Chapter 56

Some math stuff

By Sariel Har-Peled, April 26, $2022^{(1)}$

56.1. Some useful estimates

Lemma 56.1.1. For any $n \geq 2$, and $m \geq 1$, we have that $(1-1 / n)^{m} \geq 1-m / n$.
Proof: Follows by induction. Indeed, for $m=1$ the claim is immediate. For $m \geq 2$, we have

$$
\left(1-\frac{1}{n}\right)^{m}=\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n}\right)^{m-1} \geq\left(1-\frac{1}{n}\right)\left(1-\frac{m-1}{n}\right) \geq 1-\frac{m}{n}
$$

This implies the following.
Lemma 56.1.2. For any $m \leq n$, we have that $1-m / n \leq(1-1 / n)^{m} \leq \exp (-m / n)$.

[^0]
[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

