to be specified shortly, and consider the family of functions G that concatenates

: of the given functions. Formally, let

G = combine(F , :) =
{
6

��� 6(p) = (
5 1(p), . . . , 5 : (p)

)
, for 5 1, . . . , 5 : ∈ F

}
be the set of all such functions.
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Lemma 18.2.3. For a (A, ', U, V)-sensitive family F , the family G = combine(F , :) is (A, ', U: , V: )-
sensitive.

Proof: For two fixed points q, r ∈ H3 such that d� (q, r) ≤ A, we have that for a random ℎ ∈ F , we have
P[ℎ(q) = ℎ(r)] ≥ U. As such, for a random 6 ∈ G, we have that

P[6(q) = 6(r)] = P
[
5 1(q) = 5 1(r) and 5 2(q) = 5 2(r) and . . . and 5 : (q) = 5 : (r)

]
=

:∏
8=1
P
[
5 8 (q) = 5 8 (r)

]
≥ U: .

Similarly, if d� (q, r) > ', then P[6(q) = 6(r)] =
∏:
8=1 P

[
5 8 (q) = 5 8 (r)

]
≤ V: . �

The above lemma implies that we can build a family that has a gap between the lower and upper
sensitivities; namely, U:/V: = (U/V): is arbitrarily large. The problem is that if U: is too small, then we
will have to use too many functions to detect whether or not there is a point close to the query point.

Nevertheless, consider the task of building a data-structure that finds all the points of P = {p1, . . . , p=}
that are equal, under a given function 6 ∈ G = combine(F , :), to a query point. To this end, we compute
the strings 6(p1), . . . , 6(p=) and store them (together with their associated point) in a hash table (or a
prefix tree). Now, given a query point q, we compute 6(q) and fetch from this data-structure all the
strings equal to it that are stored in it. Clearly, this is a simple and efficient data-structure. All the
points colliding with q would be the natural candidates to be the nearest neighbor to q.

By not storing the points explicitly, but using a pointer to the original input set, we get the following
easy result.

Lemma 18.2.4. Given a function 6 ∈ G = combine(F , :) (see Lemma 18.2.3) and a set P ⊆ H3 of =
points, one can construct a data-structure, in $ (=:) time and using $ (=:) additional space, such that
given a query point q, one can report all the points in - =

{
p ∈ P

�� 6(p) = 6(q) } in $ (: + |- |) time.

Amplifying sensitivity.
Our task is now to amplify the sensitive family we currently have. To this end, for two g-dimensional

points G and H, let G m H be the Boolean function that returns true if there exists an index 8 such that
G8 = H8 and false otherwise. Now, the regular “=” operator requires vectors to be equal in all coordinates
(i.e., it is equal to

⋂
8 (G8 = H8)) while G m H is

⋃
8 (G8 = H8). The previous construction of Lemma 18.2.3

using this alternative equal operator provides us with the required amplification.

Lemma 18.2.5. Given an
(
A, ', U: , V:

)
-sensitive family G, the family Hm = combine(G, g) if one uses

the m operator to check for equality is
(
A, ', 1 −

(
1 − U:

)g
, 1 −

(
1 − V:

)g)-sensitive.
Proof: For two fixed points q, r ∈ H3 such that d� (q, r) ≤ A, we have, for a random 6 ∈ G, that
P[6(q) = 6(r)] ≥ U: . As such, for a random ℎ ∈ Hm, we have that

P[ℎ(q) m ℎ(r)] = P
[
61(q) = 61(r) or 62(q) = 62(r) or . . . or 6g (q) = 6g (r)

]
= 1 −

g∏
8=1
P
[
68 (q) ≠ 68 (r)

]
≥ 1 −

(
1 − U:

)g
.

Similarly, if d� (q, r) > ', then

P[ℎ(q) m ℎ(r)] = 1 −
g∏
8=1
P
[
68 (q) ≠ 68 (r)

]
≤ 1 −

(
1 − V:

)g
. �
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To see the effect of Lemma 18.2.5, it is useful to play with a concrete example. Consider an
(A, ', U: , V: )-sensitive family where V: = U:/2 and yet U: is very small. Setting g = 1/U: , the re-
sulting family is (roughly) (A, ', 1 − 1/4, 1 − 1/

√
4)-sensitive. Namely, the gap shrank, but the threshold

sensitivity is considerably higher. In particular, it is now a constant, and the gap is also a constant.
Using Lemma 18.2.5 as a data-structure to store P is more involved than before. Indeed, for a

random function ℎ =
(
61, . . . , 6g

)
∈ Hm = combine(G, g) building the associated data-structure requires

us to build g data-structures for each one of the functions 61, . . . , 6g, using Lemma 18.2.4. Now, given
a query point, we retrieve all the points of P that collide with each one of these functions, by querying
each of these data-structures.

Lemma 18.2.6. Given a function ℎ ∈ Hm = combine(G, g) (see Lemma 18.2.5) and a set P ⊆ H3 of
= points, one can construct a data-structure, in $ (=:g) time and using $ (=:g) additional space, such
that given a query point q, one can report all the points in - =

{
p ∈ P

�� ℎ(p) m ℎ(q) } in $ (:g + |- |)
time.

18.2.0.2. The near neighbor data-structure and handling a query

We construct the data-structure D of Lemma 18.2.6 with parameters : and g to be determined shortly,
for a random function ℎ ∈ Hm. Given a query point q, we retrieve all the points that collide with ℎ

and compute their distance to the query point. Next, scan these points one by one and compute their
distance to q. As soon as encountering a point r ∈ P such that d� (q, r) ≤ ', the data-structures returns
true together with r.

Let’s assume that we know that the expected number of points of P \ b(q, ') (i.e., ' = (1+ Y)A) that
will collide with q in D is in expectation ! (we will figure out the value of ! below). To ensure the worst
case query time, the query would abort after checking 4! + 1 points and would return false. Naturally,
the data-structure would also return false if all points encountered have distance larger than ' from q.

Clearly, the query time of this data-structure is $ (:g + 3!).
We are left with the task of fine-tuning the parameters g and : to get the fastest possible query time,

while the data-structure has reasonable probability to succeed. Figuring the right values is technically
tedious, and we do it next.

18.2.0.3. Setting the parameters

If there exists p ∈ P such that d� (q, p) ≤ A, then the probability of this point to collide with q under
the function ℎ is q ≥ 1 −

(
1 − U:

)g. Let us demand that this data-structure succeeds with probability
≥ 3/4. To this end, we set

g = 4
⌈
1/U:

⌉
=⇒ q ≥ 1 −

(
1 − U:

)g
≥ 1 − exp

(
−U:g

)
≥ 1 − exp(−4) ≥ 3/4, (18.1)

since 1 − G ≤ exp(−G), for G ≥ 0.

Lemma 18.2.7. The expected number of points of P \ b(q, ') colliding with the query point is ! =

$

(
=(V/U):

)
, where ' = (1 + Y)A.

Proof: Consider the points in P \ b(q, '). We would like to bound the number of points of this set that
collide with the query point. Observe that in this case, the probability of a point p ∈ P \ b(q, ') to
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collide with the query point is

≤ k = 1 −
(
1 − V:

)g
=

(
1 −

(
1 − V:

)) (
1 +

(
1 − V:

)
+

(
1 − V:

)2
+ . . . +

(
1 − V:

)g−1
)

≤ V:g ≤ 8
(
V

U

) :
,

as g = 4
⌈
1/U:

⌉
and U, V ∈ (0, 1). Namely, the expected number of points of P \ b(q, ') colliding with

the query point is ≤ k=. �

By Lemma 18.2.6, extracting the $ (!) points takes $ (:g + !) time. Computing the distance of the
query time for each one of these points takes $ (:g + !3) time. As such, by Lemma 18.2.7, the query
time is

$ (:g + !3) = $
(
:g + =3 (V/U):

)
.

To minimize this query time, we “approximately” solve the equation requiring the two terms, in the
above bound, to be equal (we ignore 3 since, intuitively, it should be small compared to =). We get that

:g = =(V/U): ;
:

U:
≈ = V

:

U:
=⇒ : ≈ =V: ; 1/V: ≈ = =⇒ : ≈ ln1/V =.

Thus, setting : = ln1/V =, we have that V: = 1/= and, by Eq. (18.1), that

g = 4
⌈
1/U:

⌉
= exp

(
ln =

ln 1/V ln 1/U
)
= $ (=d), for d = ln 1/U

ln 1/V . (18.2)

As such, to minimize the query time, we need to minimize d.

Lemma 18.2.8. (A) For G ∈ [0, 1) and C ≥ 1 such that 1 − CG > 0 we have ln(1 − G)
ln(1 − CG) ≤

1
C
.

(B) For U = 1 − A/3 and V = 1 − A (1 + Y)/3, we have that d = ln 1/U
ln 1/V ≤

1
1 + Y .

Proof: (A) Since ln(1− CG) < 0, it follows that the claim is equivalent to C ln(1− G) ≥ ln(1− CG). This in
turn is equivalent to

6(G) ≡ (1 − CG) − (1 − G)C ≤ 0.

This is trivially true for G = 0. Furthermore, taking the derivative, we see 6′(G) = −C + C (1− G)C−1, which
is non-positive for G ∈ [0, 1) and C > 0. Therefore, 6 is non-increasing in the interval of interest, and so
6(G) ≤ 0 for all values in this interval.

(B) Indeed d = ln 1/U
ln 1/V =

ln U
ln V =

ln 3−A
3

ln 3−(1+Y)A
3

=
ln

(
1 − A

3

)
ln

(
1 − (1 + Y) A

3

) ≤ 1
1 + Y , by part (A). �

In the following, it would be convenient to consider 3 to be considerably larger than A. This can be
ensured by (conceptually) padding the points with fake coordinates that are all zero. It is easy to verify
that this “hack” would not affect the algorithm’s performance in any way and it is just a trick to make
our analysis simpler. In particular, we assume that 3 > 2(1 + Y)A.
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Lemma 18.2.9. For U = 1− A/3, V = 1− A (1 + Y)/3, = and 3 as above, we have that I. g = $
(
=1/(1+Y)

)
,

II. : = $ (ln =), and III. ! = $
(
=1/(1+Y)

)
.

Proof: By Eq. (18.1), g = 4
⌈
1/U:

⌉
= $ (=d) = $

(
=1/(1+Y)

)
, by Lemma 18.2.8(B).

Now, V = 1 − A (1 + Y)/3 ≤ 1/2, since we assumed that 3 > 2(1 + Y)A. As such, we have : = ln1/V = =
ln =

ln 1/V = $ (ln =).

By Lemma 18.2.7, ! = $
(
=(V/U):

)
. Now V: = 1/= and as such ! = $

(
1/U:

)
= $ (g) = $

(
=1/(1+Y)

)
.�

18.2.0.4. The result

Theorem 18.2.10. Given a set P of = points on the hypercube H3 and parameters Y > 0 and A > 0,
one can build a data-structure D = D≈Near(P, A, (1 + Y)A) that solves the approximate near neighbor
problem (see Definition 18.1.2). The data-structure answers a query successfully with high probability.
In addition we have the following:
(A) The query time is $

(
3=1/(1+Y) log =

)
.

(B) The preprocessing time to build this data-structure is $
(
=1+1/(1+Y) log2 =

)
.

(C) The space required to store this data-structure is $
(
=3 + =1+1/(1+Y) log2 =

)
.

Proof: Our building block is the data-structure described above. By Markov’s inequality, the probability
that the algorithm has to abort because of too many collisions with points of P\b(q, (1+Y)A) is bounded
by 1/4 (since the algorithm tries 4!+1 points). Also, if there is a point inside b(q, A), the algorithm would
find it with probability ≥ 3/4, by Eq. (18.1). As such, with probability at least 1/2 this data-structure
returns the correct answer in this case. By Lemma 18.2.6, the query time is $ (:g + !3).

This data-structure succeeds only with constant probability. To achieve high probability, we con-
struct $ (log =) such data-structures and perform the near neighbor query in each one of them. As such,
the query time is

$ ((:g + !3) log =) = $
(
=1/(1+Y) log2 = + 3=1/(1+Y) log =

)
= $

(
3=1/(1+Y) log =

)
,

by Lemma 18.2.9 and since 3 = Ω(lg =) if P contains = distinct points of H3.
As for the preprocessing time, by Lemma 18.2.6 and Lemma 18.2.9, we have

$ (=:g log =) = $
(
=1+1/(1+Y) log2 =

)
.

Finally, this data-structure requires$ (3=) space to store the input points. Specifically, by Lemma 18.2.6,
we need an additional $ (=:g log =) = $

(
=1+1/(1+Y) log2 =

)
space. �

In the hypercube case, when 3 = =$ (1), we can build " = $ (log1+Y 3) = $ (Y−1 log 3) such data-
structures such that (1 + Y)-ANN can be answered using binary search on those data-structures which
correspond to radii A1, . . . , A" , where A8 = (1 + Y)8, for 8 = 1, . . . , ".

Theorem 18.2.11. Given a set P of = points on the hypercube H3 (where 3 = =$ (1)) and a param-
eter Y > 0, one can build a data-structure to answer approximate nearest neighbor queries (under the

134



Hamming distance) using $
(
3= + =1/(1+Y)Y−1 log2 = log 3

)
space, such that given a query point q, one can

return a (1 + Y)-ANN in P (under the Hamming distance) in $ (3=1/(1+Y) log = log(Y−1 log 3)) time. The
result returned is correct with high probability.

Remark 18.2.12. The result of Theorem 18.2.11 needs to be oblivious to the queries used. Indeed, for
any instantiation of the data-structure of Theorem 18.2.11 there exist query points for which it would
fail.

In particular, formally, if we perform a sequence of ANN queries using such a data-structure, where
the queries depend on earlier returned answers, then the guarantee of a high probability of success is no
longer implied by the above analysis (it might hold because of some other reasons, naturally).

18.3. LSH and ANN in Euclidean space

18.3.1. Preliminaries
Lemma 18.3.1. Let - = (-1, . . . , -3) be a vector of 3 independent variables which have normal distri-
bution N, and let E = (E1, . . . , E3) ∈ R3. We have that 〈E, -〉 = ∑

8 E8-8 is distributed as ‖E‖ /, where
/ ∼ N.

Proof: By Lemma 13.2.3p103 the point - has multi-dimensional normal distribution N3. As such, if
‖E‖ = 1, then this holds by the symmetry of the normal distribution. Indeed, let 41 = (1, 0, . . . , 0). By
the symmetry of the 3-dimensional normal distribution, we have that 〈E, -〉 ∼ 〈41, -〉 = -1 ∼ N.

Otherwise, 〈E, -〉 /‖E‖ ∼ N, and as such 〈E, -〉 ∼ #

(
0, ‖E‖2

)
, which is indeed the distribution of

‖E‖ / . �

Definition 18.3.2. A distribution D over R is called ?-stable if there exists ? ≥ 0 such that for any
= real numbers E1, . . . , E= and = independent variables -1, . . . , -= with distribution D, the random
variable

∑
8 E8-8 has the same distribution as the variable (∑8 |E8 |?)1/?-, where - is a random variable

with distribution D.

By Lemma 18.3.1, the normal distribution is a 2-stable distribution.

18.3.2. Locality sensitive hashing (LSH)

Let p and q be two points in R3. We want to perform an experiment to decide if ‖p − q‖ ≤ 1 or
‖p − q‖ ≥ [, where [ = 1 + Y. We will randomly choose a vector v from the 3-dimensional normal
distribution N3 (which is 2-stable). Next, let A be a parameter, and let C be a random number chosen
uniformly from the interval [0, A]. For p ∈ R3, consider the random hash function

ℎ(p) =
⌊
〈p, v 〉 + C

A

⌋
. (18.3)

Assume that the distance between p and q is [ and the distance between the projection of the
two points to the direction v is V. Then, the probability that p and q get the same hash value is
max(1 − V/A, 0), since this is the probability that the random sliding will not separate them. Indeed,
consider the line through v to be the G-axis, and assume q is projected to A and r is projected to A − V
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(assuming A ≥ V). Clearly, q and r get mapped to the same value by ℎ(·) if and only if C ∈ [0, A − V], as
claimed.

As such, we have that the probability of collusion is

U([, A) = P[ℎ(p) = ℎ(q)] =
∫ A

V=0
P[|〈p, v 〉 − 〈q, v 〉| = V]

(
1 − V

A

)
3V.

However, since v is chosen from a 2-stable distribution, we have that / = 〈p, v 〉 − 〈q, v 〉 = 〈p − q, v 〉 ∼
N

(
0, ‖p − q‖2

)
. Since we are considering the absolute value of the variable, we need to multiply this by

two. Thus, we have

U([, A) =
∫ A

V=0

2
√

2c[
exp

(
− V

2

2[2

) (
1 − V

A

)
3V,

by plugging in the density of the normal distribution for / . Intuitively, we care about the difference
U(1 + Y, A) − U(1, A), and we would like to maximize it as much as possible (by choosing the right value
of A). Unfortunately, this integral is unfriendly, and we have to resort to numerical computation.

Now, we are going to use this hashing scheme for constructing locality sensitive hashing, as in the
hypercube case, and as such we care about the ratio

d(1 + Y) = min
A

log(1/U(1, A))
log(1/U(1 + Y, A)) ;

see Eq. (18.2)p133.
The following is verified using numerical computations (using a computer).

Lemma 18.3.3 ([DIIM04]). One can choose A, such that d(1 + Y) ≤ 1
1+Y .

Lemma 18.3.3 implies that the hash functions defined by Eq. (18.3) are (1, 1+Y, U′, V′)-sensitive and,
furthermore, d = log(1/U′)

log(1/V′) ≤
1

1+Y , for some values of U′ and V′. As such, we can use this hashing family
to construct an approximate near neighbor data-structure D≈Near(P, A, (1 + Y)A) for the set P of points
in R3. Following the same argumentation of Theorem 18.2.10, we have the following.

Theorem 18.3.4. Given a set P of = points in R3 and parameters Y > 0 and A > 0, one can build a
D≈Near = D≈Near(P, A, (1 + Y)A), such that given a query point q, one can decide:
(A) If b(@, A) ∩ P ≠ ∅, then D≈Near returns a point D ∈ P, such that d� (D, @) ≤ (1 + Y)A.
(B) If b(@, (1+ Y)A) ∩P = ∅, then D≈Near returns the result that no point is within distance ≤ A from q.
In any other case, any of the answers is correct. The query time is $ (3=1/(1+Y) log =) and the space used
is $

(
3= + =1+1/(1+Y) log =

)
. The result returned is correct with high probability.

18.3.3. ANN in high-dimensional euclidean space

Unlike the binary hypercube case, where we could just do direct binary search on the distances, here we
need to use the reduction from ANN to near neighbor queries.
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18.3.3.1. The result

Plugging the above into known reduction from approximate nearest-neighbor to near-neighbor queries,
yields the following:

Corollary 18.3.5. Given a set P of = points in R3, one can construct a data-structure D that answers
(1 + Y)-ANN queries, by performing $ (log(=/Y)) (1 + Y)-approximate near neighbor queries. The total
number of points stored at these approximate near neighbor data-structure of D is $ (=Y−1 log(=/Y)).

This in turn leads to the following:

Theorem 18.3.6. Given a set P of = points in R3 and parameters Y > 0 and A > 0, one can build an
ANN data-structure using

$

(
3= + =1+1/(1+Y)Y−2 log3(=/Y)

)
space, such that given a query point q, one can returns a (1 + Y)-ANN in P in

$

(
3=1/(1+Y) (log =) log =

Y

)
time. The result returned is correct with high probability.

The construction time is $
(
3=1+1/(1+Y)Y−2 log3(=/Y)

)
.

18.4. Bibliographical notes
Section 18.1 follows the exposition of Indyk and Motwani [IM98]. Kushilevitz et al. [KOR00] offered
an alternative data-structure with somewhat inferior performance. It is quite surprising that one can
perform approximate nearest neighbor queries in high dimensions in time and space polynomial in the
dimension (which is sublinear in the number of points). One can reduce the approximate near neighbor
in Euclidean space to the same question on the hypercube “directly” (we show the details below).
However, doing the LSH directly on the Euclidean space is more efficient.

The value of the results shown in this chapter depends to a large extent on the reader’s perspective.
Indeed, for a small value of Y > 0, the query time $ (3=1/(1+Y)) is very close to linear dependency on =
and is almost equivalent to just scanning the points. Thus, from the low-dimensional perspective, where
Y is assumed to be small, this result is slightly sublinear. On the other hand, if one is willing to pick Y
to be large (say 10), then the result is clearly better than the naive algorithm, suggesting running time
for an ANN query which takes (roughly) $

(
=1/11

)
time.

The idea of doing locality sensitive hashing directly on the Euclidean space, as done in Section 18.3,
is not shocking after seeing the Johnson-Lindenstrauss lemma. Our description follows the paper of
Datar et al. [DIIM04]. In particular, the current analysis which relies on computerized estimates is far
from being satisfactory. It would be nice to have a simpler and more elegant scheme for this case. This
is an open problem for further research.

Currently, the best LSH construction in R3 is due to Andoni and Indyk [AI06]. Its space usage is
bounded by $

(
3= + =1+1/(1+Y)2+>(1)

)
and its query time is bounded by $

(
3=1/(1+Y)2+>(1)

)
. This (almost)

matches the lower bound of Motwani et al. [MNP06]. For a nice survey on LSH see [AI08].
From approximate near neighbor in R3 to approximate near neighbor on the hypercube.
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The reduction is quite involved, and we only sketch the details. Let P be a set of = points in R3.
We first reduce the dimension to : = $ (Y−2 log =) using the Johnson-Lindenstrauss lemma. Next, we
embed this space into ℓ: ′1 (this is the space R: , where distances are the !1 metric instead of the regular
!2 metric), where :′ = $ (:/Y2). This can be done with distortion (1 + Y).

Let &′ be the resulting set of points in R: ′. We want to solve approximate near neighbor queries
on this set of points, for radius A. As a first step, we partition the space into cells by taking a grid
with sidelength (say) :′A and randomly translating it, clipping the points inside each grid cell. It is
now sufficient to solve the approximate near neighbor problem inside this grid cell (which has bounded
diameter as a function of A), since with small probability the result would be correct. We amplify the
probability by repeating this a polylogarithmic number of times.

Thus, we can assume that P is contained inside a cube of sidelength ≤ :′=A, it is in R: ′, and the
distance metric is the !1 metric. We next snap the points of P to a grid of sidelength (say) YA/:′. Thus,
every point of P now has an integer coordinate, which is bounded by a polynomial in log = and 1/Y.
Next, we write the coordinates of the points of P using unary notation. (Thus, a point (2, 5) would be
written as (00011, 11111) assuming the number of bits for each coordinates is 5.) It is now easy to verify
that the Hamming distance on the resulting strings is equivalent to the !1 distance between the points.

Thus, we can solve the near neighbor problem for points in R3 by solving it on the hypercube under
the Hamming distance.

See Indyk and Motwani [IM98] for more details.

We have only scratched the surface of proximity problems in high dimensions. The interested reader
is referred to the survey by Indyk [Aga04] for more information.
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Chapter 19

Multiplicative Weight Update: Expert
Selection
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

Possession of anything new or expensive only
reflected a person’s lack of theology and
geometry; it could even cast doubts upon one’s
soul.

A confederacy of Dunces, John Kennedy
Toole

19.1. The problem: Expert selection
We are given # experts J#K = {1, 2, . . . , #}. At each time C, an expert 8 makes a prediction what is
going to happen at this time slot. To make things simple, assume the prediction is one of two values,
say, 0 or 1. You are going to play this game for a while – at each iteration you are going to get the
advice of the # experts, and you are going to select either decision as your own prediction. The purpose
here is to come up with a strategy that minimizes the overall number of wrong predictions made.

If there is an expert that is never wrong. This situation is easy – initially start with all = experts
as being viable – to this end, we assign , (8) ← 1, for all 8. If an expert prediction turns out to be
wrong, we set its weight to zero (i.e., it is no longer active). Clearly, if you follow the majority vote of
the still viable experts, then at most log2 = mistakes would be made, before one isolates the infallible
experts.

19.2. Majority vote
The algorithm. Unfortunately, we are unlikely to be in the above scenario – experts makes mistakes.
Throwing a way an expert because of a single mistake is a sure way to have no expert remaining. Instead,
we are going to moderate our strategy. If expert 8 is wrong, in a round, we are going to decrease its
weight – to be precise, we set , (8) ← (1 − Y), (8), where Y is some parameter. Note, that this weight
update is done every round, independent on the decision output in the round. It is now natural, in
each round, to compute the total weight of the experts predicting 0, and the total weight of the experts
predicting 1, and return the prediction that has a heavier total weight supporting it.

Intuition. The algorithm keeps track of the quality of the experts. The useless experts would have
weights very close to zero.
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Analysis. We need the following easy calculation.

Lemma 19.2.1. For G ∈ [0, 1/2], we have 1 − G ≥ exp(−G − G2).

Proof: For G ∈ (−1, 1), the Taylor expansion of ln(1 + G) is ∑∞
8=1(−1)8+1 G8

8
. As such, for G ∈ [0, 1/2] we

have

ln(1 − G) = −
∞∑
8=1

G8

8
= −G − G

2

2 −
G3

3 · · · ≥ −G − G
2,

since G2+8/(2 + 8) ≤ G2/28 ⇐⇒ G8/(2 + 8) ≤ 1/28, which is obviously true as G ≤ 1/2. �

Lemma 19.2.2. Let assume we have # experts. Let #C be the number of the mistakes the algorithm
performs, and let VC (8) be the number of mistakes made by the 8th expert, for 8 ∈ J=K (both till time C).
Then, if we run this algorithm for ) rounds, we have

∀8 ∈ J=K #) ≤ 2(1 + Y)V) (8) +
2 log #
Y

.

Proof: Let ΦC be the total weight of the experts at the beginning of round C. Observe that Φ1 = #, and
if a mistake was made in the C round, then

ΦC+1 ≤ (1 − Y/2)ΦC ≤ exp(−Y#C+1/2)#.

On the other hand, an expert 8 made V8 (C) mistakes in the first C rounds, and as such its weight, at this
point in time, is (1 − Y)VC (8). We thus have, at time ) , and for any 8, that

exp
(
−
(
Y + Y2)V) (8)) ≤ (1 − Y)V) (8) ≤ Φ) ≤ exp

(
−Y#)2

)
#.

Taking ln of both sides, we have −
(
Y + Y2)V) (8) ≤ − Y#)2 + ln #. ⇐⇒ #) ≤ 2(1 + Y)V) (8) + 2 ln #

Y
. �

19.3. Randomized weighted majority
Let ,C (8) be the weight assigned to the 8th expert with in the beginning of the Cth round. We modify
the algorithm to choose expert 8, at round C, with probability,C (8)/ΦC . That is, the algorithm randomly
choose an expert to follow according to their weights. Unlike before, all the experts that are wrong in
a round get a weight decrease.

Proof: We have that ΦC =
∑#
8=1,C (8). Let <C (8) = 1 be a an indicator variable that is one if and only if

expert 8 made a mistake at round C. Similarly, let mC = 1 ⇐⇒ the algorithm made a mistake at round
C. By definition, we have that

E[mC] =
#∑
8=1
P[8 expert chosen] <C (8) =

#∑
8=1

,C (8)
ΦC

<C (8).

We then have that
,C+1(8) =

(
1 − Y<C (8)

)
,C (8).
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As such, we have ΦC+1 =
∑#
8=1,C+1(8), and

ΦC+1 =
#∑
8=1

(
1 − Y<C (8)

)
,C (8) = ΦC − Y

#∑
8=1

<C (8),C (8) = ΦC − YΦC
#∑
8=1

<C (8)
,C (8)
ΦC

=

(
1 − Y E[mC]

)
ΦC .

We now follow the same argument as before

(1 − Y)V) (8) ≤ Φ) ≤ #
)∏
C=1

(
1 − Y E[mC]

)
≤ # exp(−Y E[#) ]) =⇒ (−Y − Y2)V) (8) ≤ ln # − Y E[#) ]

=⇒ E[#) ] ≤ (1 + Y)V) (8) +
ln #
Y
. �

19.4. Bibliographical notes
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Chapter 20

On Complexity, Sampling, and Y-Nets and
Y-Samples
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

“I’ve never touched the hard stuff, only smoked grass a few times with the boys to be polite, and that’s all, though
ten is the age when the big guys come around teaching you all sorts to things. But happiness doesn’t mean much
to me, I still think life is better. Happiness is a mean son of a bitch and needs to be put in his place. Him and me
aren’t on the same team, and I’m cutting him dead. I’ve never gone in for politics, because somebody always stand
to gain by it, but happiness is an even crummier racket, and their ought to be laws to put it out of business.”

Momo, Emile Ajar

In this chapter we will try to quantify the notion of geometric complexity. It is intuitively clear that a
a (i.e., disk) is a simpler shape than an c (i.e., ellipse), which is in turn simpler than a - (i.e., smiley).
This becomes even more important when we consider several such shapes and how they interact with
each other. As these examples might demonstrate, this notion of complexity is somewhat elusive.

To this end, we show that one can capture the structure of a distribution/point set by a small subset.
The size here would depend on the complexity of the shapes/ranges we care about, but surprisingly it
would be independent of the size of the point set.

20.1. VC dimension
Definition 20.1.1. A range space S is a pair (X,R), where X is a ground set (finite or infinite) and R
is a (finite or infinite) family of subsets of X. The elements of X are points and the elements of R are
ranges.

Our interest is in the size/weight of the ranges in the range space. For technical reasons, it will be
easier to consider a finite subset x as the underlining ground set.

Definition 20.1.2. Let S = (X,R) be a range space, and let x be a finite (fixed) subset of X. For a range
r ∈ R, its measure is the quantity

<(r) = |r ∩ x |
|x | .

While x is finite, it might be very large. As such, we are interested in getting a good estimate to
<(r) by using a more compact set to represent the range space.
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Definition 20.1.3. Let S = (X,R) be a range space. For a subset # (which might be a multi-set) of x, its
estimate of the measure of <(r), for r ∈ R, is the quantity

B(r) = |r ∩ # ||# | .

The main purpose of this chapter is to come up with methods to generate a sample #, such that
<(r) ≈ B(r), for all the ranges r ∈ R.

It is easy to see that in the worst case, no sample can capture the measure of all ranges. Indeed,
given a sample #, consider the range x \ # that is being completely missed by #. As such, we need
to concentrate on range spaces that are “low dimensional”, where not all subsets are allowable ranges.
The notion of VC dimension (named after Vapnik and Chervonenkis [VC71]) is one way to limit the
complexity of a range space.

Definition 20.1.4. Let S = (X,R) be a range space. For . ⊆ X, let

R |. =
{
r ∩ .

�� r ∈ R
}

(20.1)

denote the projection of R on . . The range space S projected to . is S|. =
(
.,R |.

)
.

If R |. contains all subsets of . (i.e., if . is finite, we have
��R |. �� = 2|. |), then . is shattered by R (or

equivalently . is shattered by S).
The Vapnik-Chervonenkis dimension (or VC dimension) of S, denoted by dimVC(S), is the

maximum cardinality of a shattered subset of X. If there are arbitrarily large shattered subsets, then
dimVC(() = ∞.

20.1.1. Examples

Intervals. Consider the set X to be the real line, and consider R to be the set of all intervals
on the real line. Consider the set . = {1, 2}. Clearly, one can find four intervals that contain
all possible subsets of . . Formally, the projection R |. = {{ } , {1} , {2} , {1, 2}}. The intervals
realizing each of these subsets are depicted on the right.

1 2

p q sHowever, this is false for a set of three points � = {p, q, r}, since there is no interval that
can contain the two extreme points p and r without also containing q. Namely, the subset {p, r} is not
realizable for intervals, implying that the largest shattered set by the range space (real line, intervals) is
of size two. We conclude that the VC dimension of this space is two.

Disks. Let X = R2, and let R be the set of disks in the plane. Clearly, for any
three points in the plane (in general position), denoted by p, q, and r, one can
find eight disks that realize all possible 23 different subsets. See the figure on
the right.
But can disks shatter a set with four points? Consider such a set P of four
points. If the convex hull of P has only three points on its boundary, then the
subset - having only those three vertices (i.e., it does not include the middle
point) is impossible, by convexity. Namely, there is no disk that contains only
the points of - without the middle point.

{p.q}

p

q

t
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Alternatively, if all four points are vertices of the convex hull and they are
0, 1, 2, 3 along the boundary of the convex hull, either the set {0, 2} or the set
{1, 3} is not realizable. Indeed, if both options are realizable, then consider
the two disks �1 and �2 that realize those assignments. Clearly, m�1 and
m�2 must intersect in four points, but this is not possible, since two circles
have at most two intersection points. See the figure on the left. Hence the VC
dimension of this range space is 3.

d

a
c

b

Convex sets. Consider the range space S = (R2,R), where R is the set of all
(closed) convex sets in the plane. We claim that dimVC(S) = ∞. Indeed, consider
a set * of = points ?1, . . . , ?= all lying on the boundary of the unit circle in the
plane. Let + be any subset of *, and consider the convex hull CH(+). Clearly,
CH(+) ∈ R, and furthermore, CH(+) ∩ * = + . Namely, any subset of * is
realizable by S. Thus, S can shatter sets of arbitrary size, and its VC dimension is
unbounded.

CH(V)

Complement. Consider the range space S = (X,R) with X = dimVC(S). Next, consider the complement
space, S =

(
X,R

)
, where

R =
{
X \ r

�� r ∈ R
}
.

Namely, the ranges of S are the complement of the ranges in S. What is the VC dimension of S? Well,
a set � ⊆ X is shattered by S if and only if it is shattered by S. Indeed, if S shatters �, then for any
/ ⊆ �, we have that (� \ /) ∈ R |�, which implies that / = � \ (� \ /) ∈ R |�. Namely, R |� contains all
the subsets of �, and S shatters �. Thus, dimVC

(
S
)
= dimVC(S).

Lemma 20.1.5. For a range space S = (X,R) we have that dimVC(S) = dimVC
(
S
)
, where S is the

complement range space.

20.1.1.1. Halfspaces

Let S = (X,R), where X = R3 and R is the set of all (closed) halfspaces in R3. We need the following
technical claim.

Claim 20.1.6. Let P = {p1, . . . , p3+2} be a set of 3+2 points in R3. There are real numbers V1, . . . , V3+2,
not all of them zero, such that

∑
8 V8p8 = 0 and

∑
8 V8 = 0.

Proof: Indeed, set q8 = (p8, 1), for 8 = 1, . . . , 3+2. Now, the points q1, . . . , q3+2 ∈ R3+1 are linearly depen-
dent, and there are coefficients V1, . . . , V3+2, not all of them zero, such that

∑3+2
8=1 V8q8 = 0. Considering

only the first 3 coordinates of these points implies that
∑3+2
8=1 V8p8 = 0. Similarly, by considering only the

(3 + 1)st coordinate of these points, we have that
∑3+2
8=1 V8 = 0. �

To see what the VC dimension of halfspaces in R3 is, we need the following result of Radon. (For a
reminder of the formal definition of convex hulls, see Definition 20.5.1.)

Theorem 20.1.7 (Radon’s theorem). Let P = {p1, . . . , p3+2} be a set of 3 + 2 points in R3. Then,
there exist two disjoint subsets � and � of P, such that CH(�) ∩ CH (�) ≠ ∅ and � ∪ � = P.

Proof: By Claim 20.1.6 there are real numbers V1, . . . , V3+2, not all of them zero, such that
∑
8 V8p8 = 0

and
∑
8 V8 = 0.
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Assume, for the sake of simplicity of exposition, that V1, . . . , V: ≥ 0 and V:+1, . . ., V3+2 < 0. Further-
more, let ` =

∑:
8=1 V8 = −

∑3+2
8=:+1 V8. We have that

:∑
8=1

V8p8 = −
3+2∑
8=:+1

V8p8 .

In particular, E =
∑:
8=1(V8/`)p8 is a point in CH({p1, . . . , p: }). Furthermore, for the same point E we

have E =
∑3+2
8=:+1 −(V8/`)p8 ∈ CH({p:+1, . . . , p3+2}). We conclude that E is in the intersection of the two

convex hulls, as required. �

The following is a trivial observation, and yet we provide a proof to demonstrate it is true.
Lemma 20.1.8. Let P ⊆ R3 be a finite set, let r be any point in CH(P), and let ℎ+ be a halfspace of
R3 containing r. Then there exists a point of P contained inside ℎ+.

Proof: The halfspace ℎ+ can be written as ℎ+ =
{
t ∈ R3

�� 〈t, E〉 ≤ 2}. Now r ∈ CH(P) ∩ ℎ+, and as such
there are numbers U1, . . . , U< ≥ 0 and points p1, . . . , p< ∈ P, such that

∑
8 U8 = 1 and

∑
8 U8p8 = r. By the

linearity of the dot product, we have that

r ∈ ℎ+ =⇒ 〈r, E〉 ≤ 2 =⇒
〈 <∑
8=1

U8p8, E
〉
≤ 2 =⇒ V =

<∑
8=1

U8 〈p8, E〉 ≤ 2.

Setting V8 = 〈p8, E〉, for 8 = 1, . . . , <, the above implies that V is a weighted average of V1, . . . , V<. In
particular, there must be a V8 that is no larger than the average. That is V8 ≤ 2. This implies that
〈p8, E〉 ≤ 2. Namely, p8 ∈ ℎ+ as claimed. �

Let S be the range space having R3 as the ground set and all the close halfspaces as ranges. Radon’s
theorem implies that if a set Q of 3 + 2 points is being shattered by S, then we can partition this set
Q into two disjoint sets . and / such that CH(. ) ∩ CH (/) ≠ ∅. In particular, let r be a point in
CH(. ) ∩ CH (/). If a halfspace ℎ+ contains all the points of . , then CH(. ) ⊆ ℎ+, since a halfspace is
a convex set. Thus, any halfspace ℎ+ containing all the points of . will contain the point r ∈ CH(. ).
But r ∈ CH(/) ∩ ℎ+, and this implies that a point of / must lie in ℎ+, by Lemma 20.1.8. Namely,
the subset . ⊆ Q cannot be realized by a halfspace, which implies that Q cannot be shattered. Thus
dimVC(() < 3 + 2. It is also easy to verify that the regular simplex with 3 + 1 vertices is shattered by S.
Thus, dimVC(() = 3 + 1.

20.2. Shattering dimension and the dual shattering dimension
The main property of a range space with bounded VC dimension is that the number of ranges for a set
of = elements grows polynomially in = (with the power being the dimension) instead of exponentially.
Formally, let the growth function be

GX (=) =
X∑
8=0

(
=

8

)
≤

X∑
8=0

=8

8! ≤ =
X, (20.2)

for X > 1 (the cases where X = 0 or X = 1 are not interesting and we will just ignore them). Note that
for all =, X ≥ 1, we have GX (=) = GX (= − 1) + GX−1(= − 1)¬.

¬Here is a cute (and standard) counting argument: GX (=) is just the number of different subsets of size at most X out
of = elements. Now, we either decide to not include the first element in these subsets (i.e., GX (= − 1)) or, alternatively, we
include the first element in these subsets, but then there are only X − 1 elements left to pick (i.e., GX−1 (= − 1)).
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Lemma 20.2.1 (Sauer’s lemma). If (X,R) is a range space of VC dimension X with |X| = =, then
|R | ≤ GX (=).

Proof: The claim trivially holds for X = 0 or = = 0.
Let G be any element of X, and consider the sets

RG =
{
r \ {G}

�� r ∪ {G} ∈ R and r \ {G} ∈ R
}

and R \ G =
{
r \ {G}

�� r ∈ R
}
.

Observe that |R | = |RG | + |R \ G |. Indeed, we charge the elements of R to their corresponding element in
R \ G. The only bad case is when there is a range r such that both r∪ {G} ∈ R and r \ {G} ∈ R, because
then these two distinct ranges get mapped to the same range in R \ G. But such ranges contribute
exactly one element to RG. Similarly, every element of RG corresponds to two such “twin” ranges in R.

Observe that (- \ {G} ,RG) has VC dimension X − 1, as the largest set that can be shattered is of size
X − 1. Indeed, any set � ⊂ X \ {G} shattered by RG implies that � ∪ {G} is shattered in R.

Thus, we have
|R | = |RG | + |R \ G | ≤ GX−1(= − 1) + GX (= − 1) = GX (=),

by induction. �

Interestingly, Lemma 20.2.1 is tight.
Next, we show pretty tight bounds on GX (=). The proof is technical and not very interesting, and it

is delegated to Section 20.4.

Lemma 20.2.2. For = ≥ 2X and X ≥ 1, we have
(=
X

)X
≤ GX (=) ≤ 2

(=4
X

)X
, where GX (=) =

X∑
8=0

(
=

8

)
.

Definition 20.2.3 (Shatter function). Given a range space S = (X,R), its shatter function cS(<) is the
maximum number of sets that might be created by S when restricted to subsets of size <. Formally,

cS(<) = max
�⊂X
|�|=<

��R |���;
see Eq. (20.1).

Our arch-nemesis in the following is the function G/ln G. The following lemma states some properties
of this function, and its proof is left as an exercise.

Lemma 20.2.4. For the function 5 (G) = G/ln G the following hold.
(A) 5 (G) is monotonically increasing for G ≥ 4.
(B) 5 (G) ≥ 4, for G > 1.
(C) For D ≥

√
4, if 5 (G) ≤ D, then G ≤ 2D ln D.

(D) For D ≥
√
4, if G > 2D ln D, then 5 (G) > D.

(E) For D ≥ 4, if 5 (G) ≥ D, then G ≥ D ln D.

20.2.1. Mixing range spaces
Lemma 20.2.5. Let S = (X,R) and T = (X,R′) be two range spaces of VC dimension X and X′,
respectively, where X, X′ > 1. Let R̂ = {r ∪ r′ | r ∈ R, r′ ∈ R′} . Then, for the range space Ŝ =

(
X, R̂

)
, we

have that dimVC
(
Ŝ
)
= $ (X + X′).
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Proof: As a warm-up exercise, we prove a somewhat weaker bound here of $ ((X + X′) log(X + X′)). The
stronger bound follows from Theorem 20.2.6 below. Let � be a set of = points in X that are shattered by
Ŝ. There are at most GX (=) and GX′ (=) different ranges of � in the range sets R |� and R′|�, respectively,
by Lemma 20.2.1. Every subset � of � realized by Â ∈ R̂ is a union of two subsets �∩r and �∩r′, where
r ∈ ' and r′ ∈ R′, respectively. Thus, the number of different subsets of � realized by Ŝ is bounded
by GX (=)GX′ (=). Thus, 2= ≤ =X=X′, for X, X′ > 1. We conclude that = ≤ (X + X′) lg =, which implies that
= = $ ((X + X′) log(X + X′)), by Lemma 20.2.4(C). �

Interestingly, one can prove a considerably more general result with tighter bounds. The required
computations are somewhat more painful.

Theorem 20.2.6. Let S1 =
(
X,R1) , . . . , S: = (

X,R:
)
be range spaces with VC dimension X1, . . . , X: ,

respectively. Next, let 5 (r1, . . . , r: ) be a function that maps any :-tuple of sets r1 ∈ R1, . . . , r: ∈ R:
into a subset of X. Here, the function 5 is restricted to be defined by a sequence of set operations like
complement, intersection and union. Consider the range set

R′ =
{
5 (r1, . . . , r: )

�� r1 ∈ R1, . . . , r: ∈ R:
}

and the associated range space T = (X,R′). Then, the VC dimension of T is bounded by $ (:X lg :),
where X = max8 X8.

Proof: Assume a set . ⊆ X of size C is being shattered by R′, and observe that��R′|. �� ≤ ��� { (r1, . . . , r: )
�� r1 ∈ R1

|. , . . . , r: ∈ R
:
|.
}��� ≤ ��R1

|.
�� · · · ��R:|. �� ≤ GX1 (C) · GX2 (C) · · ·GX: (C)

≤
(
GX (C)

) : ≤ (
2
(
C4/X

)X) :
,

by Lemma 20.2.1 and Lemma 20.2.2. On the other hand, since . is being shattered by R′, this implies
that

��R′|. �� = 2C . Thus, we have the inequality 2C ≤
(
2(C4/X)X

) : , which implies C ≤ : (1 + X lg(C4/X)).
Assume that C ≥ 4 and X lg(C4/X) ≥ 1 since otherwise the claim is trivial, and observe that C ≤
: (1 + X lg(C4/X)) ≤ 3:X lg(C/X). Setting G = C/X, we have

C

X
≤ 3: ln(C/X)

ln 2 ≤ 6: ln C
X
=⇒ G

ln G ≤ 6: =⇒ G ≤ 2 · 6: ln(6:) =⇒ G ≤ 12: ln(6:),

by Lemma 20.2.4(C). We conclude that C ≤ 12X: ln(6:), as claimed. �

Corollary 20.2.7. Let S = (X,R) and T = (X,R′) be two range spaces of VC dimension X and X′,
respectively, where X, X′ > 1. Let R̂ =

{
r ∩ r′

�� r ∈ R, r′ ∈ R′
}
. Then, for the range space Ŝ = (X, R̂), we

have that dimVC(Ŝ) = $ (X + X′).

Corollary 20.2.8. Any finite sequence of combining range spaces with finite VC dimension (by inter-
secting, complementing, or taking their union) results in a range space with a finite VC dimension.
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20.3. On Y-nets and Y-sampling

20.3.1. Y-nets and Y-samples
Definition 20.3.1 (Y-sample). Let S = (X,R) be a range space, and let x be a finite subset of X. For
0 ≤ Y ≤ 1, a subset � ⊆ x is an Y-sample for x if for any range r ∈ R, we have��<(r) − B(r) �� ≤ Y,
where <(r) = |x ∩ r| / |x | is the measure of r (see Definition 20.1.2) and B(r) = |� ∩ r| / |� | is the
estimate of r (see Definition 20.1.3). (Here � might be a multi-set, and as such |� ∩ r| is counted with
multiplicity.)

As such, an Y-sample is a subset of the ground set x that “captures” the range space up to an error
of Y. Specifically, to estimate the fraction of the ground set covered by a range r, it is sufficient to count
the points of � that fall inside r.

If X is a finite set, we will abuse notation slightly and refer to � as an Y-sample for S.
To see the usage of such a sample, consider x = X to be, say, the population of a country (i.e., an

element of X is a citizen). A range in R is the set of all people in the country that answer yes to a
question (i.e., would you vote for party Y?, would you buy a bridge from me?, questions like that). An
Y-sample of this range space enables us to estimate reliably (up to an error of Y) the answers for all
these questions, by just asking the people in the sample.

The natural question of course is how to find such a subset of small (or minimal) size.

Theorem 20.3.2 (9-sample theorem, [VC71]). There is a positive constant 2 such that if (X,R) is
any range space with VC dimension at most X, x ⊆ X is a finite subset and Y, i > 0, then a random
subset � ⊆ x of cardinality

B =
2

Y2

(
X log X

Y
+ log 1

i

)
is an Y-sample for x with probability at least 1 − i.

(In the above theorem, if B > |x |, then we can just take all of x to be the Y-sample.)

Sometimes it is sufficient to have (hopefully smaller) samples with a weaker property – if a range is
“heavy”, then there is an element in our sample that is in this range.

Definition 20.3.3 (Y-net). A set # ⊆ x is an Y-net for x if for any range r ∈ R, if <(r) ≥ Y (i.e.,
|r ∩ x | ≥ Y |x |), then r contains at least one point of # (i.e., r ∩ # ≠ ∅).

Theorem 20.3.4 (9-net theorem, [HW87]). Let (X,R) be a range space of VC dimension X, let x
be a finite subset of X, and suppose that 0 < Y ≤ 1 and i < 1. Let # be a set obtained by < random
independent draws from x, where

< ≥ max
(

4
Y

lg 4
i
,

8X
Y

lg 16
Y

)
. (20.3)

Then # is an Y-net for x with probability at least 1 − i.
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(We remind the reader that lg = log2.)
The proofs of the above theorems are somewhat involved and we first turn our attention to some

applications before presenting the proofs.

Remark 20.3.5. The above two theorems also hold for spaces with shattering dimension at most X, in
which case the sample size is slightly larger. Specifically, for Theorem 20.3.4, the sample size needed is
$

(
1
Y

lg 1
i
+ X
Y

lg X
Y

)
.

Remark 20.3.6. The Y-net theorem is a relatively easy consequence (up to constants) of the Y-sample
theorem – see bibliographical notes for details.

20.3.2. Some applications
We mention two (easy) applications of these theorems, which (hopefully) demonstrate their power.

20.3.2.1. Range searching

So, consider a (very large) set of points P in the plane. We would like to be able to quickly decide how
many points are included inside a query rectangle. Let us assume that we allow ourselves 1% error.
What Theorem 20.3.2 tells us is that there is a subset of constant size (that depends only on Y) that
can be used to perform this estimation, and it works for all query rectangles (we used here the fact
that rectangles in the plane have finite VC dimension). In fact, a random sample of this size works with
constant probability.

20.3.2.2. Learning a concept

Dunknown
Assume that we have a function 5 defined in the plane that returns

‘1’ inside an (unknown) disk �unknown and ‘0’ outside it. There is some
distribution D defined over the plane, and we pick points from this distri-
bution. Furthermore, we can compute the function for these labels (i.e., we
can compute 5 for certain values, but it is expensive). For a mystery value
Y > 0, to be explained shortly, Theorem 20.3.4 tells us to pick (roughly)
$ ((1/Y) log(1/Y)) random points in a sample R from this distribution and
to compute the labels for the samples. This is demonstrated in the figure
on the right, where black dots are the sample points for which 5 (·) returned 1.

D

So, now we have positive examples and negative examples. We would like
to find a hypothesis that agrees with all the samples we have and that hopefully
is close to the true unknown disk underlying the function 5 . To this end,
compute the smallest disk � that contains the sample labeled by ‘1’ and does
not contain any of the ‘0’ points, and let 6 : R2 → {0, 1} be the function 6 that
returns ‘1’ inside the disk and ‘0’ otherwise. We claim that 6 classifies correctly
all but an Y-fraction of the points (i.e., the probability of misclassifying a point
picked according to the given distribution is smaller than Y); that is, Prp∈D [ 5 (p) ≠ 6(p)] ≤ Y.
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D ⊕ Dunknown

D

DunknownGeometrically, the region where 6 and 5 disagree is all the points in the
symmetric difference between the two disks. That is, E = � ⊕ �unknown; see
the figure on the right.

Thus, consider the range space S having the plane as the ground set and the
symmetric difference between any two disks as its ranges. By Corollary 20.2.8,
this range space has finite VC dimension. Now, consider the (unknown) disk
�′ that induces 5 and the region r = �unknown ⊕ �. Clearly, the learned
classifier 6 returns incorrect answers only for points picked inside r.

Thus, the probability of a mistake in the classification is the measure of r under the distribution D.
So, if PD [r] > Y (i.e., the probability that a sample point falls inside r), then by the Y-net theorem (i.e.,
Theorem 20.3.4) the set R is an Y-net for S (ignore for the time being the possibility that the random
sample fails to be an Y-net) and as such, R contains a point q inside r. But, it is not possible for 6
(which classifies correctly all the sampled points of R) to make a mistake on q, a contradiction, because
by construction, the range r is where 6 misclassifies points. We conclude that PD

[
r
]
≤ Y, as desired.

Little lies. The careful reader might be tearing his or her hair out because of the above description.
First, Theorem 20.3.4 might fail, and the above conclusion might not hold. This is of course true, and
in real applications one might use a much larger sample to guarantee that the probability of failure is so
small that it can be practically ignored. A more serious issue is that Theorem 20.3.4 is defined only for
finite sets. Nowhere does it speak about a continuous distribution. Intuitively, one can approximate a
continuous distribution to an arbitrary precision using a huge sample and apply the theorem to this sam-
ple as our ground set. A formal proof is more tedious and requires extending the proof of Theorem 20.3.4
to continuous distributions. This is straightforward and we will ignore this topic altogether.

20.4. A better bound on the growth function
In this section, we prove Lemma 20.2.2. Since the proof is straightforward but tedious, the reader can
safely skip reading this section.

Lemma 20.4.1. For any positive integer =, the following hold.

(i) (1 + 1/=)= ≤ 4. (ii) (1 − 1/=)=−1 ≥ 4−1.

(iii) =! ≥ (=/4)=. (iv) For any : ≤ =, we have
(=
:

) :
≤

(
=

:

)
≤

(=4
:

) :
.

Proof: (i) Indeed, 1 + 1/= ≤ exp(1/=), since 1 + G ≤ 4G, for G ≥ 0. As such (1 + 1/=)= ≤ exp(=(1/=)) = 4.
(ii) Rewriting the inequality, we have that we need to prove

(
=−1
=

)=−1 ≥ 1
4
. This is equivalent to

proving 4 ≥
(
=
=−1

)=−1
=

(
1 + 1

=−1
)=−1, which is our friend from (i).

(iii) Indeed,
==

=! ≤
∞∑
8=0

=8

8! = 4
=,

by the Taylor expansion of 4G =
∑∞
8=0

G8

8! . This implies that (=/4)= ≤ =!, as required.
(iv) Indeed, for any : ≤ =, we have =

:
≤ =−1

:−1 , as can be easily verified. As such, =
:
≤ =−8

:−8 , for
1 ≤ 8 ≤ : − 1. As such, (=

:

) :
≤ =
:
· = − 1
: − 1 · · ·

= − : + 1
1 =

(
=

:

)
.
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As for the other direction, by (iii), we have
(
=

:

)
≤ =

:

:! ≤
=:(
:
4

) : = (=4
:

) :
. �

Lemma 20.2.2 restated. For = ≥ 2X and X ≥ 1, we have
(=
X

)X
≤ GX (=) ≤ 2

(=4
X

)X
, where GX (=) =

X∑
8=0

(
=

8

)
.

Proof: Note that by Lemma 20.4.1 (iv), we have GX (=) =
X∑
8=0

(
=

8

)
≤ 1+

X∑
8=1

(=4
8

) 8
. This series behaves like

a geometric series with constant larger than 2, since(=4
8

) 8
/

( =4
8 − 1

) 8−1
=
=4

8

(
8 − 1
8

) 8−1
=
=4

8

(
1 − 1

8

) 8−1
≥ =4

8

1
4
=
=

8
≥ =
X
≥ 2,

by Lemma 20.4.1. As such, this series is bounded by twice the largest element in the series, implying
the claim. �

20.5. Some required definitions

Definition 20.5.1 (Convex hull). The convex hull of a set R ⊆ R3 is the set of all convex combinations
of points of R; that is,

CH(R) =
{
<∑
8=0

U8r8

�����∀8 r8 ∈ R, U8 ≥ 0, and
<∑
9=1
U8 = 1

}
.
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Chapter 21

Double sampling
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

“What does not work when you apply force, would work when you apply even more force.”

, Anonymous

21.1. Double sampling
Double sampling is the idea that two random independent samples should look similar, and should not
be completely different in the way they intersect a certain set. We use the following sampling model,
which makes the computations somewhat easier.

Definition 21.1.1. Let S = { 51, . . . , 5=} be a set of objects, where the 8th object has weight l8 > 0, for
all 8. Let , =

∑
8 l8. For a target size d, a d-sample is a random sample R ⊆ S, where object 58 is

picked independently with probability dl8/, . To simplify the discussion, we assume that dl8/, < 1.
Handling the more general case is easy if somewhat tedious.

Lemma 21.1.2. Let R1 and R2 be two d-samples, and consider the merged sample R = R1 ∪ R2. Let
) ⊆ S be a set of < elements. Then, we have that

P
[
) ⊆ R1

�� ) ⊆ R
]
≥ 1

2< and P
[
) ⊆ R1 and ) ∩ R2 = ∅

�� ) ⊆ R
]
≤ 1

2< .

Proof: Consider an object 5 ∈ ) , and observe that P
[
5 ∈ R1 or 5 ∈ R2 | 5 ∈ R

]
= 1. As such, by sym-

metry

P
[
5 ∈ R1 | 5 ∈ R

]
= P

[
5 ∈ R2 | 5 ∈ R

]
≥ 1/2,

Now, let ) = { 51, . . . , 5<}. Since R1 and R2 are independent, and each element is being picked indepen-
dently, we have that

P
[
) ⊆ R1 | ) ⊆ R

]
= P

[
51, . . . , 5< ∈ R1 | 51, . . . , 5< ∈ R

]
=

1∏
8=1
P
[
58 ∈ R1 | 51, . . . , 5< ∈ R

]
=

1∏
8=1
P
[
58 ∈ R1 | 58 ∈ R

]
≥ 1

2< .
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For the second claim, observe that again, by symmetry, we have that

P
[
5 ∈ R1 and 5 ∉ R2

�� 5 ∈ R]
= P

[
5 ∉ R1 and 5 ∈ R2 | 5 ∈ R

]
≤ 1/2,

as the two events are disjoint. Now, the claim follows by arguing as above. �

21.1.1. Disagreement between samples on a specific set
We provide three proofs of the following lemma – the constants are somewhat different for each version.

Lemma 21.1.3. Let R1 and R2 be two d-samples from a ground set S, and consider a fixed set ) ⊆ S.
We have that

P
[��|R1 ∩ ) | − |R2 ∩ ) |

�� > Yd] ≤ 3 exp
(
−Y2d/2

)
.

Proof: (Simplest proof.) By Chernoff’s inequality, for X ∈ (0, 1), we have

P
[��|R1 | − d

�� ≥ (Y/2)d] ≤ 2 exp
(
−(Y/2)2d/4

)
= 2 exp

(
−Y2d/16

)
.

The same holds for R2, and as such we have

P
[��|R1 | − |R2 |

�� ≥ Yd] ≤ P[��|R1 | − d
�� + ��d − |R2 |

�� ≥ Yd]
≤ P

[��|R1 | − d
�� ≥ (Y/2)d] + P[��d − |R2 |

�� ≥ (Y/2)d] ≤ 4 exp
(
−Y2d/16

)
�

Proof: For an object 58 ∈ S, let -8 be a random variable, where

-8 =


1 58 ∈ R1 and 58 ∉ R2

−1 58 ∉ R1 and 58 ∈ R2

0 otherwise.

We have that ?8 = P[-8 = 1] = P[-8 = −1] = (dl8/,) (1 − dl8/,) and E[-8] = 0. Applying the regular
concentration inequalities in this case is not immediate, since there are many -8s that are zero. To
overcome this, let ) be a random variable that is the number of variables in -1, . . . , -= that are non-
zero. We have that ) is a sum of = independent 0/1 random variables, where E[)] =

∑
8 2?8 = 2d. In

particular, by Chernoff’s inequality, we have that

@1 = P
[
) > (1 + Y)2d

]
≤ exp

(
−2dY2/4

)
= exp

(
−dY2/2

)
.

and assume this happens. In particular, let /1, . . . , /) be the non-zero variables in -1, . . . , -=, and
observe that P[/8 = 1] = P[/8 = −1] = 1/2. Let . =

∑
8 -8 =

∑
8 /8. Observe that E[. ] = 0, and by

Chernoff inequality, we have that

@2 = P
[��|R1 ∩ S| − |R1 ∩ S|

�� > Yd] = P[ |. − E[. ] | ≥ Yd] ≤ P[��∑8/8 − 0
�� ≥ Yd]

≤ 2 exp
(
−2 (Yd)

2

2)

)
≤ 2 exp

(
−2 (Yd)2

2(1 + Y)d

)
+ @1 = 2 exp

(
− Y

2d

1 + Y

)
+ @1 ≤ 3 exp

(
−Y2d/2

)
,

using ) ≤ (1 + b)2d. �
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21.1.2. Exponential decay for a single set
Lemma 21.1.4. Consider a set S of < objects, where every object 58 ∈ S has weight l8 > 0, and , =∑<
8=1 l8 . Next, consider a set r ⊆ S such that l(r) ≥ C,/d (such a set is C-heavy). Let R be a d-sample

from S. Then, the probability that R misses r is at most 4−C. Formally, we have P[r ∩ R = ∅] ≤ exp(−C).

Proof: Let r = { 51, . . . , 5: }. Clearly, the probability that R fails to pick one of these conflicting ob-
jects, is bounded by P[r ∩ R = ∅] = P

[
∀8 ∈ {1, . . . , :} 58 ∉ R2

]
=

∏:
8=1

(
1 − dl8

,

)
≤ ∏:

8=1 exp
(
−dl8

,

)
=

exp
(
− d

,

∑
8 l8

)
≤ exp

(
− d

,
· C,

d

)
= exp(−C). �

21.1.3. Moments of the sample size

Lemma 21.1.5. Let R an <-sample. And let 5 (C) ≤ UCV, where U ≥ 1 and V ≥ 1 are constants, such
that < ≥ 16V. Then * (<) = E

[
5
(
|R|

) ]
≤ 2U(2<)V.

Proof: The proof follows from Chernoff’s inequality and some tedious but straightforward calculations.
The reader is as such encouraged to skip reading it.

Let - = |R|. This is a sum of 0/1 random variables with expectation <. As such, we have

a = E
[
5
(
|R|

) ]
≤
∞∑
8=0
P[- = 8] 5 (8) ≤ U

∞∑
8=0
P[- = 8]8V.

Considering the last sum, we have

∞∑
8=0
P
[
- = 8

]
8V ≤

∞∑
9=0
P
[
- ≥ 9<

]
(( 9 + 1)<)V ≤ (2<)V + <V

∞∑
9=2
P
[
- ≥ 9<

]
( 9 + 1)V.

We bound the last summation using Chernoff’s inequality (see Theorem 8.2.1), we have

g =

5∑
9=2
P
[
- ≥ 9<

]
( 9 + 1)V +

∞∑
9=6
P
[
- ≥ 9<

]
( 9 + 1)V

≤
5∑
9=2

exp
(
−<( 9 − 1)2

4

)
( 9 + 1)V +

∞∑
9=6

2− 9< ( 9 + 1)V

≤ exp
(
−<4

)
3V + exp(−<)4V + exp(−2<)5V + exp(−4<)6V +

∞∑
9=6

2− 9< ( 9 + 1)V < 1,

since < ≥ 16V. We conclude that a ≤ U(2<)V + U<Vg ≤ 2U(2<)V. �

Remark 21.1.6. The constant 16 in the above lemma is somewhat strange. A better constant can be
derived by breaking the range of sizes into smaller intervals and using the right Chernoff inequality.
Since this is somewhat tangential to the point of this write-up, we leave it as is (i.e., this constant is
not critical to our discussion).
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21.1.4. Growth function
The growth function GX (=) is the maximum number of ranges in a range space with VC dimension X,
and with = elements. By Sauer’s lemma, it is known that

GX (=) =
X∑
8=0

(
=

8

)
≤

X∑
8=0

=8

8! ≤ =
X, (21.1)

The following is well known (the estimates are somewhat tedious to prove):

Lemma 21.1.7 ([Har11]). For = ≥ 2X and X ≥ 1, we have
(=
X

)X
≤ GX (=) ≤ 2

(=4
X

)X
, where GX (=) =∑X

8=0
(=
8

)
.

Lemma 21.1.8. Let R and R′ be two independent <-samples from x. Assume that < ≥ X. Then
E
[
GX

(
|R| + |R′|

) ]
≤ �

X
(2<), where �

X
(2<) = 4 (44</X)X .

Proof: We set U = 2
(
4
X

)X
, V = X, and 5 (=) = U=V. Duplicate every element in x, and let x′ be the resulting

set. Clearly, the size of a 2<-sample R from x′ is the same as |R| + |) |. By Lemma 21.1.7, we have
E
[
GX

(
|R|

) ]
≤ E

[
5
(
|R|

) ]
≤ 2U(4<)V ≤ 4

( 44<
X

)X The last inequality follows from Lemma 21.1.5. �

21.2. Proof of the Y-net theorem
Here we are working in the unweighted settings (i.e., the weight of a single element is one).

Theorem 21.2.1 (9-net theorem, [HW87]). Let (X,R) be a range space of VC dimension X, let x
be a finite subset of X, and suppose that 0 < Y ≤ 1 and i < 1. Let # be an <-sample from x (see
Definition 21.1.1), where

< ≥ max
(

8
Y

lg 4
i
,

16X
Y

lg 16
Y

)
. (21.2)

Then # is an Y-net for x with probability at least 1 − i.

21.2.1. The proof
21.2.1.1. Reduction to double sampling

Let = = |x |. Let # be the <-sample from x. Let E1 be the probability that # fails to be an Y-net.
Namely,

E1 =
{
∃r ∈ R

�� |r ∩ x | ≥ Y= and r ∩ # = ∅
}
.

(Namely, there exists a “heavy” range r that does not contain any point of #.) To complete the proof,
we must show that P[E1] ≤ i. Let ) be another <-sample generated in a similar fashion to #. Let E2
be the event that # fails but ) “works”. Formally

E2 =
{
∃r ∈ R

��� |r ∩ x | ≥ Y=, r ∩ # = ∅, and |r ∩ ) | ≥ Y<2

}
.

Intuitively, since E
[
|r ∩ x |

]
≥ Y<, we have that for the range r that # fails for, it follows with “good”

probability that |r ∩ ) | ≥ Y</2. Namely, E1 and E2 have more or less the same probability.
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Claim 21.2.2. P[E2] ≤ P[E1] ≤ 2P[E2].

Proof: Clearly, E2 ⊆ E1, and thus P[E2] ≤ P[E1]. As for the other part, note that by the definition of
conditional probability, we have

P[E2 | E1] = P[E2 ∩ E1]/P[E1] = P[E2]/P[E1] .

It is thus enough to show that P[E2 | E1] ≥ 1/2.
Assume that E1 occurs. There is r ∈ R, such that |r ∩ x | > Y= and r∩# = ∅. The required probability

is at least the probability that for this specific r, we have - = |r ∩ ) | ≥ Y=
2 . The variable - is a sum

of C = |r ∩ x | ≥ Y= random independent 0/1 variables, each one has probability </= to be one. Setting
` = E[-] = C</= ≥ Y< and b = 1/2, we have by Chernoff’s inequality that

P[|r ∩ ) | ≤ Y</2] ≤ P[- < (1 − b)`] ≤ exp
(
−`b2/2

)
= exp(−Y</8) < 1/2,

if Y< ≥ 8. Thus, for r ∈ E1, we have P[E2]/P[E1] ≥ P
[
|r ∩ ) | ≥ Y<

2
]
= 1 − P

[
|r ∩ ) | < Y<

2
]
≥ 1

2 . �

Claim 21.2.2 implies that to bound the probability of E1, it is enough to bound the probability of
E2. Let

E′2 =
{
∃r ∈ R

��� r ∩ # = ∅ and |r ∩ ) | ≥ Y<2

}
.

Clearly, E2 ⊆ E′2. Thus, bounding the probability of E′2 is enough to prove Theorem 21.2.1. Note,
however, that a shocking thing happened! We no longer have x participating in our event. Namely, we
turned bounding an event that depends on a global quantity (i.e., the ground set x) into bounding a
quantity that depends only on a local quantity/experiment (involving only # and )). This is the crucial
idea in this proof.

21.2.1.2. Using double sampling to finish the proof

Claim 21.2.3. P
[
E2

]
≤ P

[
E′2

]
≤ 2−Y</2�

X
(2<).

Proof: We fix the content of R = # ∪ ) . The range space (R,R |R) has GX ( |R|) ranges. Fix a range
r in this range space. Let ) = r ∩ R. If 1 = |) | < Y</2 then the E′2 can not happened. Otherwise,
the probability that r is a bad range is P

[
) ⊆ ) and ) ∩ # = ∅

�� ) ⊆ R
]
≤ 1

21 , by Lemma 21.1.2. In
particular, by the union bound over all ranges, we have P

[
E′2 | R

]
≤ 2−Y</2GX ( |R|). As such, we have

P
[
E′2

]
=

∑
R
P
[
E′2 | R

]
P[R] ≤

∑
R

2−Y</2GX
(
|R|

)
P[R] ≤ 2−Y</2 E

[
GX

(
|R|

) ]
≤ 2−Y</2�X (2<).

by Lemma 21.1.8. �

Proof of Theorem 21.2.1. By Claim 21.2.2 and Claim 21.2.3, we have that P[E1] ≤ 2 · 2−Y</2�
X
(2<).

It thus remains to verify that if < satisfies Eq. (21.2), then the above is smaller than i. Which is
equivalent to

2 · 2−Y</2�X (2<) ≤ i ⇐⇒ 16 · 2−Y</2
(
44<
X

)X
≤ i ⇐⇒ −4 + Y<2 − X lg

(
44<
X

)
≥ lg 1

i

⇐⇒
(
Y<

8 − 4 − X lg 44
X

)
+

(
Y<

8 − lg 1
i

)
+

(Y<
4 − X lg

(<
X

))
≥ 0
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We remind the reader that the value of < we pick is such that < ≥ max
(

8
Y

lg 4
i
, 16X

Y
lg 16

Y

)
. In particular,

< ≥ 64X/Y and −4 − X lg
( 44
X

)
≥ −4 − 4X ≤ −8X ≥ −Y</8. Similarly, by the choice of <, we have

Y</8 ≥ lg 1
i
. As such, we need to show that Y<

4 ≥ X lg
(
<
X

)
⇐⇒ < ≥ 4X

Y
lg <

X
, and one can verify using

some easy but tedious calculations that this holds if < ≥ 16X
Y

lg 16
Y
. �

158



Chapter 22

Martingales
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

‘After that he always chose out a “dog command” and sent them ahead. It had the task of informing the inhabitants
in the village where we were going to stay overnight that no dog must be allowed to bark in the night otherwise it
would be liquidated. I was also on one of those commands and when we came to a village in the region of Milevsko
I got mixed up and told the mayor that every dog-owner whose dog barked in the night would be liquidated for
strategic reasons. The mayor got frightened, immediately harnessed his horses and rode to headquarters to beg
mercy for the whole village. They didn’t let him in, the sentries nearly shot him and so he returned home, but
before we got to the village everybody on his advice had tied rags round the dogs muzzles with the result that three
of them went mad.’

The good soldier Svejk, Jaroslav Hasek

22.1. Martingales

22.1.1. Preliminaries
Let - and . be two random variables. Let d(G, H) = P[(- = G) ∩ (. = H)]. Then,

P[- = G | . = H] =
d(G, H)
P[. = H]

=
d(G, H)∑
I d(I, H)

and E
[
-

��. = H ] = ∑
G

G P
[
- = G

��. = H ] = ∑
G Gd(G, H)∑
I d(I, H)

=

∑
G Gd(G, H)
P[. = H]

.

Definition 22.1.1. The conditional expectation of - given . , is the random variable E
[
-

��. ]
is the

random variable 5 (H) = E
[
-

��. = H ] .
Lemma 22.1.2. For any two random variables - and . , we have E

[
E[- | . ]

]
= E

[
-
]
.

Lemma 22.1.3. For any two random variables - and . , we have E
[
. · E[- | . ]

]
= E

[
-.

]
.

22.1.2. Martingales
Intuitively, martingales are a sequence of random variables describing a process, where the only thing
that matters at the beginning of the 8th step is where the process was in the end of the (8 − 1)th step.
That is, it does not matter how the process arrived to a certain state, only that it is currently at this
state.
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Definition 22.1.4. A sequence of random variables -0, -1, . . . , is said to be a martingale sequence if
for all 8 > 0, we have E

[
-8

�� -0, . . . , -8−1
]
= -8−1.

Lemma 22.1.5. Let -0, -1, . . . , be a martingale sequence. Then, for all 8 ≥ 0, we have E
[
-8

]
= E

[
-0

]
.

22.1.2.1. Examples of martingales

Example 22.1.6. An example of martingales is the sum of money after participating in a sequence of fair
bets. That is, let -8 be the amount of money a gambler has after playing 8 rounds. In each round it
either gains one dollar, or loses one dollar. Clearly, we have E

[
-8

�� -0, . . . , -8−1
]
= E

[
-8

�� -8−1
]
= -8.

Example 22.1.7. Let .8 = -2
8
− 8, where -8 is as defined in the above example. We claim that .0, .1, . . .

is a martingale. Let us verify that this is true. Given .8−1, we have .8−1 = -
2
8−1 − (8 − 1). We have that

E
[
.8

��.8−1
]
= E

[
-2
8 − 8

�� -2
8−1 − (8 − 1)

]
=

1
2

(
(-8−1 + 1)2 − 8)

)
+ 1

2

(
(-8−1 − 1)2 − 8

)
= -2

8−1 + 1 − 8 = -2
8−1 − (8 − 1) = .8−1,

which implies that indeed it is a martingale.

Example 22.1.8. Let * be a urn with 1 black balls, and F white balls. We repeatedly select a ball and
replace it by 2 balls having the same color. Let -8 be the fraction of black balls after the first 8 trials.
We claim that the sequence -0, -1, . . . is a martingale.

Indeed, let =8 = 1 + F + 8(2 − 1) be the number of balls in the urn after the 8th trial. Clearly,

E
[
-8

�� -8−1, . . . , -0
]
= -8−1 ·

(2 − 1) + -8−1=8−1
=8

+ (1 − -8−1) ·
-8−1=8−1
=8

=
-8−1(2 − 1) + -8−1=8−1

=8
= -8−1

2 − 1 + =8−1
=8

= -8−1
=8

=8
= -8−1.

Example 22.1.9. Let � be a random graph on the vertex set + = {1, . . . , =} obtained by independently
choosing to include each possible edge with probability ?. The underlying probability space is called
G=,?. Arbitrarily label the < = =(= − 1)/2 possible edges with the sequence 1, . . . , <. For 1 ≤ 9 ≤ <,
define the indicator random variable � 9 , which takes values 1 if the edge 9 is present in �, and has value
0 otherwise. These indicator variables are independent and each takes value 1 with probability ?.

Consider any real valued function 5 defined over the space of all graphs, e.g., the clique number,
which is defined as being the size of the largest complete subgraph. The edge exposure martingale
is defined to be the sequence of random variables -0, . . . , -< such that

-8 = E
[
5 (�)

�� �1, . . . , �8 ] ,
while -0 = E[ 5 (�)] and -< = 5 (�). This sequence of random variable begin a martingale follows
immediately from a theorem that would be described in the next lecture.

One can define similarly a vertex exposure martingale, where the graph �8 is the graph induced
on the first 8 vertices of the random graph �.

Example 22.1.10 (The sheep of Mabinogion). The following is taken from medieval Welsh manuscript
based on Celtic mythology:
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“And he came towards a valley, through which ran a river; and the borders of the valley were
wooded, and on each side of the river were level meadows. And on one side of the river he
saw a flock of white sheep, and on the other a flock of black sheep. And whenever one of the
white sheep bleated, one of the black sheep would cross over and become white; and when
one of the black sheep bleated, one of the white sheep would cross over and become black.”
– Peredur the son of Evrawk, from the Mabinogion.

More concretely, we start at time 0 with F0 white sheep, and 10 black sheep. At every iteration,
a random sheep is picked, it bleats, and a sheep of the other color turns to this color. the game stops
as soon as all the sheep have the same color. No sheep dies or get born during the game. Let -8 be
the expected number of black sheep in the end of the game, after the 8th iteration. For reasons that we
would see later on, this sequence is a martingale.

The original question is somewhat more interesting – if we are allowed to take a way sheep in the
end of each iteration, what is the optimal strategy to maximize -8?

22.1.2.2. Azuma’s inequality

A sequence of random variables -0, -1, . . . has bounded differences if |-8 − -8−1 | ≤ Δ, for some Δ.

Theorem 22.1.11 (Azuma’s Inequality.). Let -0, . . . , -< be a martingale with -0 = 0, and |-8+1 −

-8 | ≤ 1 for all 0 ≤ 8 < <. Let _ > 0 be arbitrary. Then P
[
-< > _

√
<

]
< exp

(
−_2/2

)
.

Proof: Let U = _/
√
<. Let .8 = -8 − -8−1, so that |.8 | ≤ 1 and E

[
.8

�� -0, . . . , -8−1
]
= 0.

We are interested in bounding E
[
4U.8

�� -0, . . . , -8−1
]
. Note that, for −1 ≤ G ≤ 1, we have

4UG ≤ ℎ(G) = 4
U + 4−U

2 + 4
U − 4−U

2 G,

as 4UG is a convex function, ℎ(−1) = 4−U, ℎ(1) = 4U, and ℎ(G) is a linear function. Thus,

E
[
4U.8

�� -0, . . . , -8−1
]
≤ E

[
ℎ(.8)

�� -0, . . . , -8−1
]
= ℎ

(
E
[
.8

�� -0, . . . , -8−1
] )

= ℎ
(
0
)
=
4U + 4−U

2

=
(1 + U + U2

2! +
U3

3! + · · · ) + (1 − U +
U2

2! −
U3

3! + · · · )
2

= 1 + U
2

2 +
U4

4! +
U6

6! + · · ·

≤ 1 + 1
1!

(
U2

2

)
+ 1

2!

(
U2

2

)2
+ 1

3!

(
U2

2

)3
+ · · · = exp

(
U2/2

)
,

as (28)! ≥ 288!.
Hence, by Lemma 2.1.3, we have that

E
[
4U-<

]
= E

[ <∏
8=1

4U.8
]
= E

[(<−1∏
8=1

4U.8
)
4U.<

]
= E

[(<−1∏
8=1
4U.8

)
E
[
4U.<

�� -0, . . . , -<−1
] ]
≤ 4U2/2 E

[<−1∏
8=1

4U.8
]
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≤ exp
(
<U2/2

)
.

Therefore, by Markov’s inequality, we have

P
[
-< > _

√
<

]
= P

[
4U-< > 4U_

√
<
]
=
E
[
4U-<

]
4U_
√
<

= 4<U
2/2−U_

√
<

= exp
(
<(_/

√
<)2/2 − (_/

√
<)_
√
<

)
= 4−_

2/2,

implying the result. �

Here is an alternative form.

Theorem 22.1.12 (Azuma’s Inequality). Let -0, . . . , -< be a martingale sequence such that and
|-8+1 − -8 | ≤ 1 for all 0 ≤ 8 < <. Let _ > 0 be arbitrary. Then P

[
|-< − -0 | > _

√
<

]
< 2 exp

(
−_2/2

)
.

Example 22.1.13. Let j(�) be the chromatic number of a graph �. What is chromatic number of a
random graph? How does this random variable behaves?

Consider the vertex exposure martingale, and let -8 = E
[
j(�)

���8 ] . Again, without proving it, we
claim that -0, . . . , -= = - is a martingale, and as such, we have: P

[
|-= − -0 | > _

√
=
]
≤ 4−_2/2. However,

-0 = E[j(�)], and -= = E
[
j(�)

���=

]
= j(�). Thus,

P
[
|j(�) − E[j(�)] | > _

√
=
]
≤ 4−_2/2.

Namely, the chromatic number of a random graph is highly concentrated! And we do not even know
what is the expectation of this variable!

22.2. Bibliographical notes
Our presentation follows [MR95].
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Chapter 23

Martingales II
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

“The Electric Monk was a labor-saving device, like a dishwasher or a video recorder. Dishwashers washed tedious
dishes for you, thus saving you the bother of washing them yourself, video recorders watched tedious television for
you, thus saving you the bother of looking at it yourself; Electric Monks believed things for you, thus saving you
what was becoming an increasingly onerous task, that of believing all the things the world expected you to believe.”

Dirk Gently’s Holistic Detective Agency, Douglas Adams

23.1. Filters and Martingales

Definition 23.1.1. A f-field (Ω, F ) consists of a sample space Ω (i.e., the atomic events) and a collection
of subsets F satisfying the following conditions:
(A) ∅ ∈ F .
(B) � ∈ F ⇒ � ∈ F .
(C) �1, �2, . . . ∈ F ⇒ �1 ∪ �2 . . . ∈ F .

Definition 23.1.2. Given a f-field (Ω, F ), a probability measure P : F → R+ is a function that satisfies
the following conditions.
(A) ∀� ∈ F , 0 ≤ P[�] ≤ 1.
(B) P

[
Ω

]
= 1.

(C) For mutually disjoint events �1, �2, . . . , we have P
[
∪8�8

]
=

∑
8 P

[
�8

]
.

Definition 23.1.3. A probability space (Ω, F , P) consists of a f-field (Ω, F ) with a probability measure
P defined on it.

Definition 23.1.4. Given a f-field (Ω, F ) with F = 2Ω, a filter (also filtration) is a nested sequence
F0 ⊆ F1 ⊆ · · · ⊆ F= of subsets of 2Ω, such that:
(A) F0 = {∅,Ω}.
(B) F= = 2Ω.
(C) For 0 ≤ 8 ≤ =, (Ω, F8) is a f-field.

Definition 23.1.5. An elementary event or atomic event is a subset of a sample space that contains
only one element of Ω.
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Intuitively, when we consider a probability space, we usually consider a random variable -. The
value of - is a function of the elementary event that happens in the probability space. Formally, a
random variable is a mapping - : Ω → R. Thus, each F8 defines a partition of Ω into atomic events.
This partition is getting more and more refined as we progress down the filter.

Example 23.1.6. Consider an algorithm Alg that uses = random bits. As such, the underlying sample
space is Ω =

{
1112 . . . 1=

�� 11, . . . , 1= ∈ {0, 1}
}
; that is, the set of all binary strings of length =. Next, let

F8 be the f-field generated by the partition of Ω into the atomic events �F, where F ∈ {0, 1}8; here F
is the string encoding the first 8 random bits used by the algorithm. Specifically,

�F =
{
FG

�� G ∈ {0, 1}=−8 } ,
and the set of atomic events in F8 is

{
�F

��F ∈ {0, 1}8 }. The set F8 is the closure of this set of atomic
events under complement and union. In particular, we conclude that F0, F1, . . . , F= form a filter.

Definition 23.1.7. A random variable - is said to be F8-measurable if for each G ∈ R, the event - ≤ G
is in F8; that is, the set

{
l ∈ Ω

�� - (l) ≤ G} is in F8.

Example 23.1.8. Let F0, . . . , F= be the filter defined in Example 23.1.6. Let - be the parity of the = bits.
Clearly, - = 1 is a valid event only in F= (why?). Namely, it is only measurable in F=, but not in F8, for
8 < =.

As such, a random variable - is F8-measurable, only if it is a constant on the elementary events of
F8. This gives us a new interpretation of what a filter is – its a sequence of refinements of the underlying
probability space, that is achieved by splitting the atomic events of F8 into smaller atomic events in F8+1.
Putting it explicitly, an atomic event E of F8, is a subset of 2Σ. As we move to F8+1 the event E might
now be split into several atomic (and disjoint events) E1, . . . ,E: . Now, naturally, the atomic event that
really happens is an atomic event of F=. As we progress down the filter, we “zoom” into this event.

Definition 23.1.9 (Conditional expectation in a filter). Let (Ω, F ) be any f-field, and . any random vari-
able that takes on distinct values on the elementary events in F . Then E

[
- | F

]
= E

[
- |.

]
.

23.2. Martingales
Definition 23.2.1. A sequence of random variables .1, .2, . . . , is said to be a martingale difference
sequence if for all 8 ≥ 0, we have E

[
.8

��.1, . . . , .8−1
]
= 0.

Clearly, -1, . . . , is a martingale sequence if and only if .1, .2, . . . , is a martingale difference sequence
where .8 = -8 − -8−1.

Definition 23.2.2. A sequence of random variables .1, .2, . . . , is

a super martingale sequence if ∀8 E
[
.8

��.1, . . . , .8−1
]
≤ .8−1,

and a sub martingale sequence if ∀8 E
[
.8

��.1, . . . , .8−1
]
≥ .8−1.
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23.2.1. Martingales – an alternative definition
Definition 23.2.3. Let (Ω, F , P) be a probability space with a filter F0, F1, . . . . Suppose that -0, -1, . . .,
are random variables such that, for all 8 ≥ 0, -8 is F8-measurable. The sequence -0, . . . , -= is a mar-
tingale provided that, for all 8 ≥ 0, we have E

[
-8+1 | F8

]
= -8 .

Lemma 23.2.4. Let (Ω, F ) and (Ω,G) be two f-fields such that F ⊆ G. Then, for any random variable
-, E

[
E
[
-

��G ] ���F ]
= E

[
-

��F ]
.

Proof: E
[
E
[
-

��G ] ��F ]
= E

[
E
[
-

��� = 6
] �� � = 5

]
= E

[∑
G G P[- = G ∩ � = 6]
P[� = 6]

�� � = 5

]
=

∑
6∈�

∑
G GP[-=G∩�=6]
P[�=6] · P[� = 6 ∩ � = 5 ]

P[� = 5 ]

=
∑

6∈G,6⊆ 5

∑
G G P[-=G∩�=6]
P[�=6] · P[� = 6 ∩ � = 5 ]

P[� = 5 ] =
∑

6∈G,6⊆ 5

∑
G G P[-=G∩�=6]
P[�=6] · P[� = 6]
P[� = 5 ]

=
∑

6∈G,6⊆ 5

∑
G G P[- = G ∩ � = 6]
P[� = 5 ] =

∑
G G

(∑
6∈G,6⊆ 5 P[- = G ∩ � = 6]

)
P[� = 5 ]

=

∑
G G P[- = G ∩ � = 5 ]
P[� = 5 ] = E

[
-

��F ]
. �

Theorem 23.2.5. Let (Ω, F , P) be a probability space, and let F0, . . . , F= be a filter with respect to it.
Let - be any random variable over this probability space and define -8 = E

[
-

��F8 ] then, the sequence
-0, . . . , -= is a martingale.

Proof: We need to show that E
[
-8+1

��F8 ] = -8. Namely,

E[-8+1 | F8] = E
[
E
[
-

��F8+1 ] ��F8 ] = E[- ��F8 ] = -8,
by Lemma 23.2.4 and by definition of -8. �

Definition 23.2.6. Let 5 : D1 × · · · × D= → R be a real-valued function with a arguments from possibly
distinct domains. The function 5 is said to satisfy the Lipschitz condition if for any G1 ∈ D1, . . . , G= ∈
D=, and 8 ∈ {1, . . . , =} and any H8 ∈ D8,��� 5 (G1, . . . , G8−1, G8, G8+1, . . . , G=) − 5 (G1, . . . , G8−1, H8, G8+1, . . . , G=)

��� ≤ 1.

Specifically, a function is 2-Lipschitz, if the inequality holds with a constant 2 (instead of 1).

Definition 23.2.7. Let -1, . . . , -= be a sequence of independent random variables, and a function 5 (-1, . . . , -=)
defined over them that such that 5 satisfies the Lipschitz condition. The Doob martingale sequence
.0, . . . , .< is defined by .0 = E

[
5 (-1, . . . , -=)

]
and .8 = E

[
5 (-1, . . . , -=)

�� -1, . . . , -8
]
, for 8 = 1, . . . , =.

Clearly, a Doob martingale.0, . . . , .= is a martingale, by Theorem 23.2.5. Furthermore, if |-8 − -8−1 | ≤
1, for 8 = 1, . . . , =, then |.8 − .8−1 | ≤ 1. and we can use Azuma’s inequality on such a sequence.
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23.3. Occupancy Revisited
We have < balls thrown independently and uniformly into = bins. Let / denote the number of bins
that remains empty in the end of the process. Let -8 be the bin chosen in the 8th trial, and let
/ = � (-1, . . . , -<), where � returns the number of empty bins given that < balls had thrown into bins
-1, . . . , -<. Clearly, we have by Azuma’s inequality that P

[��/ − E[/]�� > _√<]
≤ 24−_2/2.

The following is an extension of Azuma’s inequality shown in class. We do not provide a proof but
it is similar to what we saw.

Theorem 23.3.1 (Azuma’s Inequality - Stronger Form). Let -0, -1, . . . , be a martingale sequence
such that for each :, |-: − -:−1 | ≤ 2: , where 2: may depend on :. Then, for all C ≥ 0, and any _ > 0,
we have

P
[
|-C − -0 | ≥ _

]
≤ 2 exp

(
− _2

2
∑C
:=1 2

2
:

)
.

Theorem 23.3.2. Let A = </=, and /end be the number of empty bins when < balls are thrown randomly

into = bins. Then ` = E
[
/end

]
= =

(
1 − 1

=

)< ≈ =4−A , and for any _ > 0, we have

P

[��/end − `
�� ≥ _] ≤ 2 exp

(
−_

2(= − 1/2)
=2 − `2

)
.

Proof: Let I(., C) be the expected number of empty bins, if there are . empty bins in time C. Clearly,

I(., C) = .
(
1 − 1

=

)<−C
.

In particular, ` = I(=, 0) = =
(
1 − 1

=

)<.
Let FC be the f-field generated by the bins chosen in the first C steps. Let /end be the number of

empty bins at time <, and let /C = E
[
/end

��FC ] . Namely, /C is the expected number of empty bins after
we know where the first C balls had been placed. The random variables /0, /1, . . . , /< form a martingale.
Let .C be the number of empty bins after C balls where thrown. We have /C−1 = I(.C−1, C − 1). Consider
the ball thrown in the C-step. Clearly:
(A) With probability 1−.C−1/= the ball falls into a non-empty bin. Then .C = .C−1, and /C = I(.C−1, C).

Thus,

Δ C = /C − /C−1 = I(.C−1, C) − I(.C−1, C − 1) = .C−1

((
1 − 1

=

)<−C
−

(
1 − 1

=

)<−C+1)
=
.C−1
=

(
1 − 1

=

)<−C
≤

(
1 − 1

=

)<−C
.

(B) Otherwise, with probability .C−1/= the ball falls into an empty bin, and .C = .C−1 − 1. Namely,
/C = I(.C − 1, C). And we have that

Δ C = /C − /C−1 = I(.C−1 − 1, C) − I(.C−1, C − 1) = (.C−1 − 1)
(
1 − 1

=

)<−C
− .C−1

(
1 − 1

=

)<−C+1
=

(
1 − 1

=

)<−C (
.C−1 − 1 − .C−1

(
1 − 1

=

))
=

(
1 − 1

=

)<−C (
−1 + .C−1

=

)
= −

(
1 − 1

=

)<−C (
1 − .C−1

=

)
≥ −

(
1 − 1

=

)<−C
.
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Thus, /0, . . . , /< is a martingale sequence, where |/C − /C−1 | ≤ |Δ C | ≤ 2C , where 2C =
(
1 − 1

=

)<−C . We
have

=∑
C=1

22
C =

1 − (1 − 1/=)2<
1 − (1 − 1/=)2 =

=2 (1 − (1 − 1/=)2<
)

2= − 1 =
=2 − `2

2= − 1 .

Now, deploying Azuma’s inequality, yield the result. �

23.3.1. Lets verify this is indeed an improvement

Consider the case where < = = ln =. Then, ` = =
(
1 − 1

=

)< ≤ 1. And using the “weak” Azuma’s inequality
implies that

P

[��/end − `�� ≥ _√=] = P[��/end − `�� ≥ _√ =

<

√
<

]
≤ 2 exp

(
−_

2=

2<

)
= 2 exp

(
− _2

2 ln =

)
,

which is interesting only if _ >
√

2 ln =. On the other hand, Theorem 23.3.2 implies that

P

[��/end − `�� ≥ _√=] ≤ 2 exp
(
−_

2=(= − 1/2)
=2 − `2

)
≤ 2 exp

(
−_2) ,

which is interesting for any _ ≥ 1 (say).

23.4. Some useful estimates
Lemma 23.4.1. For any = ≥ 2, and < ≥ 1, we have that (1 − 1/=)< ≥ 1 − </=.

Proof: Follows by induction. Indeed, for < = 1 the claim is immediate. For < ≥ 2, we have(
1 − 1

=

)<
=

(
1 − 1

=

) (
1 − 1

=

)<−1
≥

(
1 − 1

=

) (
1 − < − 1

=

)
≥ 1 − <

=
. �

This implies the following.

Lemma 23.4.2. For any < ≤ =, we have that 1 − </= ≤ (1 − 1/=)< ≤ exp(−</=).
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Chapter 24

The power of two choices
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

The Peace of Olivia. How sweat and peaceful it sounds! There the great powers noticed for the first time that the
land of the Poles lends itself admirably to partition.

The tin drum, Gunter Grass

Consider the problem of throwing = balls into = bins. It is well known that the maximum load is
Θ(log =/log log =) with high probability. Here we show that if one is allowed to pick 3 bins for each
ball, and throw it into the bin that contains less balls, then the maximum load of a bin decreases to
Θ(log log =/log 3). A variant of this approach leads to maximum load Θ((log log =)/3).

As a concrete example, for = = 109, this leads to maximum load 13 in the regular case, compared to
maximum load of 4, with only two-choices – see Figure 24.1.

24.1. Balls and bins with many rows
Consider throwing = balls into = bins. Every bin can contain a single ball. As such, as we throw the
balls, some balls would be rejected because their assigned bin already contains a ball. We collect all the
rejected balls, and throw them again into a second row of = bins. We repeat this process till all the balls
had found a good home (i.e., empty bin). How many rows one needs before this process is completed?

Lemma 24.1.1. Let < = U= balls be thrown into = bins. Let .end the number of bins that are not empty
in the end of the process (here, we allow more than one ball into a bin).
(A) For U ∈ (0, 1], we have ` = E[.end] ≥ < exp(−U).
(B) If U ≥ 1, then ` = E[.end] ≥ =(1 − exp(−U)).
(C) We have P

[
|.end − ` | >

√
32< log =

]
≤ 1/=2 .

Proof: (A) The probability of the 8th ball to be the first ball in its bin, is
(
1 − 1

=

) 8−1. To see this we
use backward analysis – throw in the 8th ball, and now throw in the earlier 8 − 1 balls. The probability
that none of the earlier balls hit the same bin as the 8th ball is as stated. Now, the expected number of
non-empty bins is the number of balls that are first in their bins, which in turn is

` =

<−1∑
8=0

(
1 − 1

=

) 8
≥ <(1 − 1/=)< ≥ <(1 − 1/=) (=−1)</(=−1) ≥ < exp

(
− <

= − 1

)
= < exp

(
−U(= − 1) + U

= − 1

)
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= < exp
(
−U + U

= − 1

)
≥ < exp(−U) ≥ <

4
.

using < = U= ≤ =, and (1 − 1/=)=−1 ≥ 1/4, see Lemma 6.1.8.
(B) We repeat the above analysis from the point of view of the bin. The probability of a bin to be

empty is (1 − 1/=)U=. As such, we have that

` = E[.end] = =(1 − (1 − 1/=)U=) ≥ =(1 − exp(−U)),

using 1 − 1/= ≤ exp(−1/=).
(C) Let -8 be the index of the bin the 8th ball picked. Let .8 = E[.end | -1, . . . , -8]. This is a Doob

martingale, with |.8 − .8−1 | ≤ 1. As such, Azuma’s inequality implies, for _ =
√

32< ln =, that

P
[
|.end − E[.end] | ≥ _

]
≤ 2 exp

(
−_2/2<

)
≤ 1/=2 . �

Remark. The reader might be confused by cases (A) and (B) of Lemma 24.1.1 for U = 1, as the two
lower bounds are different. Observe that (A) is loose if U is relatively large and close to 1.

Back to the problem. Let U1 = 1 and =1 = U1=. For 8 > 1, inductively, assume that numbers of balls
being thrown in the 8th round is

=8 = U8= +$ (
√
U8−1= log =).

By Lemma 24.1.1, with high probability, the number of balls stored in the 8th row is

B8 = =8 exp(−U8) ±$ (
√
=8 log =).

As such, as long as the first term is significantly large than the second therm, we have that B8 =
=U8 exp(−U8) (1 ± >(1)). For the time being, let us ignore the >(1) term. We have that

=8+1 = =8 − B8 = =(U8 − U8 exp(−U8)) ≤ =(U8 − U8 (1 − U8)) = =U2
8 ,

since exp(−U8) ≥ 1 − U8.

Observation 24.1.3. Consider the sequence U1 = 1, 2 = U2 = 1 − 1/4, and U8+1 = U2
8
, for 8 > 2. We

have that U8+1 = 228−2. In particular, for Δ = 3 + lg log1/2 =, we have that UΔ < 1/=.

The above observation almost implies that we need Δ rows. The problem is that the above calcula-
tions (i.e., the high probability guarantee in Lemma 24.1.1) breaks down when =8 = $ (log =) – that is,
when U8 = $ ((log =)/=). However, if one throws in $ (log =) balls into = bins, the probability of a single
collision is at most $ ((log =)2/=). In particular, this implies that after roughly additional 2 rows, the
probability of any ball left is ≤ 1/=2.

The above argumentation, done more carefully, implies the following – we omit the details because
(essentially) the same analysis for a more involved case is done next (the lower bound stated follows
also from the same argumentation).

Theorem 24.1.4. Consider the process of throwing = balls into = bins in several rounds. Here, a ball
that can not be placed in a round, because their chosen bin is already occupied, are promoted to the next
round. The next round throws all the rejected balls from the previous round into a new row of = empty
bins. This process, with high probability, ends after " = lg lg = + Θ(1) rounds (i.e., after " rounds, all
balls are placed in bins).
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24.1.1. With only 3 rows

Lemma 24.1.5. For U ∈ (0, 1/4], let W1 = U, and W8 = 2W2
8−1. We have that W3+1 ≤ U(2

3+1)/2.

Proof: The proof, minimal as it may be, is by induction:

W8+1 = 2W2
8 ≤ 2

(
U(2

8−1+1)/2
)2
= 2U(28+2)/2 ≤ U(28+1)/2,

since 2
√
U ≤ 1. �

Lemma 24.1.6. Let < = U= balls be thrown into = bins, with 3 rows, where U > 0. Here every bin can
contain only a single ball, and if inserting the ball into 8th row failed, then we throw it in the next row,
and so on, till it finds an empty bin, or it is rejected because it failed on the 3th row. Let . (3, =, <) be
the number of balls that did not get stored in this matrix of bins. We have
(A) For a constant U < 1/4, we have . (3, =, U=) ≤ =U(23+1)/2, with high probability.
(B) We E

[
. (3, =, 3=)

]
= $ (= log 3).

(C) For a constant 2 > 1, we have E
[
. (3, =, 2= log 3)

]
= =/4−3/2, assuming 3 is sufficiently large.

Proof: (A) By Lemma 24.1.1, in expectation, at least B1 = =U exp(−U) balls are placed in the first row.
As such, in expectation =2 = =U(1 − exp(−U)) ≤ =U2 balls get thrown into the second row. Using
Chenroff inequality, we get that =2 ≤ 2U2=, with high probability. Setting W1 = U, and W8 = 2W2

8−1, we
get the claim via Lemma 24.1.5.

(B) As long as we throw Ω(= log 3) balls into a row, we expect by Lemma 24.1.1 that at least
=(1− 1/3$ (1)) balls to get stored in this row. As such, let � = $ (log 3), and observe that the first 3 −�
rows in expectation contains =(3 − �) (1 − 1/3$ (1)) balls. This implies that only $ (�=) are not stored
in these first 3 − � rows, which implies the claim.

(C) Break the 3 rows into two groups. The first group of size � = $ (log 3), and the second group
is the remaining group. As long as the number of balls arriving to a row is larger than =, we expected
at least =(1 − 1/4) of them to be stored in this row. As such, after the first � rows, we expect the
number of remaining balls to be ≤ =. But them. the same argumentation implies that the number of
balls arriving to the � + 8 row, in expectation, is at most =/48. In particular, we get that the number of
balls failed to be placed is at most =/4�−3 ≤ =/4−3/2. �

24.2. The power of two choices

Making 3 choices. Let us throw = balls into = bins. For each ball, we first pick randomly 3 ≥ 2 bins,
and place the ball in the bin that currently contains the smallest number of balls (here, a bin might
contain an arbitrary number of balls). If there are several bins with the minimum number of bins, we
resolve it arbitrarily.

Here, we will show the surprising result that the maximum number of balls in any bin is bounded
by $ (log log =/log 3) with high probability in the end of this process. For 3 = 1, which is the regular
balls into bins setting, we already seen that this quantity is Θ(log =/log log =), so this result is quite
surprising.
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24.2.1. Upper bound
Definition 24.2.1. The load of a bin is the number of balls in it. The height of a ball, is the load of the
bin it was inserted into, just after it was inserted.

Some notations:
(A) V8: An upper bound on the number of bins that have load at least 8 by the end of the process.
(B) ℎ(8): The height of the 8th ball.
(C) t≥8 (C): Number of bins with load at least 8 at time C.
(D) o≥8 (C): Number of balls with height at least 8 at time C.

Observation 24.2.2. t≥8 (C) ≤ o≥8 (C).

Let |≥8 = t≥8 (=) be the number of bins, in the end of the process, that have load ≥ 8.

Observation 24.2.3. Since every bin counted in |≥8 contains at least 8 balls, and there are = balls, it
follows that |≥8 ≤ =/8.

Lemma 24.2.4. Let V4 = =/4, and let V8+1 = 2=(V8/=)3, for 8 ≥ 4. Let � be the last iteration, such that
V� ≥ 162 ln =, where 2 > 1 is an arbitrary constant. Then, with probability ≥ 1 − 1/=2, we have that
(A) |≥8 ≤ V8, for 8 = 4, . . . , �.
(B) |≥�+1 ≤ 2′ log =, for some constant 2′.
(C) For 9 > 0, and any constant Y > 0, we have P

[
|≥�+1+ 9 > 0

]
≤ $ (1/=(3−1−Y) 9 ).

(D) With probability ≥ 1 − 1/=2, the maximum load of a bin is � +$ (2).

Proof: (A) Let B8 be the bad event that |≥8 > V8, for 8 = 1, . . . , =. The following analysis is conditioned
on none of these bad events happening. Let G be the good event that is the complement of ∪8B8. Let .C
be an indicator variable that is one ⇐⇒ ℎ(C) ≥ 8 + 1 conditioned on G (for clarity, we omit mentioning
this conditioning explicitly). We have that

g9 = P
[
. 9 = 1

]
≤ ?8 for ?8 = (V8/=)3 ,

as all 3 probes must hit bins of height at least 8, and there are at most V8 such bins. This readily implies
that E[o≥8+1(=)] ≤ ?8=. The variables .1, . . . , .= are not independent, but consider a variable . ′

9
that

is 1 if . 9 = 1, or if . 9 = 0, then . ′
9
is 1 with probability ? − g9 . Clearly, the variables . ′1, . . . , . ′= are

independent, and
∑
8 .
′
9
≥ ∑

8 .8. For 8 < �, setting

V8+1 = 2=?8 = 2=(V8/=)3 ,

we have, by Chernoff’s inequality, that

U8+1 = P
[
B8+1

��� ∩8:=1B1
]
= P[o≥8+1(=) > V8+1] = P[o≥8+1(=) > 2=?8] ≤ P

[∑
8

. ′C > (1 + 1)=?8

]
≤ exp(−=?8/4) = exp(−V8+1/8) < 1/=22 .

(B) For V�+1, we have V�+1 ≤ 162 log =. Setting Δ = 24 · 162 log =, we have

U�+1 = P[o≥�+1(=) > V�+1] ≤ P

[∑
8

. ′C >
Δ

V�+1
V�+1

]
≤ 2−3242 log = ≤ 1

=2
,

172



by Lemma 8.2.7.
As for the conditioning used in the above, we have that P[G] =

∏�+1
ℓ=4 P

[
Bℓ+1

��� ∩ℓ:=1B1
]
=

∏
8 (1−U8) ≥

1 − 1/=2−1, since � ≤ =.

(C) Observe that t≥8+1(=) ≤ t≥8 (=). As such, for all 9 > 0, we have that t≥�+1+ 9 (=) ≤ o≥�+1(=) ≤
Δ = 24 · 162 log =, by (B). As such, we have

E
[
o≥�+1+ 9 (=)

]
≤ =(Δ/=)3 = $ (log3 =/=3−1) = $ (1/=3−1−Y) � 1,

for Y > 0 an arbitrary constant, and = sufficient large. Using Markov’s inequality, we get that
@ = P

[
o≥�+1+ 9 (=) ≥ 1

]
= $ (1/=3−1−Y). The probability that the first 9 such rounds fail (i.e., that

o≥�+1+ 9 (=) > 0) is at most @ 9 , as claimed.
(D) This follows immediately by picking Y = 1/2, and then using (C) with 9 = $ (2). �

Lemma 24.2.5. For 8 = 4, . . . , �, we have that V8 ≤ =/23
8−4+1.

Proof: The proof is by induction. For 8 = 4, we have V4 ≤ =/4, as claimed. Otherwise, we have

V8+1 = 2=(V8/=)3 ≤ 2=
(
1/238−4+1

)3
= =/238+1−4+3−1 ≤ =/238+1−4+1. �

Theorem 24.2.6. When throwing = balls into = bins, with 3 choices, with probability ≥ 1− 1/=$ (1), we
have that the maximum load of a bin is $ (1) + lg lg =/lg 3

Proof: By Lemma 24.2.4, with the desired probability the V8s bound the load in the bins for 8 ≤ �. By
Lemma 24.2.5, it follows that for � = $ (1) + (lg lg =)/lg 3, we have that V� ≤ >(log =). Thus giving us
the desired bound. �

It is not hard to verify that our upper bounds (i.e., V8) are not too badly off, and as such the
maximum load in the worst case is (up to additive constant) the same. We state the result without
proof.

Theorem 24.2.7. When throwing = balls into = bins, with 3 choices (where the ball is placed with the
bin with the least load), with probability ≥ 1− >(1/=), we have that the maximum load of a bin is at least
lg lg =/lg 3 −$ (1).

24.2.2. Applications

As a direct application, we can use this approach for open hashing, where we use two hash functions,
and place an element in the bucket of the hash table with fewer elements. By the above, this improves
the worst case search time from $ (log =/log log =) to $ (log log =). This comes at the cost of doubling
the time it takes to do lookup on average.
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# balls in bin Regular 2-choices 2-choices+go left
0 369,899,815 240,525,897 228,976,604
1 365,902,266 528,332,061 546,613,797
2 182,901,437 221,765,420 219,842,639
3 61,604,865 9,369,389 4,566,915
4 15,760,559 7,233 45
5 3,262,678
6 568,919
7 86,265
8 11,685
9 1,347
10 143
11 17
12 2
13 2

Figure 24.1: Simulation of the three schemes described here. This was done with = = 1, 000, 000, 000
balls thrown into = bins. Since log log = is so small (i.e., ≈ 3 in this case, there does not seem to be any
reasonable cases where the is a significant differences between 3-choices and the go-left variant. In the
simulations, the go-left variant always has a somewhat better distribution, as shown above.

24.2.3. The power of restricted 3 choices: Always go left

The always go left rule. Consider throwing a ball into = bins (which might already have some balls
in them) as follows – you pick uniformly a number -8 ∈ J=/3K, and you try locations .1, . . . , .3, where
. 9 = - 9 + 9 (=/3), for 9 = 1, . . . , 3. Let ! 9 be the load of bin . 9 , for 9 = 1, . . . , 3, and let ! = min 9 ! 9 be
the minimum load of any bin. Let g be the minimum index such that ! 9 = !. We throw the ball into
.g.

What the above scheme does, is to partition the = bins into 3 groups, placed from left to right. We
pick a bin uniformly from each group, and always throw the ball in the leftmost location that realizes
the minimum load.

The following proof is informal for the sake of simplicity.

Theorem 24.2.8. When throwing = balls into = bins, using the always-go-left rule, with 3 groups of
size =/3, the maximum load of a bin is $ (1) + (log log =)/3, with high probability.

Proof: Lemma 24.1.6 (B) tells us that =(1 − $ (log 3/3)) balls get placed as the first ball in their bin,
and their height is one.

Lemma 24.1.6 (C) implies that at most 3=/4−3/2 balls have height larger than 2.
Lemma 24.1.6 (A) implies that now we can repeat the same analysis as the power of two choices,

the critical difference is that every one of the 3 groups, behaves like a separate height. Since there are
$ (log log =) maximum height in the regular analysis, this implies that we get $ ((log log =)/3) maximum
load, with high probability. �
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24.3. Avoiding terrible choices
Interestingly, one can prove that two choices are not really necessary. Indeed, consider the variant where
the 8th ball randomly chooses a random location A8. The ball then is placed in the bin with least load
among the bins A8 and A8−1 (the first ball inspects only a single bin – A1). It is not difficult to show that
the above analysis applies in this settings, and the maximum load is $ (log log =) – despite making only
= choices for = balls. Intuitively, what is going on is that the power of two choices lies in the ability
to avoid following a horrible, no good, terrible choice, by having an alternative. This alternative choice
does not have to be quite of the same quality as the original choice - it can be stolen from the previous
ball, etc.

24.4. Bibliographical notes
The multi-row balls into bins (Section 24.1) is from the work by Broder and Karlin [BK90]. The power
of two choices (Section 24.2) is from Azar et al. [ABKU99].

The restricted 3 choices structure, the always go-left rule, described in Section 24.2.3, is from [V0̈3].
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Chapter 25

Finite Metric Spaces and Partitions
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

25.1. Finite Metric Spaces
Definition 25.1.1. A metric space is a pair (X, d) where X is a set and d : X×X→ [0,∞) is a metric,
satisfying the following axioms:
(i) d(G, H) = 0 ⇐⇒ G = H,
(ii) d(G, H) = d(H, G), and
(iii) d(G, H) + d(H, I) ≥ d(G, I) (triangle inequality).

The plane, R2, with the regular Euclidean distance is a metric space.
Of special interest is the finite case, where X is an =-point set. Then, the function d can be specified

by
(=
2
)
real numbers. Alternatively, one can think about (X, d) as a weighted complete graph, where

positive weights are specified on the edges, and these weights comply with the triangle inequality.
Finite metric spaces rise naturally from (sparse) graphs. Indeed, let G = (X, E) be an undirected

weighted graph defined over X, and let dG(G, H) be the length of the shortest path between G and H in
G. It is easy to verify that (X, d�) is a finite metric space. As such if the graph G is sparse, it provides
a compact representation to the finite space (X, d�).

Definition 25.1.2. Let (X, 3) be an =-point metric space. We denote the open ball of radius A about
G ∈ X, by b(G, A) = {H ∈ X | d(G, H) < A}.

Underling our discussion of metric spaces are algorithmic applications. The hardness of various
computational problems depends heavily on the structure of the finite metric space. Thus, given a finite
metric space, and a computational task, it is natural to try to map the given metric space into a new
metric where the task at hand becomes easy.

Example 25.1.3. Computing the diameter of a point set is not trivial in two dimensions (if one wants
near linear running time), but is easy in one dimension. Thus, if we could map points in two dimensions
into points in one dimension, such that the diameter is preserved, then computing the diameter becomes
easy. This approach yields an efficient approximation algorithm, see Exercise 25.7.3 below.

Of course, this mapping from one metric space to another, is going to introduce error. Naturally,
one would like to minimize the error introduced by such a mapping.
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Definition 25.1.4. Let (X, dX) and (Y, dY) be two metric spaces. A mapping 5 : X→ Y is an embedding,
and it is �-Lipschitz if d.

(
5 (G), 5 (H)

)
≤ � ·dX(G, H) for all G, H ∈ X. The mapping 5 is  -bi-Lipschitz

if there exists a � > 0 such that

� −1 · dX(G, H) ≤ d.
(
5 (G), 5 (H)

)
≤ � · dX(G, H),

for all G, H ∈ X.
The least  for which 5 is  -bi-Lipschitz is the distortion of 5 , and is denoted dist( 5 ). The least

distortion with which X may be embedded in Y is denoted 2
Y
(X).

Informally, if 5 : X→ Y has distortion  , then the distances in X and 5 (X) ⊆ Y are the same up to
a factor of  (one might need to scale up the distances by some constant �).

There are several powerful results about low distortion embeddings that would be presented:
(I) Probabilistic trees. Every finite metric can be randomly embedded into a tree such that the

“expected” distortion for a specific pair of points is $ (log =).
(II) Bourgain embedding. Any =-point metric space can be embedded into (finite dimensional)

euclidean metric space with $ (log =) distortion.
(III) Johnson-Lindenstrauss lemma. Any =-point set in Euclidean space with the regular Euclidean

distance can be embedded into R: with distortion (1 + Y), where : = $ (Y−2 log =).

25.2. Examples

What is distortion? When considering a mapping 5 : X → R3 of a metric space (X, d) to R3, it
would useful to observe that since R3 can be scaled, we can consider 5 to be an expansion (i.e., no
distances shrink). Furthermore, we can assume that there is at least one pair of points G, H ∈ X, such
that d(G, H) = ‖G − H‖. As such, we have dist( 5 ) = maxG,H ‖G−H‖d(G,H) .

Why is distortion necessary? Consider the a graph G = (V, E) with one vertex B
connected to three other vertices 0, 1, 2, where the weights on the edges are all one (i.e., G
is the star graph with three leafs). We claim that G can not be embedded into Euclidean
space with distortion ≤

√
2. Indeed, consider the associated metric space (V, d�) and an

(expansive) embedding 5 : V→ R3.

a
s

c

b

Consider the triangle formed by 4 = 0′1′2′, where 0′ = 5 (0), 1′ = 5 (1) and 2′ = 5 (2). Next, consider
the following quantity max(‖0′ − B′‖ , ‖1′ − B′‖ , ‖2′ − B′‖) which lower bounds the distortion of 5 . This
quantity is minimized when A = ‖0′ − B′‖ = ‖1′ − B′‖ = ‖2′ − B′‖. Namely, B′ is the center of the smallest
enclosing circle of 4. However, A is minimized when all the edges of 4 are of equal length, and are of
length d� (0, 1) = 2. It follows that dist( 5 ) ≥ A ≥ 2/

√
3.

2

1a′ b′

c′This quantity is minimized when A = ‖0′ − B′‖ = ‖1′ − B′‖ = ‖2′ − B′‖. Namely, B′
is the center of the smallest enclosing circle of 4. However, A is minimized when all
the edges of 4 are of equal length and are of length dG(0, 1) = 2. Observe that the
height of the equilateral triangle with sidelength 2 is ℎ =

√
3, and the radius of its

inscribing circle is A = (2/3)ℎ = 2/
√

3; see the figure on the right. As such, it follows
that dist( 5 ) ≥ A = 2/

√
3.

Note that the above argument is independent of the target dimension 3. A packing argument shows
that embedding the star graph with = leaves into R3 requires distortion Ω

(
=1/3

)
; see Exercise ??. It
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is known that Ω(log =) distortion is necessary in the worst case when embedding a graph into Eu-
clidean space (this is shown using expanders). A proof of distortion Ω(log =/log log =) is sketched in the
bibliographical notes.

25.2.1. Hierarchical Tree Metrics

The following metric is quite useful in practice, and nicely demonstrate why algorithmically finite metric
spaces are useful.

Definition 25.2.1. Hierarchically well-separated tree (HST) is a metric space defined on the leaves
of a rooted tree ) . To each vertex D ∈ ) there is associated a label ΔD ≥ 0 such that ΔD = 0 if and only
if D is a leaf of ) . The labels are such that if a vertex D is a child of a vertex E then ΔD ≤ ΔE. The
distance between two leaves G, H ∈ ) is defined as Δ lca(G,H), where lca(G, H) is the least common ancestor
of G and H in ) .

A HST ) is a :-HST if for a vertex E ∈ ) , we have that ΔE ≤ Δp(E)/:, where p(E) is the parent of
E in ) .

Note that a HST is a very limited metric. For example, consider the cycle � = �= of = vertices, with
weight one on the edges, and consider an expansive embedding 5 of G into a HST HST. It is easy to
verify, that there must be two consecutive nodes of the cycle, which are mapped to two different subtrees
of the root A of HST. Since HST is expansive, it follows that ΔA ≥ =/2. As such, dist( 5 ) ≥ =/2. Namely,
HSTs fail to faithfully represent even very simple metrics.

25.2.2. Clustering

One natural problem we might want to solve on a graph (i.e., finite metric space) (X, d) is to partition it
into clusters. One such natural clustering is the :-median clustering, where we would like to choose
a set � ⊆ X of : centers, such that a� (X, d) =

∑
q∈X d(q, �) is minimized, where d(q, �) = min2∈� d(q, 2)

is the distance of q to its closest center in �.
It is known that finding the optimal :-median clustering in a (general weighted) graph is NP-

complete. As such, the best we can hope for is an approximation algorithm. However, if the structure
of the finite metric space (X, d) is simple, then the problem can be solved efficiently. For example, if the
points of X are on the real line (and the distance between 0 and 1 is just |0 − 1 |), then :-median can
be solved using dynamic programming.

Another interesting case is when the metric space (X, d) is a HST. Is not too hard to prove the
following lemma. See Exercise 25.7.1.

Lemma 25.2.2. Let (X, d) be a HST defined over = points, and let : > 0 be an integer. One can
compute the optimal :-median clustering of X in $ (:2=) time.

Thus, if we can embed a general graph G into a HST HST, with low distortion, then we could
approximate the :-median clustering on G by clustering the resulting HST, and “importing” the resulting
partition to the original space. The quality of approximation, would be bounded by the distortion of
the embedding of G into HST.
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Figure 25.1: An example of the partition of a square (induced by a set of points) as described in
Section 25.3.1.

25.3. Random Partitions
Let (X, 3) be a finite metric space. Given a partition % = {�1, . . . , �<} of X, we refer to the sets �8 as
clusters. We write PX for the set of all partitions of X. For G ∈ X and a partition % ∈ PX we denote
by %(G) the unique cluster of % containing G. Finally, the set of all probability distributions on PX is
denoted DX.

The following partition scheme is due to [?].

25.3.1. Constructing the partition
Consider a given metric space (X, d), where X is a set of = points.

Let Δ = 2D be a prescribed parameter, which is the required diameter of the resulting clusters.
Choose, uniformly at random, a permutation c of X and a random value U ∈ [1/4, 1/2]. Let ' = UΔ,
and observe that it is uniformly distributed in the interval [Δ/4,Δ/2].

The partition is now defined as follows: A point G ∈ X is assigned to the cluster �H of H, where H is
the first point in the permutation in distance ≤ ' from G. Formally,

�H =
{
G ∈ X

�� G ∈ b(H, ') and c(H) ≤ c(I) for all I ∈ X with G ∈ b(I, ')
}
.
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Figure 25.2: The resulting partition.

Let % = {�H}H∈X denote the resulting partition.
Here is a somewhat more intuitive explanation: Once we fix the radius of the clusters ', we start

scooping out balls of radius ' centered at the points of the random permutation c. At the 8th stage, we
scoop out only the remaining mass at the ball centered at G8 of radius A, where G8 is the 8th point in the
random permutation.

25.3.2. Properties
The following lemma quantifies the probability of a (crystal) ball of radius C centered at a point G is
fully contained in one of the clusters of the partition? (Otherwise, the crystal ball is of course broken.)

Lemma 25.3.1. Let (X, 3) be a finite metric space, Δ = 2D a prescribed parameter, and let % be the
partition of X generated by the above random partition. Then the following holds:
(i) For any � ∈ %, we have diam(�) ≤ Δ.
(ii) Let G be any point of X, and C a parameter ≤ Δ/8. Then,

P
[
b(G, C) * %(G)

]
≤ 8C
Δ

ln 1
0
,

where 0 = |b(G,Δ/8) |, and 1 = |b(G,Δ) |.

Proof: Since �H ⊆ b(H, '), we have that diam(�H) ≤ Δ, and thus the first claim holds.
Let * be the set of points of b(G,Δ), such that F ∈ * iff b(F, ') ∩ b(G, C) ≠ ∅. Arrange the points

of * in increasing distance from G, and let F1, . . . , F1′ denote the resulting order, where 1′ = |* |.
Let �: = [3 (G, F: ) − C, 3 (G, F: ) + C] and write E: for the event that F: is the first point in c such
that b(G, C) ∩ �F: ≠ ∅, and yet b(G, C) * �F: . Note that if F: ∈ b(G,Δ/8), then P[E: ] = 0 since
b(G, C) ⊆ b(G,Δ/8) ⊆ b(F: ,Δ/4) ⊆ b(F: , ').

In particular, F1, . . . , F0 ∈ b(G,Δ/8) and as such P[E1] = · · · = P[E0] = 0. Also, note that if
d(G, F: ) < '−C then b(F: , ') contains b(G, C) and as such E: can not happen. Similarly, if d(G, F: ) > '+C
then b(F: , ') ∩ b(G, C) = ∅ and E: can not happen. As such, if E: happen then ' − C ≤ d(G, F: ) ≤ ' + C.
Namely, if E: happen then ' ∈ �: . Namely, P[E: ] = P[E: ∩ (' ∈ �: )] = P[' ∈ �: ] · P[E: | ' ∈ �: ].
Now, ' is uniformly distributed in the interval [Δ/4,Δ/2], and �: is an interval of length 2C. Thus,
P[' ∈ �: ] ≤ 2C/(Δ/4) = 8C/Δ.

Next, to bound P[E: | ' ∈ �: ], we observe that F1, . . . , F:−1 are closer to G than F: and their distance
to b(G, C) is smaller than '. Thus, if any of them appear before F: in c then E: does not happen. Thus,
P[E: | ' ∈ �: ] is bounded by the probability that F: is the first to appear in c out of F1, . . . , F: . But
this probability is 1/:, and thus P[E: | ' ∈ �: ] ≤ 1/:.
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We are now ready for the kill. Indeed,

P[b(G, C) * %(G)] =
1′∑
:=1
P[E: ] =

1′∑
:=0+1

P[E: ] =
1′∑

:=0+1
P[' ∈ �: ] · P[E: | ' ∈ �: ]

≤
1′∑

:=0+1

8C
Δ
· 1
:
≤ 8C
Δ

ln 1
′

0
≤ 8C
Δ

ln 1
0
,

since
∑1
:=0+1

1
:
≤

∫ 1

0

3G
G
= ln 1

0
and 1′ ≤ 1. �

25.4. Probabilistic embedding into trees
In this section, given =-point finite metric (X, d). we would like to embed it into a HST. As mentioned
above, one can verify that for any embedding into HST, the distortion in the worst case is Ω(=). Thus,
we define a randomized algorithm that embed (X, 3) into a tree. Let ) be the resulting tree, and
consider two points G, H ∈ X. Consider the random variable d) (G, H). We constructed the tree ) such
that distances never shrink; i.e. d(G, H) ≤ d) (G, H). The probabilistic distortion of this embedding is
maxG,H E

[
d) (G,H)
d(G,H)

]
. Somewhat surprisingly, one can find such an embedding with logarithmic probabilistic

distortion.
Theorem 25.4.1. Given =-point metric (X, 3) one can randomly embed it into a 2-HST with proba-
bilistic distortion ≤ 24 ln =.

Proof: The construction is recursive. Let diam(%), and compute a random partition of X with cluster
diameter diam(%)/2, using the construction of Section 25.3.1. We recursively construct a 2-HST for
each cluster, and hang the resulting clusters on the root node E, which is marked by ΔE = diam(%).
Clearly, the resulting tree is a 2-HST.

For a node E ∈ ) , let X(E) be the set of points of X contained in the subtree of E.
For the analysis, assume diam(%) = 1, and consider two points G, H ∈ X. We consider a node E ∈ )

to be in level 8 if level(E) = dlgΔEe = 8. The two points G and H correspond to two leaves in ) , and let D̂
be the least common ancestor of G and H in C. We have d) (G, H) ≤ 2level(E). Furthermore, note that along
a path the levels are strictly monotonically increasing.

Being more conservative, let F be the first ancestor of G, such that b = b
(
G, d(G, H)

)
is not completely

contained in X(D1), . . . ,X(D<), where D1, . . . , D< are the children of F. Clearly, level(F) > level(D̂).
Thus, d) (G, H) ≤ 2level(F).

Consider the path f from the root of ) to G, and let E8 be the event that b is not fully contained in
X(E8), where E8 is the node of f of level 8 (if such a node exists). Furthermore, let .8 be the indicator
variable which is 1 if E8 is the first to happened out of the sequence of events E0,E−1, . . .. Clearly,
d) (G, H) ≤

∑
.828.

Let C = d(G, H) and 9 = blg d(G, H)c, and =8 =
��b(G, 28)�� for 8 = 0, . . . ,−∞. We have

E[d) (G, H)] ≤
0∑
8= 9

E[.8] 28 ≤
0∑
8= 9

28 P
[
E8 ∩ E8−1 ∩ E8−1 · · ·E0

]
≤

0∑
8= 9

28 · 8C28 ln =8

=8−3
,

by Lemma 25.3.1. Thus,

E[d) (G, H)] ≤ 8C ln
( 0∏
8= 9

=8

=8−3

)
≤ 8C ln(=0 · =1 · =2) ≤ 24C ln =.
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Figure 25.3: Examples of the sets resulting from the partition of Figure 25.1 and taking clusters into a
set with probability 1/2.

It thus follows, that the expected distortion for G and H is ≤ 24 ln =. �

25.4.1. Application: approximation algorithm for :-median clustering
Let (X, d) be a =-point metric space, and let : be an integer number. We would like to compute the
optimal :-median clustering. Number, find a subset �opt ⊆ X, such that a�opt (X, d) is minimized, see
Section 25.2.2. To this end, we randomly embed (X, d) into a HST HST using Theorem 25.4.1. Next,
using Lemma 25.2.2, we compute the optimal :-median clustering of HST. Let � be the set of centers
computed. We return � together with the partition of X it induces as the required clustering.

Theorem 25.4.2. Let (X, d) be a =-point metric space. One can compute in polynomial time a :-
median clustering of X which has expected price $ (U log =), where U is the price of the optimal :-median
clustering of (X, d).

Proof: The algorithm is described above, and the fact that its running time is polynomial can be easily
be verified. To prove the bound on the quality of the clustering, for any point ? ∈ X, let cen(?) denote
the closest point in �opt to ? according to d, where �opt is the set of :-medians in the optimal clustering.
Let � be the set of :-medians returned by the algorithm, and let HST be the HST used by the algorithm.
We have

V = a� (X, d) ≤ a� (X, dHST) ≤ a�opt (X, dHST) ≤
∑
?∈X

dHST(?, �opt) ≤
∑
?∈X

dHST(?, cen(?)).

Thus, in expectation we have

E[V] = E
[∑
?∈X

dHST(?, cen(?))
]
=

∑
?∈X
E[dHST(?, cen(?))] =

∑
?∈X

$ (d(?, cen(?)) log =)

= $

(
(log =)

∑
?∈X

d(?, cen(?))
)
= $

(
a�opt (X, d) log =

)
,

by linearity of expectation and Theorem 25.4.1. �

25.5. Embedding any metric space into Euclidean space
Lemma 25.5.1. Let (X, d) be a metric, and let . ⊂ X. Consider the mapping 5 : X → R, where
5 (G) = d(G,. ) = minH∈. d(G, H). Then for any G, H ∈ X, we have | 5 (G) − 5 (H) | ≤ d(G, H). Namely 5 is
nonexpansive.
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Proof: Indeed, let G′ and H′ be the closet points of . , to G and H, respectively. Observe that

5 (G) = d(G, G′) ≤ d(G, H′) ≤ d(G, H) + d(H, H′) = d(G, H) + 5 (H)

by the triangle inequality. Thus, 5 (G) − 5 (H) ≤ d(G, H). By symmetry, we have 5 (H) − 5 (G) ≤ d(G, H).
Thus, | 5 (G) − 5 (H) | ≤ d(G, H). �

25.5.1. The bounded spread case
Let (X, d) be a =-point metric. The spread of X, denoted by

Φ(X) = diam(X)
minG,H∈X,G≠H d(G, H)

,

is the ratio between the diameter of X and the distance between the closest pair of points.

Theorem 25.5.2. Given a =-point metric Y = (X, 3), with spread Φ, one can embed it into Euclidean
space R: with distortion $

(√
lnΦ ln =

)
, where : = $ (lnΦ ln =).

Proof: Assume that diam(Y) = Φ (i.e., the smallest distance in Y is 1), and let A8 = 28−2, for 8 = 1, . . . , U,
where U = dlgΦe. Let %8, 9 be a random partition of % with diameter A8, using Theorem 25.4.1, for
8 = 1, . . . , U and 9 = 1, . . . , V, where V = d2 log =e and 2 is a large enough constant to be determined
shortly.

For each cluster of %8, 9 randomly toss a coin, and let +8, 9 be the all the points of X that belong to
clusters in %8, 9 that got ’) ’ in their coin toss. For a point D ∈ G, let

58, 9 (G) = d(G,X \+8, 9 ) = min
E∈X\+8, 9

d(G, E),

for 8 = 0, . . . , < and 9 = 1, . . . , V. Let � : X→ R(<+1)·V be the embedding, such that

� (G) =
(
50,1(G), 50,2(G), . . . , 50,V (G)︸                             ︷︷                             ︸

first n resolution block

, 51,1(G), 51,2(G), . . . , 51,V (G), . . . , 5<,1(G), 5<,2(G), . . . , 5U,V (G)
)
.

Next, consider two points G, H ∈ X, with distance q = d(G, H). Let : be an integer such that
AD ≤ q/2 ≤ AD+1. Clearly, in any partition of %D,1, . . . , %D,V the points G and H belong to different clusters.
Furthermore, with probability half G ∈ +D, 9 and H ∉ +D, 9 or G ∉ +D, 9 and H ∈ +D, 9 , for 1 ≤ 9 ≤ V.

Let E 9 denote the event that b(G, d) ⊆ +D, 9 and H ∉ +D, 9 , for 9 = 1, . . . , V, where d = q/(64 ln =). By
Lemma 25.3.1, we have

P
[
b(G, d) * %D, 9 (G)

]
≤ 8d
AD

ln = ≤ q

8AD
≤ 1/2.

Thus,

P
[
E 9

]
= P

[ (
b(G, d) ⊆ %D, 9 (G)

)
∩

(
G ∈ +D, 9

)
∩

(
H ∉ +D, 9

) ]
= P

[
b(G, d) ⊆ %D, 9 (G)

]
· P

[
G ∈ +D, 9

]
· P

[
H ∉ +D, 9

]
≥ 1/8,

since those three events are independent. Notice, that if E 9 happens, than 5D, 9 (G) ≥ d and 5D, 9 (H) = 0.
Let - 9 be an indicator variable which is 1 if E 9 happens, for 9 = 1, . . . , V. Let / =

∑
9 - 9 , and

we have ` = E[/] = E
[∑

9 - 9
]
≥ V/8. Thus, the probability that only V/16 of E1, . . . ,EV happens, is
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P[/ < (1 − 1/2) E[/]]. By the Chernoff inequality, we have P[/ < (1 − 1/2) E[/]] ≤ exp
(
−`1/(2 · 22)

)
=

exp(−V/64) ≤ 1/=10, if we set 2 = 640.
Thus, with high probability

‖� (G) − � (H)‖ ≥

√√√ V∑
9=1

(
5D, 9 (G) − 5D, 9 (H)

)2 ≥
√
d2 V

16 =
√
V
d

4 = q ·
√
V

256 ln = .

On the other hand,
�� 58, 9 (G) − 58, 9 (H)�� ≤ d(G, H) = q ≤ 64d ln =. Thus,

‖� (G) − � (H)‖ ≤
√
UV(64d ln =)2 ≤ 64

√
UVd ln = =

√
UV · q.

Thus, setting � (G) = � (G) 256 ln =√
V

, we get a mapping that maps two points of distance q from each

other to two points with distance in the range
[
q, q ·

√
UV · 256 ln =√

V

]
. Namely, � (·) is an embedding with

distortion $ (
√
U ln =) = $ (

√
lnΦ ln =).

The probability that G fails on one of the pairs, is smaller than (1/=10) ·
(=
2
)
< 1/=8. In particular,

we can check the distortion of G for all
(=
2
)
pairs, and if any of them fail (i.e., the distortion is too big),

we restart the process. �

25.5.2. The unbounded spread case
Our next task, is to extend Theorem 25.5.2 to the case of unbounded spread. Indeed, let (X, 3) be a
=-point metric, such that diam(X) ≤ 1/2. Again, we look on the different resolutions A1, A2, . . ., where
A8 = 1/28−1. For each one of those resolutions A8, we can embed this resolution into V coordinates, as
done for the bounded case. Then we concatenate the coordinates together.

There are two problems with this approach: (i) the number of resulting coordinates is infinite, and (ii)
a pair G, H, might be distorted a “lot” because it contributes to all resolutions, not only to its “relevant”
resolutions.

Both problems can be overcome with careful tinkering. Indeed, for a resolution A8, we are going to
modify the metric, so that it ignores short distances (i.e., distances ≤ A8/=2). Formally, for each resolution
A8, let �8 = (X, �̂8) be the graph where two points G and H are connected if d(G, H) ≤ A8/=2. Consider a
connected component � ∈ �8. For any two points G, H ∈ �, we have d(G, H) ≤ =(A8/=2) ≤ A8/=. Let X8
be the set of connected components of �8, and define the distances between two connected components
�,�′ ∈ X8, to be d8 (�,�′) = d(�,�′) = min2∈�,2′∈� ′ d(2, 2′).

It is easy to verify that (X8, d8) is a metric space (see Exercise 25.7.2). Furthermore, we can naturally
embed (X, d) into (X8, d8) by mapping a point G ∈ X to its connected components in X8. Essentially
(X8, d8) is a snapped version of the metric (X, 3), with the advantage that Φ((X, d8)) = $ (=2). We now
embed X8 into V = $ (log =) coordinates. Next, for any point of X we embed it into those V coordinates,
by using the embedding of its connected component in X8. Let �8 be the embedding for resolution
A8. Namely, �8 (G) = ( 58,1(G), 58,2(G), . . . , 58,V (G)), where 58, 9 (G) = min(d8 (G,X \ +8, 9 ), 2A8). The resulting
embedding is � (G) = ⊕�8 (G) = (�1(G), �2(G), . . . , ).

Since we slightly modified the definition of 58, 9 (·), we have to show that 58, 9 (·) is nonexpansive.
Indeed, consider two points G, H ∈ X8, and observe that�� 58, 9 (G) − 58, 9 (H)�� ≤ ��d8 (G,+8, 9 ) − d8 (H,+8, 9 )�� ≤ d8 (G, H) ≤ d(G, H),
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as a simple case analysis¬ shows.
For a pair G, H ∈ X, and let q = d(G, H). To see that � (·) is the required embedding (up to scaling),

observe that, by the same argumentation of Theorem 25.5.2, we have that with high probability

‖� (G) − � (H)‖ ≥ q ·
√
V

256 ln = .

To get an upper bound on this distance, observe that for 8 such that A8 > q=2, we have �8 (G) = �8 (H).
Thus,

‖� (G) − � (H)‖2 =
∑
8

‖�8 (G) − �8 (H)‖2 =
∑

8,A8<q=
2

‖�8 (G) − �8 (H)‖2

=
∑

8,q/=2<A8<q=2

‖�8 (G) − �8 (H)‖2 +
∑

8,A8<q/=2

‖�8 (G) − �8 (H)‖2

= Vq2 lg
(
=4) + ∑

8,A8<q/=2

(2A8)2V ≤ 4Vq2 lg = + 4q2V

=4 ≤ 5Vq2 lg =.

Thus, ‖� (G) − � (H)‖ ≤ q
√

5V lg =. We conclude, that with high probability, � (·) is an embedding of X
into Euclidean space with distortion

(
q
√

5V lg =
)
/
(
q ·

√
V

256 ln =

)
= $ (log3/2 =).

We still have to handle the infinite number of coordinates problem. However, the above proof shows
that we care about a resolution A8 (i.e., it contributes to the estimates in the above proof) only if there
is a pair G and H such that A8/=2 ≤ d(G, H) ≤ A8=2. Thus, for every pair of distances there are $ (log =)
relevant resolutions. Thus, there are at most [ = $ (=2V log =) = $ (=2 log2 =) relevant coordinates, and
we can ignore all the other coordinates. Next, consider the affine subspace ℎ that spans � (%). Clearly,
it is = − 1 dimensional, and consider the projection � : R[ → R=−1 that projects a point to its closest
point in ℎ. Clearly, � (� (·)) is an embedding with the same distortion for %, and the target space is of
dimension = − 1.

Note, that all this process succeeds with high probability. If it fails, we try again. We conclude:

Theorem 25.5.3 (Low quality Bourgain theorem). Given a =-point metric ", one can embed it
into Euclidean space of dimension =−1, such that the distortion of the embedding is at most $ (log3/2 =).

Using the Johnson-Lindenstrauss lemma, the dimension can be further reduced to $ (log =). Being
more careful in the proof, it is possible to reduce the dimension to $ (log =) directly.

25.6. Bibliographical notes
The partitions we use are due to Calinescu et al. [?]. The idea of embedding into spanning trees is due to

Alon et al. [AKPW95], which showed that one can get a probabilistic distortion of 2$
(√

log = log log =
)
. Yair

Bartal realized that by allowing trees with additional vertices, one can get a considerably better result. In
particular, he showed [Bar96] that probabilistic embedding into trees can be done with polylogarithmic
average distortion. He later improved the distortion to $ (log = log log =) in [Bar98]. Improving this

¬Indeed, if 58, 9 (G) < d8 (G,+8, 9 ) and 58, 9 (H) < d8 (G,+8, 9 ) then 58, 9 (G) = 2A8 and 58, 9 (H) = 2A8, which implies the above
inequality. If 58, 9 (G) = d8 (G,+8, 9 ) and 58, 9 (H) = d8 (G,+8, 9 ) then the inequality trivially holds. The other option is handled in
a similar fashion.
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result was an open question, culminating in the work of Fakcharoenphol et al. [FRT04] which achieve
the optimal $ (log =) distortion.

Our proof of Lemma 25.3.1 (which is originally from [FRT04]) is taken from [KLMN05]. The proof
of Theorem 25.5.3 is by Gupta [Gup00].

A good exposition of metric spaces is available in Matoušek [Mat02].

Embedding into spanning trees. The above embeds the graph into a Steiner tree. A more useful
representation, would be a random embedding into a spanning tree. Surprisingly, this can be done, as
shown by Emek et al. [EEST08]. This was improved to $ (log = · log log = · (log log log =)3) by Abraham
et al. [ABN08a, ABN08b].

Alternative proof of the tree embedding result. Interestingly, if one does not care about the
optimal distortion, one can get similar result (for embedding into probabilistic trees), by first embedding
the metric into Euclidean space, then reduce the dimension by the Johnson-Lindenstrauss lemma, and
finally, construct an HST by constructing a quadtree over the points. The “trick” is to randomly translate
the quadtree. It is easy to verify that this yields $ (log4 =) distortion. See the survey by Indyk [Ind01]
for more details. This random shifting of quadtrees is a powerful technique that was used in getting
several result, and it is a crucial ingredient in Arora [Aro98] approximation algorithm for Euclidean
TSP.

25.7. Exercises
Exercise 25.7.1 (Clustering for HST). Let (X, d) be a HST defined over = points, and let : > 0 be an
integer. Provide an algorithm that computes the optimal :-median clustering of X in $ (:2=) time.

[Transform the HST into a tree where every node has only two children. Next, run a dynamic
programming algorithm on this tree.]

Exercise 25.7.2 (Partition induced metric).
(a) Give a counter example to the following claim: Let (X, d) be a metric space, and let % be a

partition of X. Then, the pair (%, d′) is a metric, where d′(�,�′) = d(�,�′) = minG∈�,H∈� ′ d(G, H)
and �,�′ ∈ %.

(b) Let (X, d) be a =-point metric space, and consider the set * =
{
8
�� 28 ≤ d(G, H) ≤ 28+1, for G, H ∈ X

}
.

Prove that |* | = $ (=). Namely, there are only = different resolutions that “matter” for a finite
metric space.

Exercise 25.7.3 (Computing the diameter via embeddings).
(a) (h:1) Let ℓ be a line in the plane, and consider the embedding 5 : R2 → ℓ, which is the projection

of the plane into ℓ. Prove that 5 is 1-Lipschitz, but it is not  -bi-Lipschitz for any constant  .
(b) (h:3) Prove that one can find a family of projections F of size $ (1/

√
Y), such that for any two

points G, H ∈ R2, for one of the projections 5 ∈ F we have d( 5 (G), 5 (H)) ≥ (1 − Y)d(G, H).
(c) (h:1) Given a set % of = in the plane, given a $ (=/

√
Y) time algorithm that outputs two points

G, H ∈ %, such that d(G, H) ≥ (1 − Y)diam(%), where diam(%) = maxI,F∈% d(I, F) is the diameter of
%.

Truely a polyglot of logs.
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(d) (h:2) Given %, show how to extract, in $ (=) time, a set & ⊆ % of size $ (Y−2), such that diam(&) ≥
(1 − Y/2)diam(%). (Hint: Construct a grid of appropriate resolution.)
In particular, give an (1−Y)-approximation algorithm to the diameter of % that works in $ (=+Y−2.5)
time. (There are slightly faster approximation algorithms known for approximating the diameter.)
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Chapter 26

Entropy, Randomness, and Information
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

“If only once - only once - no matter where, no matter before what audience - I could better the record of the
great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished
something for my country. But I am not getting any younger, and although I am still at the peak of my powers
there are moments - why deny it? - when I begin to doubt - and there is a time limit on all of us.”

Romain Gary, The talent scout

26.1. The entropy function
Definition 26.1.1. The entropy in bits of a discrete random variable - is given by

H(-) = −
∑
G

P[- = G] lg P[- = G],

where lg G is the logarithm base 2 of G. Equivalently, H(-) = E
[
lg 1
P[-]

]
.

The binary entropy function H(?) for a random binary variable that is 1 with probability ?, is

H(?) = −? lg ? − (1 − ?) lg(1 − ?).

We define H(0) = H(1) = 0.

The function H(?) is a concave symmetric around 1/2 on the interval [0, 1] and achieves its maximum
at 1/2. For a concrete example, consider H(3/4) ≈ 0.8113 and H(7/8) ≈ 0.5436. Namely, a coin that has
3/4 probably to be heads have higher amount of “randomness” in it than a coin that has probability
7/8 for heads.

Writing lg = = (ln =)/ln 2, we have that

H(?) = 1
ln 2

(
−? ln ? − (1 − ?) ln(1 − ?)

)
and H′(?) = 1

ln 2

(
− ln ? − ?

?
− (−1) ln(1 − ?) − 1 − ?

1 − ? (−1)
)
= lg 1 − ?

?
.

Deploying our amazing ability to compute derivative of simple functions once more, we get that

H′′(?) = 1
ln 2

?

1 − ?

(
?(−1) − (1 − ?)

?2

)
= − 1

?(1 − ?) ln 2 .
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H(p) = −p lg p− (1− p) lg(1− p)
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Figure 26.1: The binary entropy function.

Since ln 2 ≈ 0.693, we have that H′′(?) ≤ 0, for all ? ∈ (0, 1), and the H(·) is concave in this range. Also,
H′(1/2) = 0, which implies that H(1/2) = 1 is a maximum of the binary entropy. Namely, a balanced
coin has the largest amount of randomness in it.

Example 26.1.2. A random variable - that has probability 1/= to be 8, for 8 = 1, . . . , =, has entropy
H(-) = −∑=

8=1
1
=

lg 1
=
= lg =.

Note, that the entropy is oblivious to the exact values that the random variable can have, and it is
sensitive only to the probability distribution. Thus, a random variables that accepts −1, +1 with equal
probability has the same entropy (i.e., 1) as a fair coin.

Lemma 26.1.3. Let - and . be two independent random variables, and let / be the random variable
(-,)). Then H(/) = H(-) + H(. ).

Proof: In the following, summation are over all possible values that the variables can have. By the
independence of - and . we have

H(/) =
∑
G,H

P[(-,. ) = (G, H)] lg
1

P[(-,. ) = (G, H)]

=
∑
G,H

P[- = G] P[. = H] lg
1

P[- = G] P[. = H]

=
∑
G

∑
H

P[- = G] P[. = H] lg
1

P[- = G]

+
∑
H

∑
G

P[- = G] P[. = H] lg
1

P[. = H]

=
∑
G

P[- = G] lg
1

P[- = G]
+

∑
H

P[. = H] lg
1

P[. = H]
= H(-) + H(. ). �

Lemma 26.1.4. Suppose that =@ is integer in the range [0, =]. Then 2=H(@)
= + 1 ≤

(
=

=@

)
≤ 2=H(@).
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Proof: This trivially holds if @ = 0 or @ = 1, so assume 0 < @ < 1. We know that(
=

=@

)
@=@ (1 − @)=−=@ ≤ (@ + (1 − @))= = 1

=⇒
(
=

=@

)
≤ @−=@ (1 − @)−=(1−@) = 2= (−@ lg @−(1−@) lg(1−@)) = 2=H(@) .

As for the other direction, let

`(:) =
(
=

:

)
@: (1 − @)=−: .

The claim is that `(=@) is the largest term in
∑=
:=0 `(:) = 1, where `(:) =

(=
:

)
@: (1 − @)=−: . Indeed,

Δ : = `(:) − `(: + 1) =
(
=

:

)
@: (1 − @)=−:

(
1 − = − :

: + 1
@

1 − @

)
,

and the sign of this quantity is the sign of (: +1) (1−@) − (=− :)@ = : +1− :@−@−=@+ :@ = 1+ :−@−=@.
Namely, Δ : ≥ 0 when : ≥ =@ + @ − 1, and Δ : < 0 otherwise. Namely, `(:) < `(: + 1), for : < =@, and
`(:) ≥ `(: + 1) for : ≥ =@. Namely, `(=@) is the largest term in

∑=
:=0 `(:) = 1, and as such it is larger

than the average. We have `(=@) =
( =
=@

)
@=@ (1 − @)=−=@ ≥ 1

=+1 , which implies(
=

=@

)
≥ 1
= + 1@

−=@ (1 − @)−(=−=@) = 1
= + 12=H(@) . �

Lemma 26.1.4 can be extended to handle non-integer values of @. This is straightforward, and we
omit the easy details.

Corollary 26.1.5. We have:

(i) @ ∈ [0, 1/2] ⇒
(
=

b=@c

)
≤ 2=H(@).

(ii) @ ∈ [1/2, 1] ⇒
(
=

d=@e

)
≤ 2=H(@).

(iii) @ ∈ [1/2, 1] ⇒ 2=H(@)
= + 1 ≤

(
=

b=@c

)
.

(iv) @ ∈ [0, 1/2] ⇒ 2=H(@)
= + 1 ≤

(
=

d=@e

)
.

The bounds of Lemma 26.1.4 and Corollary 26.1.5 are loose but sufficient for our purposes. As a
sanity check, consider the case when we generate a sequence of = bits using a coin with probability @
for head, then by the Chernoff inequality, we will get roughly =@ heads in this sequence. As such, the
generated sequence . belongs to

( =
=@

)
≈ 2=H(@) possible sequences that have similar probability. As such,

H(. ) ≈ lg
( =
=@

)
= =H(@), by Example 26.1.2, this also readily follows from Lemma 26.1.3.

26.2. Extracting randomness
The problem. We are given a random variable - that is chosen uniformly at random from J0 : < − 1K =
{0, . . . , < − 1}. Our purpose is built an algorithm that given - output a binary string, such that the bits
in the binary string can be interpreted as the coin flips of a fair balanced coin. That is, the probability
of the 8th bit of the output (if it exists) to be 0 (or 1) is exactly half, and the different bits of the output
are independent.
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Figure 26.2: (A) < = 15. (B) The block decomposition. (C) If - = 10, then the extraction output is 2
in base 2, using 2 bits – that is 10.

Idea. We break the J0 : < − 1K into consecutive blocks that are powers of two. Given the value of -,
we find which block contains it, and we output a binary representation of the location of - in the block
containing it, where if a block is length 2: , then we output : bits.

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a
random variable.

Definition 26.2.1. An extraction function Ext takes as input the value of a random variable - and
outputs a sequence of bits H, such that P

[
Ext(-) = H

�� |H | = : ] = 1/2: . whenever P
[
|H | = :

]
≥ 0, where

|H | denotes the length of H.

As a concrete (easy) example, consider - to be a uniform random integer variable out of 0, . . . , 7.
All that Ext(G) has to do in this case, is just to compute the binary representation of G.

The definition of the extraction function has two subtleties:
(A) It requires that all extracted sequences of the same length (say :), have the same probability to

be output (i.e., 1/2:).
(B) If the extraction function can output a sequence of length :, then it needs to be able to output

all 2: such binary sequences.
Thus, for - a uniform random integer variable in the range 0, . . . , 11, the function Ext(G) can output

the binary representation for G if 0 ≤ G ≤ 7. However, what do we do if G is between 8 and 11? The idea
is to output the binary representation of G − 8 as a two bit number. Clearly, Definition 26.2.1 holds for
this extraction function, since P

[
Ext(-) = 00

�� |Ext(-) | = 2
]
= 1/4. as required. This scheme can be of

course extracted for any range.

Tedium 26.2.2. For G ≤ H positive integers, and any positive integer Δ, we have that

G

H
≤ G + Δ
H + Δ ⇐⇒ G(H + Δ) ≤ H(G + Δ) ⇐⇒ GΔ ≤ HΔ ⇐⇒ G ≤ H.

Theorem 26.2.3. Suppose that the value of a random variable - is chosen uniformly at random from
the integers {0, . . . , < − 1}. Then there is an extraction function for - that outputs on average (i.e., in
expectation) at least blg<c − 1 = bH(-)c − 1 independent and unbiased bits.

Proof: We represent < as a sum of unique powers of 2, namely < =
∑
8 0828, where 08 ∈ {0, 1}. Thus,

we decomposed {0, . . . , < − 1} into a disjoint union of blocks that have sizes which are distinct powers
of 2. If a number falls inside such a block, we output its relative location in the block, using binary
representation of the appropriate length (i.e., : if the block is of size 2:). It is not difficult to verify that
this function fulfills the conditions of Definition 26.2.1, and it is thus an extraction function.

Now, observe that the claim holds if < is a power of two, by Example 26.1.2 (i.e., if < = 2: , then
H(-) = :). Thus, if < is not a power of 2, then in the decomposition if there is a block of size 2: , and
the - falls inside this block, then the entropy is :.
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The remainder of the proof is by induction – assume the claim holds if the range used by the random
variable is strictly smaller than <. In particular, let  = 2: be the largest power of 2 that is smaller
than <, and let * = 2D be the largest power of two such that * ≤ < −  ≤ 2*.

If the random number - ∈ J0 :  − 1K, then the scheme outputs : bits. Otherwise, we can think
about the extraction function as being recursive and extracting randomness from a random variable
-′ = - −  that is uniformly distributed in J0 : < −  K.

By Tedium 26.2.2, we have that

< −  
<

≤ < −  + (2* +  − <)
< + (2* +  − <) =

2*
2* +  

Let . be the random variable which is the number of random bits extracted. We have that

E[. ] ≥
 

<
: + < −  

<
(blg(< −  )c − 1) = : − < −  

<
: + < −  

<
(D − 1) = : + < −  

<
(

<0︷     ︸︸     ︷
D − : − 1)

≥ : − 2*
2* +  (D − : − 1) = : − 2*

2* +  (1 + : − D).

If D = : − 1, then H(-) ≥ : − 1
2 · 2 = : − 1, as required. If D = : − 2 then H(-) ≥ : − 1

3 · 3 = : − 1. Finally,
if D < : − 2 then

E[. ] ≥ : −
2*

2* +  (1 + : − D) ≥ : −
2*
 
(1 + : − D) = : − : − D + 1

2(:−D+1)−2 ≥ : − 1,

since : − D + 1 ≥ 4 and 8/28−2 ≤ 1 for 8 ≥ 4. �

Theorem 26.2.4. Consider a coin that comes up heads with probability ? > 1/2. For any constant
X > 0 and for = sufficiently large:
(A) One can extract, from an input of a sequence of = flips, an output sequence of (1 − X)=H(?)

(unbiased) independent random bits.
(B) One can not extract more than =H(?) bits from such a sequence.

Proof: There are
(=
9

)
input sequences with exactly 9 heads, and each has probability ? 9 (1 − ?)=− 9 . We

map this sequence to the corresponding number in the set
{
0, . . . ,

(=
9

)
− 1

}
. Note, that this, conditional

distribution on 9 , is uniform on this set, and we can apply the extraction algorithm of Theorem 26.2.3.
Let / be the random variables which is the number of heads in the input, and let � be the number of
random bits extracted. We have

E[�] =
=∑
:=0
P[/ = :] E

[
�

�� / = : ] ,
and by Theorem 26.2.3, we have E

[
�

�� / = : ] ≥ ⌊
lg

(
=

:

)⌋
− 1. Let Y < ? − 1/2 be a constant to be

determined shortly. For =(? − Y) ≤ : ≤ =(? + Y), we have(
=

:

)
≥

(
=

b=(? + Y)c

)
≥ 2=H(?+Y)

= + 1 ,
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by Corollary 26.1.5 (iii). We have

E[�] ≥
d=(?−Y)e∑
:=b=(?−Y)c

P[/ = :] E
[
�

�� / = : ] ≥ d=(?−Y)e∑
:=b=(?−Y)c

P[/ = :]
(⌊

lg
(
=

:

)⌋
− 1

)
≥

d=(?−Y)e∑
:=b=(?−Y)c

P[/ = :]
(
lg 2=H(?+Y)

= + 1 − 2
)

= (=H(? + Y) − lg(= + 1)) P[|/ − =? | ≤ Y=]

≥ (=H(? + Y) − lg(= + 1))
(
1 − 2 exp

(
−=Y

2

4?

))
,

since ` = E[/] = =? and P
[
|/ − =? | ≥ Y

?
?=

]
≤ 2 exp

(
−=?4

(
Y
?

)2
)
= 2 exp

(
−=Y2

4?

)
, by the Chernoff inequal-

ity. In particular, fix Y > 0, such that H(? + Y) > (1 − X/4)H(?), and since ? is fixed =H(?) = Ω(=),
in particular, for = sufficiently large, we have − lg(= + 1) ≥ − X

10=H(?). Also, for = sufficiently large, we
have 2 exp

(
−=Y2

4?

)
≤ X

10 . Putting it together, we have that for = large enough, we have

E[�] ≥
(
1 − X4 −

X

10

)
=H(?)

(
1 − X

10

)
≥ (1 − X)=H(?),

as claimed.
As for the upper bound, observe that if an input sequence G has probability @, then the output

sequence H = Ext(G) has probability to be generated which is at least @. Now, all sequences of length
|H | have equal probability to be generated. Thus, we have the following (trivial) inequality 2|Ext(G) |@ ≤
2|Ext(G) | P[H = Ext(-)] ≤ 1, implying that |Ext(G) | ≤ lg(1/@). Thus,

E[�] =
∑
G

P[- = G] |Ext(G) | ≤
∑
G

P[- = G] lg
1

P[- = G]
= H(-). �

26.3. Bibliographical Notes
The presentation here follows [MU05, Sec. 9.1-Sec 9.3].
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Chapter 27

Entropy II
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

The memory of my father is wrapped up in white paper, like sandwiches taken for a day at work. Just as a magician
takes towers and rabbits out of his hat, he drew love from his small body, and the rivers of his hands overflowed
with good deeds.

Yehuda Amichai, My Father

27.1. Huffman coding
A binary code assigns a string of 0s and 1s to each character in the alphabet. A code assigns for each
symbol in the input a codeword over some other alphabet. Such a coding is necessary, for example, for
transmitting messages over a wire, were you can send only 0 or 1 on the wire (i.e., for example, consider
the good old telegraph and Morse code). The receiver gets a binary stream of bits and needs to decode
the message sent. A prefix code, is a code where one can decipher the message, a character by character,
by reading a prefix of the input binary string, matching it to a code word (i.e., string), and continuing
to decipher the rest of the stream. Such a code is a prefix code.

A binary code (or a prefix code) is prefix-free if no code is a prefix of any other. ASCII and
Unicode’s UTF-8 are both prefix-free binary codes. Morse code is a binary code (and also a prefix
code), but it is not prefix-free; for example, the code for S (· · · ) includes the code for E (·) as a prefix.
(Hopefully the receiver knows that when it gets · · · that it is extremely unlikely that this should be
interpreted as EEE, but rather S.

a

b c

d
0

0

0

1

1

1Any prefix-free binary code can be visualized as a binary tree with the encoded
characters stored at the leaves. The code word for any symbol is given by the
path from the root to the corresponding leaf; 0 for left, 1 for right. The length
of a codeword for a symbol is the depth of the corresponding leaf. Such trees are
usually referred to as prefix trees or code trees.

The beauty of prefix trees (and thus of prefix odes) is that decoding is easy.
As a concrete example, consider the tree on the right. Given a string ’010100’,
we can traverse down the tree from the root, going left if get a ’0’ and right if we get ’1’. Whenever
we get to a leaf, we output the character output in the leaf, and we jump back to the root for the next
character we are about to read. For the example ’010100’, after reading ’010’ our traversal in the tree
leads us to the leaf marked with ’b’, we jump back to the root and read the next input digit, which is
’1’, and this leads us to the leaf marked with ’d’, which we output, and jump back to the root. Finally,
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’00’ leads us to the leaf marked by ’a’, which the algorithm output. Thus, the binary string ’010100’
encodes the string “bda”.

Suppose we want to encode messages in an =-character alphabet so that the encoded message is
as short as possible. Specifically, given an array frequency counts 5 [1 . . . =], we want to compute a
prefix-free binary code that minimizes the total encoded length of the message. That is we would like
to compute a tree ) that minimizes

cost()) =
=∑
8=1

5 [8] ∗ len(code(8)), (27.1)

where code(8) is the binary string encoding the 8th character and len(B) is the length (in bits) of the
binary string B.

A nice property of this problem is that given two trees for some parts of the alphabet, we can easily
put them together into a larger tree by just creating a new node and hanging the trees from this common
node. For example, putting two characters together, we have the following.

M U ⇒

•

M

.................................................................

U

.................................................................

Similarly, we can put together two subtrees.
A

.

..................................................................... .

.....................................................................................................................................................

B

.

..................................................................... .

..................................................................................................................................................... ⇒

•

A

.

..................................................................... .

.....................................................................................................................................................

................................................................................................. B

.

..................................................................... .

.....................................................................................................................................................

.................................................................................................

27.1.1. The algorithm to build Hoffman’s code
This suggests a simple algorithm that takes the two least frequent characters in the current frequency
table, merge them into a tree, and put the merged tree back into the table (instead of the two old
trees). The algorithm stops when there is a single tree. The intuition is that infrequent characters
would participate in a large number of merges, and as such would be low in the tree – they would be
assigned a long code word.

This algorithm is due to David Huffman, who developed it in 1952. Shockingly, this code is the best
one can do. Namely, the resulting code is asymptotically gives the best possible compression of the data
(of course, one can do better compression in practice using additional properties of the data and careful
hacking). This Huffman coding is used widely and is the basic building block used by numerous other
compression algorithms.

27.1.2. Analysis
Lemma 27.1.1. Let ) be an optimal code tree. Then ) is a full binary tree (i.e., every node of ) has
either 0 or 2 children). In particular, if the height of ) is 3, then there are leafs nodes of height 3 that
are sibling.

Proof: If there is an internal node in ) that has one child, we can remove this node from ) , by connecting
its only child directly with its parent. The resulting code tree is clearly a better compressor, in the sense
of Eq. (27.1).
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As for the second claim, consider a leaf D with maximum depth 3 in ) , and consider it parent
E = p(D). The node E has two children, and they are both leafs (otherwise D would not be the deepest
node in the tree), as claimed. �

Lemma 27.1.2. Let G and H be the two least frequent characters (breaking ties between equally frequent
characters arbitrarily). There is an optimal code tree in which G and H are siblings.

Proof: More precisely, there is an optimal code in which G and H are siblings and have the largest depth
of any leaf. Indeed, let ) be an optimal code tree with depth 3. The tree ) has at least two leaves at
depth 3 that are siblings, by Lemma 27.1.1.

Now, suppose those two leaves are not G and H, but some other characters U and V. Let U be the
code tree obtained by swapping G and U. The depth of G increases by some amount Δ, and the depth of
U decreases by the same amount. Thus,

cost(U) = cost()) − ( 5 [U] − 5 [G])Δ .
By assumption, G is one of the two least frequent characters, but U is not, which implies that 5 [U] > 5 [G].
Thus, swapping G and U does not increase the total cost of the code. Since ) was an optimal code
tree, swapping G and U does not decrease the cost, either. Thus, U is also an optimal code tree (and
incidentally, 5 [U] actually equals 5 [G]). Similarly, swapping H and 1 must give yet another optimal
code tree. In this final optimal code tree, G and H as maximum-depth siblings, as required. �

Theorem 27.1.3. Huffman codes are optimal prefix-free binary codes.

Proof: If the message has only one or two different characters, the theorem is trivial. Otherwise, let
5 [1 . . . =] be the original input frequencies, where without loss of generality, 5 [1] and 5 [2] are the two
smallest. To keep things simple, let 5 [= + 1] = 5 [1] + 5 [2]. By the previous lemma, we know that some
optimal code for 5 [1..=] has characters 1 and 2 as siblings. Let Topt be this optimal tree, and consider
the tree formed by it by removing 1 and 2 as it leaves. We remain with a tree T′opt that has as leafs
the characters 3, . . . , = and a “special” character = + 1 (which is the parent of 1 and 2 in Topt) that has
frequency 5 [= + 1]. Now, since 5 [= + 1] = 5 [1] + 5 [2], we have

cost
(
Topt

)
=

=∑
8=1

5 [8]depthTopt (8)

=

=+1∑
8=3

5 [8]depthTopt (8) + 5 [1]depthTopt (1) + 5 [2]depthTopt (2) − 5 [= + 1]depthTopt (= + 1)

= cost
(
T′opt

)
+ ( 5 [1] + 5 [2])depth

(
Topt

)
− ( 5 [1] + 5 [2])

(
depth

(
Topt

)
− 1

)
= cost

(
T′opt

)
+ 5 [1] + 5 [2] . (27.2)

This implies that minimizing the cost of Topt is equivalent to minimizing the cost of T′opt. In particular,
T′opt must be an optimal coding tree for 5 [3 . . . =+1]. Now, consider the Huffman tree U� constructed for
5 [3, . . . , =+1] and the overall Huffman tree )� constructed for 5 [1, . . . , =]. By the way the construction
algorithm works, we have that U� is formed by removing the leafs of 1 and 2 from ) . Now, by induction,
we know that the Huffman tree generated for 5 [3, . . . , = + 1] is optimal; namely, cost

(
T′opt

)
= cost(U�).

As such, arguing as above, we have

cost()�) = cost(U�) + 5 [1] + 5 [2] = cost
(
T′opt

)
+ 5 [1] + 5 [2] = cost

(
Topt

)
,

by Eq. (27.2). Namely, the Huffman tree has the same cost as the optimal tree. �
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27.1.3. A formula for the average size of a code word
Assume that our input is made out of = characters, where the 8th character is ?8 fraction of the input
(one can think about ?8 as the probability of seeing the 8th character, if we were to pick a random
character from the input).

Now, we can use these probabilities instead of frequencies to build a Huffman tree. The natural
question is what is the length of the codewords assigned to characters as a function of their probabilities?

In general this question does not have a trivial answer, but there is a simple elegant answer, if all
the probabilities are power of 2.

Lemma 27.1.4. Let 1, . . . , = be = symbols, such that the probability for the 8th symbol is ?8, and fur-
thermore, there is an integer ;8 ≥ 0, such that ?8 = 1/2;8 . Then, in the Huffman coding for this input,
the code for 8 is of length ;8.

Proof: The proof is by easy induction of the Huffman algorithm. Indeed, for = = 2 the claim trivially
holds since there are only two characters with probability 1/2. Otherwise, let 8 and 9 be the two
characters with lowest probability. It must hold that ?8 = ? 9 (otherwise,

∑
: ?: can not be equal to one).

As such, Huffman’s merges this two letters, into a single “character” that have probability 2?8, which
would have encoding of length ;8 − 1, by induction (on the remaining =− 1 symbols). Now, the resulting
tree encodes 8 and 9 by code words of length (;8 − 1) + 1 = ;8, as claimed. �

In particular, we have that ;8 = lg 1/?8. This implies that the average length of a code word is∑
8

?8 lg
1
?8
.

If we consider - to be a random variable that takes a value 8 with probability ?8, then this formula is

H(-) =
∑
8

P[- = 8] lg
1

P[- = 8]
,

which is the entropy of -.

Theorem 27.1.5. Consider an input sequence ( of < characters, where the characters are taken from
an alphabet set Σ of size =. In particular, let 58 be the number of times the 8th character of Σ appears in
(, for 8 = 1, . . . , =. Consider the compression of this string using Huffman’s code. Then, the total length
of the compressed string (ignoring the space needed to store the code itself) is ≤ < (H(-) + 1), where -
is a random variable that returns 8 with probability ?8 = 58/<.

Proof: The trick is to replace ?8, which might not be a power of 2, by @8 = 2blg ?8c . We have that
@8 ≤ ?8 ≤ 2@8, and @8 is a power of 2, for all 8. The leftover of this coding is Δ = 1 − ∑

8 @8. We write
Δ as a sum of powers of 2 (since the frequencies are fractions of the form 8/< [since the input string is
of length <] – this requires at most g = $ (log<) numbers): Δ =

∑=+g
9==+1 @ 9 . We now create a Huffman

code ) for the frequencies @1, . . . , @=, @=+1, . . . , @=+g. The output length to encode the input string using
this code, by Lemma 27.1.4, is

! = <

=∑
8=1

?8 lg
1
@8
≤ <

=∑
8=1

?8

(
1 + lg 1

?8

)
≤ < + <

=∑
8=1

?8 lg
1
?8
= < + <H(-).
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One can now restrict ) to be a prefix tree only for the first = symbols. Indeed, delete the g “fake”
leafs/symbols, and repeatedly remove internal nodes that have only a single child. In the end of this
process, we get a valid prefix tree for the first = symbols, and encoding the input string using this tree
would require at most ! bits, since process only shortened the code words. Finally, let V be the resulting
tree.

Now, consider the Huffman tree code for the = input symbols using the original frequencies ?1, . . . ?=.
The resulting tree U is a better encoder for the input string than V, by Theorem 27.1.3. As such, the
compressed string, would have at most ! bits – thus establishing the claim. �

27.2. Compression
In this section, we consider the problem of how to compress a binary string. We map each binary string,
into a new string (which is hopefully shorter). In general, by using a simple counting argument, one can
show that no such mapping can achieve real compression (when the inputs are adversarial). However,
the hope is that there is an underling distribution on the inputs, such that some strings are considerably
more common than others.

Definition 27.2.1. A compression function Compress takes as input a sequence of = coin flips, given as
an element of {�,)}=, and outputs a sequence of bits such that each input sequence of = flips yields a
distinct output sequence.

The following is easy to verify.

Lemma 27.2.2. If a sequence (1 is more likely than (2 then the compression function that minimizes
the expected number of bits in the output assigns a bit sequence to (2 which is at least as long as (1.

Note, that this is weak. Usually, we would like the function to output a prefix code, like the Huffman
code.

Theorem 27.2.3. Consider a coin that comes up heads with probability ? > 1/2. For any constant
X > 0, when = is sufficiently large, the following holds.
(i) There exists a compression function Compress such that the expected number of bits output by

Compress on an input sequence of = independent coin flips (each flip gets heads with probability
?) is at most (1 + X)=H(?); and

(ii) The expected number of bits output by any compression function on an input sequence of = inde-
pendent coin flips is at least (1 − X)=H(?).

Proof: Let Y > 0 be a constant such that ?−Y > 1/2. The first bit output by the compression procedure
is ’1’ if the output string is just a copy of the input (using = + 1 bits overall in the output), and ’0’ if it
is compressed. We compress only if the number of ones in the input sequence, denoted by - is larger
than (? − Y)=. By the Chernoff inequality, we know that P[- < (? − Y)=] ≤ exp

(
−=Y2/2?

)
.

If there are more than (? − Y)= ones in the input, and since ? − Y > 1/2, we have that
=∑

9=d=(?−Y)e

(
=

9

)
≤

=∑
9=d=(?−Y)e

(
=

d=(? − Y)e

)
≤ =22=H(?−Y) ,

by Corollary 26.1.5. As such, we can assign each such input sequence a number in the range 0 . . . =22=H(?−Y),
and this requires (with the flag bit) 1 + blg = + =H(? − Y)c random bits.
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Thus, the expected number of bits output is bounded by

(= + 1) exp
(
−=Y2/2?

)
+ (1 + blg = + =H(? − Y)c) ≤ (1 + X)=H(?),

by carefully setting Y and = being sufficiently large. Establishing the upper bound.
As for the lower bound, observe that at least one of the sequences having exactly g = b(? + Y)=c

heads, must be compressed into a sequence having

lg
(

=

b(? + Y)=c

)
− 1 ≥ lg 2=H(?+Y)

= + 1 − 1 = =H(? − Y) − lg(= + 1) − 1 = `,

by Corollary 26.1.5. Now, any input string with less than g heads has lower probability to be generated.
Indeed, for a specific strings with U < g ones the probability to generate them is ?U (1 − ?)=−U and
?g (1 − ?)=−g, respectively. Now, observe that

?U (1 − ?)=−U = ?g (1 − ?)=−g · (1 − ?)
g−U

?g−U
= ?g (1 − ?)=−g

(
1 − ?
?

)g−U
< ?g (1 − ?)=−g,

as 1 − ? < 1/2 < ? implies that (1 − ?)/? < 1.
As such, Lemma 27.2.2 implies that all the input strings with less than g ones, must be compressed

into strings of length at least `, by an optimal compresser. Now, the Chenroff inequality implies that
P[- ≤ g] ≥ 1 − exp

(
−=Y2/12?

)
. Implying that an optimal compresser outputs on average at least(

1 − exp
(
−=Y2/12?

) )
`. Again, by carefully choosing Y and = sufficiently large, we have that the average

output length of an optimal compressor is at least (1 − X)=H(?). �

27.3. Bibliographical Notes
The presentation here follows [MU05, Sec. 9.1-Sec 9.3].
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Chapter 28

Approximate Max Cut
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 10, 2019

We had encountered in the previous lecture examples of using rounding techniques for approximating
discrete optimization problems. So far, we had seen such techniques when the relaxed optimization
problem is a linear program. Interestingly, it is currently known how to solve optimization problems that
are considerably more general than linear programs. Specifically, one can solve convex programming.
Here the feasible region is convex. How to solve such an optimization problems is outside the scope
of this course. It is however natural to ask what can be done if one assumes that one can solve such
general continuous optimization problems exactly.

In the following, we show that (optimization problem) max cut can be relaxed into a weird continuous
optimization problem. Furthermore, this semi-definite program can be solved exactly efficiently. Maybe
more surprisingly, we can round this continuous solution and get an improved approximation.

28.1. Problem Statement
Given an undirected graph G = (V, E) and nonnegative weights l8 9 , for all 8 9 ∈ E, the maximum cut
problem (MAX CUT) is that of finding the set of vertices ( that maximizes the weight of the edges in
the cut

(
(, (

)
; that is, the weight of the edges with one endpoint in ( and the other in (. For simplicity,

we usually set l8 9 = $ for 8 9 ∉ E and denote the weight of a cut
(
(, (

)
by F

(
(, (

)
=

∑
8∈(, 9∈(

l8 9 .

This problem is NP-Complete, and hard to approximate within a certain constant.
Given a graph with vertex set V = {1, . . . , =} and nonnegative weights l8 9 , the weight of the maximum

cut F((, () is given by the following integer quadratic program:

(Q) max 1
2
∑
8< 9

l8 9 (1 − H8H 9 )

subject to: H8 ∈ {−1, 1} ∀8 ∈ V.

Indeed, set ( =
{
8
�� H8 = 1

}
. Clearly, l

(
(, (

)
= 1

2
∑
8< 9 l8 9 (1 − H8H 9 ).

Solving quadratic integer programming is of course NP-Hard. Thus, we will relax it, by thinking
about the numbers H8 as unit vectors in higher dimensional space. If so, the multiplication of the two
vectors, is now replaced by dot product. We have:

(P) max W =
1
2
∑
8< 9

l8 9
(
1 −

〈
E8, E 9

〉)
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subject to: E8 ∈ S(=) ∀8 ∈ +,

where S(=) is the = dimensional unit sphere in R=+1. This is an instance of semi-definite programming,
which is a special case of convex programming, which can be solved in polynomial time (solved here
means approximated within a factor of (1 + Y) of optimal, for any arbitrarily small Y > 0, in polynomial
time). Namely, the solver finds a feasible solution with a the target function being arbitrarily close to
the optimal solution. Observe that (P) is a relaxation of (Q), and as such the optimal solution of (P)
has value larger than the optimal value of (Q).

The intuition is that vectors that correspond to vertices that should be on one side of the cut, and
vertices on the other sides, would have vectors which are faraway from each other in (P). Thus, we
compute the optimal solution for (P), and we uniformly generate a random vector r on the unit sphere
S(=). This induces a hyperplane ℎ which passes through the origin and is orthogonal to r. We next
assign all the vectors that are on one side of ℎ to (, and the rest to (.

Summarizing, the algorithm is as follows: First, we solve (P), next, we pick a random vector r
uniformly on the unit sphere S(=). Finally, we set

( = {E8 | 〈E8, r〉 ≥ 0} .

28.1.1. Analysis
The intuition of the above rounding procedure, is that with good probability, vectors in the solution of
(P) that have large angle between them would be separated by this cut.

Lemma 28.1.1. We have P
[
sign

(
〈E8, r〉

)
≠ sign

(
〈E 9 , r〉

) ]
=

1
c

arccos
(
〈E8, E 9 〉

)
.

Proof: Let us think about the vectors E8, E 9 and r as being in the plane.

To see why this is a reasonable assumption, consider the plane 6 spanned by E8
and E 9 , and observe that for the random events we consider, only the direction of
r matter, which can be decided by projecting r on 6, and normalizing it to have
length 1. Now, the sphere is symmetric, and as such, sampling r randomly from
S(=), projecting it down to 6, and then normalizing it, is equivalent to just choosing
uniformly a vector from the unit circle.

vi
vi

Now, sign(〈E8, r〉) ≠ sign(〈E 9 , r〉) happens only if r falls in the double wedge formed by the lines
perpendicular to E8 and E 9 . The angle of this double wedge is exactly the angle between E8 and E 9 . Now,
since E8 and E 9 are unit vectors, we have 〈E8, E 9 〉 = cos(g), where g = ∠E8E 9 .

Thus,

P
[
sign

(
〈E8, r〉

)
≠ sign

(
〈E 9 , r〉

) ]
=

2g
2c =

1
c

arccos
(
〈E8, E 9 〉

)
,

as claimed. �

Theorem 28.1.2. Let , be the random variable which is the weight of the cut generated by the algo-
rithm. We have

E[,] =
1
c

∑
8< 9

l8 9 arccos(〈E8, E 9 〉).
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Proof: Let -8 9 be an indicator variable which is 1 if and only if the edge 8 9 is in the cut. We have

E
[
-8 9

]
= P

[
sign(〈E8, r 〉) ≠ sign(〈E 9 , r 〉)

]
=

1
c

arccos(〈E8, E 9 〉),

by Lemma 28.1.1. Clearly, , =
∑
8< 9 l8 9-8 9 , and by linearity of expectation, we have

E[,] =
∑
8< 9

l8 9 E
[
-8 9

]
=

1
c

∑
8< 9

l8 9 arccos(〈E8, E 9 〉). �

Lemma 28.1.3. For −1 ≤ H ≤ 1, we have arccos(H)
c

≥ U · 12 (1 − H), where

U = min
0≤k≤c

2
c

k

1 − cos(k) . (28.1)

Proof: Set H = cos(k). The inequality now becomes k

c
≥ U 1

2 (1 − cosk). Reorganizing, the inequality
becomes 2

c

k

1−cosk ≥ U, which trivially holds by the definition of U. �
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Figure 28.1: The function of Eq. (28.1).

Lemma 28.1.4. U > 0.87856.
Proof: Using simple calculus, one can see that U achieves its value for k = 2.331122..., the nonzero root
of cosk + k sink = 1. �

Theorem 28.1.5. The above algorithm computes in expectation a cut with total weight U · Opt ≥
0.87856Opt, where Opt is the weight of the maximum weight cut.
Proof: Consider the optimal solution to (%), and lets its value be W ≥ Opt. We have

E[,] =
1
c

∑
8< 9

l8 9 arccos(〈E8, E 9 〉) ≥
∑
8< 9

l8 9U
1
2 (1 − 〈E8, E 9 〉) = UW ≥ U · Opt,

by Lemma 28.1.3. �
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28.2. Semi-definite programming
Let us define a variable G8 9 = 〈E8, E 9 〉, and consider the = by = matrix " formed by those variables, where
G88 = 1 for 8 = 1, . . . , =. Let + be the matrix having E1, . . . , E= as its columns. Clearly, " = +)+ . In
particular, this implies that for any non-zero vector E ∈ R=, we have E)"E = E) �) �E = (�E)) (�E) ≥ 0. A
matrix that has this property, is called positive semidefinite. Interestingly, any positive semidefinite
matrix % can be represented as a product of a matrix with its transpose; namely, % = �)�. Furthermore,
given such a matrix % of size = × =, we can compute � such that % = �)� in $ (=3) time. This is know
as Cholesky decomposition.

Observe, that if a semidefinite matrix % = �)� has a diagonal where all the entries are one, then �
has columns which are unit vectors. Thus, if we solve (P) and get back a semi-definite matrix, then we
can recover the vectors realizing the solution, and use them for the rounding.

In particular, (P) can now be restated as

((�) max 1
2
∑
8< 9

l8 9 (1 − G8 9 )

subject to: G88 = 1 for 8 = 1, . . . , =(
G8 9

)
8=1,...,=, 9=1,...,= is a positive semi-definite matrix.

We are trying to find the optimal value of a linear function over a set which is the intersection of linear
constraints and the set of positive semi-definite matrices.

Lemma 28.2.1. Let U be the set of = × = positive semidefinite matrices. The set U is convex.

Proof: Consider �, � ∈ U, and observe that for any C ∈ [0, 1], and vector E ∈ R=, we have:

E) (C� + (1 − C)�)E = E) (C�E + (1 − C)�E) = CE) �E + (1 − C)E)�E ≥ 0 + 0 ≥ 0,

since � and � are positive semidefinite. �

Positive semidefinite matrices corresponds to ellipsoids. Indeed, consider the set G) �G = 1: the set of
vectors that solve this equation is an ellipsoid. Also, the eigenvalues of a positive semidefinite matrix are
all non-negative real numbers. Thus, given a matrix, we can in polynomial time decide if it is positive
semidefinite or not (by computing the eigenvalues of the matrix).

Thus, we are trying to optimize a linear function over a convex domain. There is by now machinery
to approximately solve those problems to within any additive error in polynomial time. This is done
by using the interior point method, or the ellipsoid method. See [BV04, GLS93] for more details. The
key ingredient that is required to make these methods work, is the ability to decide in polynomial time,
given a solution, whether its feasible or not. As demonstrated above, this can be done in polynomial
time.

28.3. Bibliographical Notes
The approximation algorithm presented is from the work of Goemans and Williamson [GW95]. Håstad
[Hås01b] showed that MAX CUT can not be approximated within a factor of 16/17 ≈ 0.941176. Recently,
Khot et al. [KKMO04] showed a hardness result that matches the constant of Goemans and Williamson
(i.e., one can not approximate it better than U, unless P = NP). However, this relies on two conjectures,
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the first one is the “Unique Games Conjecture”, and the other one is “Majority is Stablest”. The
“Majority is Stablest” conjecture was recently proved by Mossel et al. [MOO05]. However, it is not
clear if the “Unique Games Conjecture” is true, see the discussion in [KKMO04].

The work of Goemans and Williamson was quite influential and spurred wide research on using SDP
for approximation algorithms. For an extension of the MAX CUT problem where negative weights are
allowed and relevant references, see the work by Alon and Naor [AN04].
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