
Chapter 54

Low Dimensional Linear Programming
By Sariel Har-Peled, April 26, 2022①

“Napoleon has not been conquered by man. He was greater than all of us. But god punished him because
he relied on his own intelligence alone, until that prodigious instrument was strained to breaking point.
Everything breaks in the end.”

– Carl XIV Johan, King of Sweden.

54.1. Linear programming in constant dimension (𝑑 > 2)
Let assume that we have a set 𝐻 of 𝑛 linear inequalities defined over 𝑑 (𝑑 is a small constant) variables.
Every inequality in 𝐻 defines a closed half space in R𝑑 . Given a vector −→𝑐 = (𝑐1, . . . , 𝑐𝑑) we want to find
𝑝 = (𝑝1, . . . , 𝑝𝑑) ∈ R𝑑 which is in all the half spaces ℎ ∈ 𝐻 and 𝑓 (𝑝) = ∑

𝑖 𝑐𝑖𝑝𝑖 is maximized. Formally:

LP in 𝑑 dimensions:(𝐻,−→𝑐 )
𝐻 - set of 𝑛 closed half spaces in R𝑑
−→𝑐 - vector in 𝑑 dimensions
Find 𝑝 ∈ R𝑑 s.t. ∀ℎ ∈ 𝐻 we have 𝑝 ∈ ℎ and 𝑓 (𝑝) is maximized.
Where 𝑓 (𝑝) =

〈
𝑝,−→𝑐

〉
.

A closed half space in 𝑑 dimensions is defined by an inequality of the form

𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑛𝑥𝑛 ≤ 𝑏𝑛.

One difficulty that we ignored earlier, is that the optimal solution for the LP might be unbounded,
see Figure 54.1.

Namely, we can find a solution with value ∞ to the target function.
For a half space ℎ let [(ℎ) denote the normal of ℎ directed into the feasible region. Let `(ℎ) denote

the closed half space, resulting from ℎ by translating it so that it passes through the origin. Let `(𝐻)
be the resulting set of half spaces from 𝐻. See Figure 54.1 (b).

The new set of constraints `(𝐻) is depicted in Figure 54.1 (c).

Lemma 54.1.1. (𝐻,−→𝑐 ) is unbounded if and only if (`(𝐻),−→𝑐 ) is unbounded.

Proof: Consider the 𝜌′ the unbounded ray in the feasible region of (𝐻,−→𝑐 ) such that the line that contain
it passes through the origin. Clearly, 𝜌′ is unbounded also in (𝐻,−→𝑐 ), and this is if and only if. See
Figure 54.2 (a). ■

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


−→c
h

µ(h)

µ(h)

feasible regionµ(H)

(a) (b) (c)

Figure 54.1: (a) Unbounded LP. (b). (c).

h

µ(h) ρ′
µ(h)

feasible regionµ(H)

g
h1

µ(h1)

feasible region of µ(H)

g

µ(h2) ∩ g µ(h1) ∩ g

h2

µ(h2)

(a) (b) (c)

Figure 54.2: (a). (b). (c).

Lemma 54.1.2. Deciding if (`(𝐻),−→𝑐 ) is bounded can be done by solving a 𝑑 − 1 dimensional LP.
Furthermore, if it is bounded, then we have a set of 𝑑 constraints, such that their intersection prove this.

Furthermore, the corresponding set of 𝑑 constraints in 𝐻 testify that (𝐻,−→𝑐 ) is bounded.

Proof: Rotate space, such that −→𝑐 is the vector (0, 0, . . . , 0, 1). And consider the hyperplane 𝑔 ≡ 𝑥𝑑 = 1.
Clearly, (`(𝐻),−→𝑐 ) is unbounded if and only if the region 𝑔∩⋂ℎ∈`(𝐻) ℎ is non-empty. By deciding if this
region is unbounded, is equivalent to solving the following LP: 𝐿′ = (𝐻′, (1, 0, . . . , 0)) where

𝐻′ =
{
𝑔 ∩ ℎ

�� ℎ ∈ `(𝐻)
}
.

Let ℎ ≡ 𝑎1𝑥1 + . . . + 𝑎𝑑𝑥𝑑 ≤ 0, the region corresponding to 𝑔 ∩ ℎ is 𝑎1𝑥1 + · · · + 𝑎𝑑−1𝑥𝑑−1 ≤ −𝑎𝑑 which
is a 𝑑 − 1 dimensional hyperplane. See Figure 54.2 (b).

But this is a 𝑑 − 1 dimensional LP, because everything happens on the hyperplane 𝑥𝑑 = 1.
Notice that if (`(𝐻),−→𝑐 ) is bounded (which happens if and only if (𝐻,−→𝑐 ) is bounded), then 𝐿′ is

infeasible, and the LP 𝐿′ would return us a set 𝑑 constraints that their intersection is empty. Interpreting
those constraints in the original LP, results in a set of constraints that their intersection is bounded in
the direction of −→𝑐 . See Figure 54.2 (c).

(In the above example, `(𝐻) ∩ 𝑔 is infeasible because the intersection of `(ℎ2) ∩ 𝑔 and `(ℎ1) ∩ 𝑔 is
empty, which implies that ℎ1 ∩ ℎ2 is bounded in the direction −→𝑐 which we care about. The positive 𝑦

direction in this figure. ) ■

2



h1

µ(h1)

feasible region of µ(H)

g

µ(h2) ∩ g µ(h1) ∩ g

h2

µ(h2)

p

−→c

vi

vi+1

h1

µ(h1)

feasible region of µ(H)

g

µ(h2) ∩ g µ(h1) ∩ g

h2

µ(h2)

(a) (b) (c)

Figure 54.3: (a). (b). (c).

We are now ready to show the algorithm for the LP for 𝐿 = (𝐻,−→𝑐 ). By solving a 𝑑 − 1 dimensional
LP we decide whether 𝐿 is unbounded. If it is unbounded, we are done (we also found the unbounded
solution, if you go carefully through the details).

See Figure 54.3 (a).
(in the above figure, we computed 𝑝.)
In fact, we just computed a set ℎ1, . . . , ℎ𝑑 s.t. their intersection is bounded in the direction of −→𝑐

(thats what the boundness check returned).
Let us randomly permute the remaining half spaces of 𝐻, and let ℎ1, ℎ2, . . . , ℎ𝑑 , ℎ𝑑+1, . . . , ℎ𝑛 be the

resulting permutation.

Let 𝑣𝑖 be the vertex realizing the optimal solution for the LP:

𝐿𝑖 =

(
{ℎ1, . . . , ℎ𝑖} ,−→𝑐

)
There are two possibilities:

1. 𝑣𝑖 = 𝑣𝑖+1. This means that 𝑣𝑖 ∈ ℎ𝑖+1 and it can be checked in constant time.

2. 𝑣𝑖 ≠ 𝑣𝑖+1. It must be that 𝑣𝑖 ∉ ℎ𝑖+1 but then, we must have... What is depicted in Figure 54.3 (b).

𝐵 - the set of 𝑑 constraints that define 𝑣𝑖+1. If ℎ𝑖+1 ∉ 𝐵 then 𝑣𝑖 = 𝑣𝑖+1. As such, the probability of
𝑣𝑖 ≠ 𝑣𝑖+1 is roughly 𝑑/𝑖 because this is the probability that one of the elements of 𝐵 is ℎ𝑖+1. Indeed, fix
the first 𝑖 + 1 elements, and observe that there are 𝑑 elements that are marked (those are the elements
of 𝐵). Thus, we are asking what is the probability of one of 𝑑 marked elements to be the last one in a
random permutation of ℎ𝑑+1, . . . , ℎ𝑖+1, which is exactly 𝑑/(𝑖 + 1 − 𝑑).

Note that if some of the elements of 𝐵 is ℎ1, . . . , ℎ𝑑 than the above expression just decreases (as
there are less marked elements).

Well, let us restrict our attention to 𝜕ℎ𝑖+1. Clearly, the optimal solution to 𝐿𝑖+1 on ℎ𝑖+1 is the required
𝑣𝑖+1. Namely, we solve the LP 𝐿𝑖+1 ∩ ℎ𝑖+1 using recursion.

This takes 𝑇 (𝑖 + 1, 𝑑 − 1) time. What is the probability that 𝑣𝑖+1 ≠ 𝑣𝑖?
Well, one of the 𝑑 constraints defining 𝑣𝑖+1 has to be ℎ𝑖+1.The probability for that is ≤ 1 for 𝑖 ≤ 2𝑑−1,

and it is
≤ 𝑑

𝑖 + 1 − 𝑑
,

otherwise.

3



Summarizing everything, we have:

𝑇 (𝑛, 𝑑) = 𝑂 (𝑛) + 𝑇 (𝑛, 𝑑 − 1) +
2𝑑∑︁

𝑖=𝑑+1
𝑇 (𝑖, 𝑑 − 1)

+
𝑛∑︁

𝑖=2𝑑+1

𝑑

𝑖 + 1 − 𝑑
𝑇 (𝑖, 𝑑 − 1)

What is the solution of this monster? Well, one essentially to guess the solution and verify it. To guess
solution, let us “simplify” (incorrectly) the recursion to :

𝑇 (𝑛, 𝑑) = 𝑂 (𝑛) + 𝑇 (𝑛, 𝑑 − 1) + 𝑑
𝑛∑︁

𝑖=2𝑑+1

𝑇 (𝑖, 𝑑 − 1)
𝑖 + 1 − 𝑑

So think about the recursion tree. Now, every element in the sum is going to contribute a near
constant factor, because we divide it by (roughly) 𝑖 + 1 − 𝑑 and also, we are guessing the the optimal
solution is linear/near linear.

In every level of the recursion we are going to penalized by a multiplicative factor of 𝑑. Thus, it is
natural, to conjecture that 𝑇 (𝑛, 𝑑) ≤ (3𝑑)3𝑑𝑛.

Which can be verified by tedious substitution into the recurrence, and is left as exercise.

Theorem 54.1.3. Given an 𝑑 dimensional LP (𝐻,−→𝑐 ),it can be solved in expected 𝑂
(
(3𝑑)3𝑑𝑛

)
time (the

constant in the O is dim independent).

BTW, we are being a bit conservative about the constant. In fact, one can prove that the running time
is 𝑑!𝑛. Which is still exponential in 𝑑.

4



SolveLP((𝐻,−→𝑐 ))
/* initialization */
Rotate (𝐻,−→𝑐 ) s.t. −→𝑐 = (0, . . . , 1)
Solve recursively the 𝑑 − 1 dim LP:

𝐿′ ≡ `(𝐻) ∩ (𝑥𝑑 = 1)
if 𝐿′ has a solution then

return “Unbounded”

Let 𝑔1, . . . , 𝑔𝑑 be the set of constraints of 𝐿′ that testifies that 𝐿′ is infeasible
Let ℎ1, . . . , ℎ𝑑 be the hyperplanes of 𝐻 corresponding to 𝑔1, . . . , 𝑔𝑑
Permute 𝐻 s.t. ℎ1, . . . , ℎ𝑑 are first.
𝑣𝑑 = 𝜕ℎ1 ∩ 𝜕ℎ2 ∩ · · · ∩ 𝜕ℎ𝑑

/*𝑣𝑑 is a vertex that testifies that (𝐻,−→𝑐 ) is bounded */

/* the algorithm itself */
for 𝑖 ← 𝑑 + 1 to 𝑛 do

if 𝑣𝑖−1 ∈ ℎ𝑖 then
𝑣𝑖 ← 𝑣𝑖−1

else
𝑣𝑖 ← SolveLP((𝐻𝑖−1 ∩ 𝜕ℎ𝑖, −→𝑐 )) (*)

where 𝐻𝑖−1 = {ℎ1, . . . , ℎ𝑖−1}

return 𝑣𝑛

54.2. Handling Infeasible Linear Programs
In the above discussion, we glossed over the question of how to handle LPs which are infeasible. This
requires slightly modifying our algorithm to handle this case, and I am only describing the required
modifications.

First, the simplest case, where we are given an LP 𝐿 which is one dimensional (i.e., defined over one
variable). Clearly, we can solve this LP in linear time (verify!), and furthermore, if there is no solution,
we can return two input inequality 𝑎𝑥 ≤ 𝑏 and 𝑐𝑥 ≥ 𝑑 for which there is no solution together (i.e., those
two inequalities [i.e., constraints] testifies that the LP is not satisfiable).

Next, assume that the algorithm SolveLP when called on a 𝑑 − 1 dimensional LP 𝐿′, if 𝐿′ is not
feasible it return the 𝑑 constraints of 𝐿′ that together have non-empty intersection. Namely, those
constraints are the witnesses that 𝐿′ is infeasible.

So the only place, where we can get such answer, is when computing 𝑣𝑖 (in the (*) line in the
algorithm). Let ℎ′1, . . . , ℎ′𝑑 be the corresponding set of 𝑑 constraints of 𝐻𝑖−1 that testifies that (𝐻𝑖−1∩𝜕ℎ𝑖,
−→𝑐 ) is an infeasible LP. Clearly, ℎ′1, . . . , ℎ

′
𝑑
, ℎ𝑖 must be a set of 𝑑 + 1 constraints that are together are

infeasible, and that is what SolveLP returns.

54.3. References
The description in this class notes is loosely based on the description of low dimensional LP in the book
of de Berg et al. [BCKO08].

5



References
[BCKO08] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars. Computational geometry:

algorithms and applications. 3rd. Santa Clara, CA, USA: Springer, 2008.

6

http://dx.doi.org/10.1007/978-3-540-77974-2
http://dx.doi.org/10.1007/978-3-540-77974-2

	Low Dimensional Linear Programming
	Linear programming in constant dimension (d>2)
	Handling Infeasible Linear Programs
	References


