
Chapter 53

Talagrand’s Inequality
By Sariel Har-Peled, April 26, 2022①

At an archaeological site I saw fragments of precious vessels, well cleaned and groomed and oiled and spoiled.
And beside it I saw a heap of discarded dust which wasn’t even good for thorns and thistles to grow on.

I asked: What is this gray dust which has been pushed around and sifted and tortured and then thrown away?
I answered in my heart: This dust is people like us, who during their lifetime lived separated from copper and

gold and marble stones and all other precious things - and they remained so in death. We are this heap of dust, our
bodies, our souls, all the words in our mouths, all hopes.

At an archaeological site, Yehuda Amichai

53.1. Introduction
Here, we want to prove a strong concentration inequality that is stronger than Azuma’s inequality
because it is independent of the underlying dimension of the process. This inequality is quite subtle, so
we will need a quite elaborate way to get to it – be patient.

53.1.1. Talangrand’s inequality, and the 𝑇-distance
For two numbers 𝑥, 𝑦, let [𝑥 ≠ 𝑦] be 1 if 𝑥 ≠ 𝑦, and 0 otherwise. For two points p = (𝑝1, . . . , 𝑝𝑑), u =

(𝑞1, . . . , 𝑞𝑑) ∈ R𝑑 , let 𝐻 (p, u) be the binary vector in {0, 1}𝑛 that encodes the coordinates where they
are different. Formally, we have

𝐻 (p, u) =
(
[𝑝1 ≠ 𝑞1], [𝑝2 ≠ 𝑞2], . . . , [𝑝𝑑 ≠ 𝑞𝑑]

)
. (53.1)

For example 𝐻
(
(1, 2, 3), (0.1, 2,−1)

)
= (1, 0, 1). Given a set 𝑆 ⊆ R𝑑, and a point p ∈ R𝑑, let

𝐻 (p, 𝑆) = {𝐻 (p, u) | u ∈ 𝑆} . (53.2)

To understand this mysterious set, consider a point p ∈ R𝑑. If p ∈ 𝑆, then (0, . . . , 0) = 𝐻 (p, p) ∈ 𝐻 (p, 𝑆)
(which would be an uninteresting case). Otherwise, every binary point x ∈ 𝐻 (p, 𝑆) specifies which
coordinates in p one has to change, so that one can move to a point that belongs to 𝑆.

A natural measure of the distance of 𝑝 from 𝑆, is then to ask for the vector that minimizes the
Hamming distance from the origin to 𝐻 (p, 𝑆) – that is, the minimum number of coordinates one has to
change in p to get to a point of 𝑆.

This distance measure is not informative. Think about 𝐻 (p, 𝑆) = {(0, 1)} and 𝐻 (p, 𝑆′) = {(0, 1), (1, 0)}.
In this case, the Hamming measure would rank both sets as being of equal quality (i.e., 1). But clearly, 𝑆′
is closer – there are two different ways to get from p to some point of 𝑆′ by changing a single coordinate.

To capture this intuition, we consider the convex-hull of these sets:

𝐶 (p, 𝑆) = CH
(
{𝐻 (p, u) | u ∈ 𝑆}

)
.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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And the corresponding 𝑇-distance

𝜌(p, 𝑆) = min
u∈𝐶 (p,𝑆)

∥u∥ . (53.3)

Observation 53.1.1. An easy upper bound on the 𝑇-distance of p to a set 𝑆 (i.e., 𝜌(p, 𝑆)) is the
minimum number of coordinates one has to change in p to get to a point in 𝑆. As the next example
shows, however, things are more subtle – if there are many different ways to get from p to a point in 𝑆,
then the 𝑇-distance is going to be significantly smaller.

Example 53.1.2. It would be useful to understand this somewhat mysterious 𝑇-distance. To this end,
consider the ball in R𝑑 of radius 100𝑑 centered in the origin, denote by b, and let 𝑆 = 𝜕b be its boundary
sphere. For a point p ∈ intb, we have that

𝐻 = 𝐻 (p, 𝑆) = {0, 1}𝑑 \ {(0, 0, . . . , 0)} .
As such 𝐶 = 𝐻 (p, 𝑆) is the convex-hull of all the hypercube vertices, excluding the origin. it is easy to
check that the closest point in 𝐶 to the origin is the point u = (1/𝑑, 1/𝑑, . . . , 1/𝑑), As such, we have
that 𝜌(p, 𝑆) = ∥u∥ =

√︁
1/𝑑 = 1/

√
𝑑.

In particular, by monotonicity this implies that for any set 𝑇 in R𝑑 we have that 𝜌(p, 𝑇) is either 0
(i.e., p ∈ 𝑇), or alternatively, 𝜌(p, 𝑇) ≥ 1/

√
𝑑. Similarly, 𝜌(p, 𝑇) ≤

√
𝑑 as this is the maximum distance

from the origin to any vertex of the hypercube {0, 1}𝑑.
As a concrete example, for the set 𝑆 = 𝜕b, and the point p = (200𝑑, . . . , 200𝑑), we have 𝜌(p, 𝑆) =

√
𝑑.

In the following, think about the dimension 𝑑 as being quite large. As such, the distance 1/
√
𝑑 is

quite small. In particular, for a set 𝑆 ⊆ R𝑑, let

𝑆𝑡 =
{
p ∈ R𝑑

�� 𝜌(p, 𝑆) ≤ 𝑡
}
,

be the expansion of 𝑆 by including points that are in distance at most 𝑡 from 𝑆 in the 𝑇-distance.
Since we interested in probability here, consider R𝑑 to be the product of 𝑑 probability spaces.

Formally, let Ω𝑖 be a probability space, and consider the product probability space Ω =
∏𝑑

𝑖=1 Ω𝑖. As we
are given a probability measure on each Ω𝑖, this defines a natural probability measure on Ω. That is, a
point from Ω is generated by packing each of its coordinates independently from Ω𝑖. for 𝑖 = 1, . . . , 𝑑.

The volume of a set 𝑆 ⊆ Ω is thus P[𝑆]. We are now ready to state Talagrand inequality (not that
it is going to help us much).
Theorem 53.1.3 (Talagrand’s inequality). For any set 𝑆 ⊆ Ω, we have

P[𝑆] P[𝑆𝑡 ] = P[𝑆]
(
1 − P[𝑆𝑡]

)
≤ exp(−𝑡2/4).

Example 53.1.4. To see why this inequality interesting, consider Ω = [0, 100]𝑑 with uniform distribution
on each coordinate. The probability measure of a set 𝑆 ⊆ Ω is P[𝑆] = vol(𝑆)/100𝑑. Let

𝑆 =

{
p = (𝑝1, . . . , 𝑝𝑑) ∈ [0, 100]𝑑

���� ∑︁
𝑖

𝑝𝑖 ≤
100𝑑

2

}
.

It is easy to verify that vol(𝑆) = vol
(
[0, 100]𝑑

)
/2. Let 𝑡 = 4

√
ln 𝑑, and consider the set 𝑆𝑡 . Intuitively,

and not quite correctly, it the set of all points in [0, 100]𝑑, such that one needs to change more than
4 ln 𝑑 coordinates before one can get to a point of 𝑆. These points are 𝑡-far from being in 𝑆.

By Talagrand inequality, we have that P
[
𝑆𝑡

]
/2 = P[𝑆]

(
1 − P[𝑆𝑡]

)
≤ exp(−𝑡2/4) = 1/𝑑4. Namely, only

a tiny fraction of the cube is more than 𝑇-distance 4
√

ln 𝑑 from 𝑆!
Let us try to restate this – for any set 𝑆 that is half the volume of the hypercube [0, 100]𝑑, the set

of points in 𝑇-distance ≤ 4
√

ln 𝑑 in this hypercube is small.
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53.1.2. On the way to proving Talagrand’s inequality
The following helper result is the core of the proof of Talagrand’s inequality. The reader might want to
skip reading the proof of this claim, at least at first reading.

Theorem 53.1.5. For any set 𝑆 ⊆ Ω =
∏𝑑

𝑖=1 Ω𝑖, we have

E

[
exp

(
𝜌2(p, 𝑆)

4

)]
=

∫
p∈Ω

exp
(
𝜌2(p, 𝑆)

4

)
𝑑p ≤ 1

P[𝑆]
.

Proof: The proof is by induction on the dimension 𝑑. For 𝑑 = 1, then 𝜌(p, 𝑆) = 0 if p ∈ 𝑆, and 𝜌(p, 𝑆) = 1
if p ∉ 𝑆. As such, we have

𝛾 = E

[
exp

(
𝜌2(p, 𝑆)

4

)]
= 𝑒02/4 P[𝑆] + 𝑒12/4(1 − P[𝑆]) = P[𝑆] + 𝑒1/4(1 − P[𝑆]) = 𝑓 (P[𝑆]),

where 𝑓 (𝑥) = 𝑥 + 𝑒1/4(1 − 𝑥). An easy argument (see Tedium 53.1.6) shows that 𝑓 (𝑥) ≤ 1/𝑥, which
implies that 𝛾 = 𝑓 (P[𝑆]) ≤ 1/P[𝑆], as claimed.

For 𝑑 = 𝑛 + 1, let O =
∏𝑑

𝑖=1 Ω𝑖, and N = Ω𝑑+1. Clearly, Ω =
∏𝑑+1

𝑖=1 Ω𝑖 = O ×N .

𝑆O = {p ∈ O | (p, 𝑦) ∈ 𝑆, for some 𝑦 ∈ N} .

For a ∈ N , let
𝑆(a) = {p ∈ O | (p, a) ∈ 𝑆} ⊆ 𝑆O .

Given a point z = (p, 𝑦) ∈ Ω, we can get to a point in 𝑆, either by changing the new coordinate and
then moving inside the old space O, or alternatively, keeping the new coordinate a fixed and moving
only in the old coordinates. In particular, we have that if

𝑠 ∈ 𝐻 (p, 𝑆O) ⊆ {0, 1}𝑑 =⇒ (𝑠, 1) ∈ 𝐻 (z, 𝑆) (see Eq. (53.2))
𝑠′ ∈ 𝐻 (p, 𝑆(a)) =⇒ (𝑠′, 0) ∈ 𝐻 (z, 𝑆).

And similarly, for the corresponding convex-hulls, we have

𝑠 ∈ 𝐶 (p, 𝑆O) =⇒ (𝑠, 1) ∈ 𝐶 (z, 𝑆) and 𝑠′ ∈ 𝐶 (p, 𝑆(a)) =⇒ (𝑠′, 0) ∈ 𝐶 (z, 𝑆).

In particular, for 𝑠, 𝑠′ as above, we have (by convexity) that for any _ ∈ [0, 1], the point

ℎ(_) = (1 − _)
(
𝑠, 1

)
+ _

(
𝑠′, 0

)
=

(
(1 − _)𝑠 + _𝑠′, 1 − _

)
∈ 𝐶 (z, 𝑆) ⊆ [0, 1]𝑑+1.

The function ℎ̂(_) = ∥(1 − _)𝑠 + _𝑠′∥2 is convex, see Tedium 53.1.7. We thus have

𝜌2(z, 𝑆) =
(

min
p∈𝐶 (z,𝑆)

∥p∥2
)
≤ ∥ℎ(_)∥2 = ∥(1 − _)𝑠 + _𝑠′∥2 + (1 − _)2 ≤ (1 − _) ∥𝑠∥2 + _ ∥𝑠′∥2 + (1 − _)2.

We are still at the liberty of choosing 𝑠 and 𝑠′. Let 𝑠 be the point realizing 𝜌(p, 𝑆O) – this is the closest
point in 𝐶 (p, 𝑆) to the origin (i.e., ∥𝑠∥ = 𝜌(p, 𝑆O)). Similarly, let 𝑠′ be the point realizing 𝜌(p, 𝑆(a)).
Plugging these two points into the above inequality, we have

𝜌2(z, 𝑆) ≤ (1 − _)𝜌(p, 𝑆O)2 + _𝜌(p, 𝑆(a))2 + (1 − _)2.
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Now, fix a, and ride the following little integral:

𝐹 (a) =
∫

p
exp

(
𝜌2 ((p, a), 𝑆)

4

)
≤

∫
p

exp
(
(1 − _)𝜌(p, 𝑆O)2 + _𝜌(p, 𝑆(a))2 + (1 − _)2

4

)
≤ 𝑒(1−_)

2/4
∫

p
exp

(
1
4𝜌(p, 𝑆O)

2
)1−_

exp
(
1
4𝜌(p, 𝑆(a))

2
)_

≤ 𝑒(1−_)
2/4

[∫
p

exp
(
1
4𝜌(p, 𝑆O)

2
)] (1−_) [∫

p
exp

(
1
4𝜌(p, 𝑆(a))

2
)]_

(by Hölder’s ineq (53.4))

≤ 𝑒(1−_)
2/4

(
1

P[𝑆O]

) (1−_) ( 1
P[𝑆(a)]

)_
= 𝑒(1−_)

2/4 1
P[𝑆O]

(
P[𝑆(a)]
P[𝑆O]

)−_
(induction)

=
1

P[𝑆O]
· 𝑒(1−_)2/4𝑟−_, for 𝑟 = P[𝑆(a)]

P[𝑆O]

Observe that P[𝑆O] ≥ P[𝑆(a)], and thus 𝑟 ≤ 1. To minimize the above, consider the function 𝑓3(_, 𝑟) =
exp

(
(1 − _)2/4)𝑟−_. Easy calculation shows that 𝑓3(_, 𝑟) is minimized, for a fixed 𝑟, by choosing

_(𝑟) =
{

1 + 2 ln 𝑟 𝑟 ∈ [𝑒−1/2, 1]
0 𝑟 ∈ [0, 𝑒−1/2]

,

see Tedium 53.1.9 (A). Furthermore, for this choice of _, easy calculations shows that 𝑓4(𝑟) = 𝑓𝑟 (_(𝑟), 𝑟) ≤
2 − 𝑟, see Tedium 53.1.9 (B). As such, we have

𝐹 (a) ≤ 1
P[𝑆O]

𝑓4(𝑟) ≤
1

P[𝑆O]

(
2 − P[𝑆(a)]

P[𝑆O]

)
We remind the reader that our purpose is to bound∫

z
exp

(
𝜌2 (z, 𝑆)

4

)
=

∫
a∈N

∫
p∈O

exp
(
𝜌2 ((p, a), 𝑆)

4

)
≤

∫
a∈N

𝐹 (a) ≤
∫
a∈N

1
P[𝑆O]

(
2 − P[𝑆(a)]

P[𝑆O]

)
=

1
P[𝑆O]

(
2 −

∫
a∈N P[𝑆(a)]
P[𝑆O]

)
=

1
P[𝑆O]

(
2 − P[𝑆]
P[𝑆O]

)
=

1
P[𝑆]

· P[𝑆]
P[𝑆O]

(
2 − P[𝑆]
P[𝑆O]

)
≤ 1
P[𝑆]

,

since for 𝑥 = P[𝑆]/P[𝑆O], we have 𝑥(2 − 𝑥) ≤ 1, for any value of 𝑥 (see Tedium 53.1.10). ■

53.1.2.1. The low level details used in the above proof

Tedium 53.1.6. Let 𝑓 (𝑥) = 𝑥 + 𝑒1/4(1 − 𝑥). We claim that, for 𝑥 ∈ (0, 1], 𝑓 (𝑥) ≤ 1/𝑥. Indeed, set
𝑔(𝑥) = 1/𝑥, and observe that 𝑓 (1) = 1 = 1/1 = 𝑔(1). We have that 𝑓 ′(𝑥) = 𝑒1/4 − 1 ≈ −0.284 and
𝑔′(𝑥) = −1/𝑥2. In particular, 𝑔′(𝑥) ≤ 𝑓 ′(𝑥), for all 𝑥 ∈ (0, 1). Since and 𝑓 (1) = 𝑔(1). it follows that
𝑓 (𝑥) ≤ 𝑔(𝑥), for 𝑥 ∈ (0, 1].

Tedium 53.1.7. For any p, u ∈ R𝑑, the function 𝑓 (_) = ∥(1 − _)p + _u∥2 is convex. Indeed, let 𝑓𝑖 (_) =(
(1 − _)𝑝𝑖 + _𝑞𝑖

)2
, for 𝑖 = 1, . . . , 𝑑. Observe that 𝑓 (_) =

∑
𝑖 𝑓𝑖 (_), and as such it is sufficient to prove

that 𝑓𝑖 is convex. We have 𝑓 ′
𝑖
(_) = 2(𝑞𝑖 − 𝑝𝑖)

(
(1 − _)𝑝𝑖 + _𝑞𝑖

)
, and 𝑓 ′′

𝑖
(_) = 2(𝑞𝑖 − 𝑝𝑖)2 > 0, which implies

convexity.
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Fact 53.1.8 (Hölder’s inequality.). Let 𝑝, 𝑞 ≥ 1 be two numbers such that 1/𝑝 + 1/𝑞 = 1. Then, for
any two functions 𝑓 , 𝑔, we have ∥ 𝑓 𝑔∥1 ≤ ∥ 𝑓 ∥𝑝 ∥𝑔∥𝑞. Explicitly, stated as integrals, Hölder’s inequality

is
∫
| 𝑓 (𝑥)𝑔(𝑥) |d𝑥 ≤

(∫
| 𝑓 (𝑥) |𝑝d𝑥

)1/𝑝 (∫
| 𝑓 (𝑥) |𝑞d𝑥

)1/𝑞
. In particular, for _ ∈ (0, 1), 𝑝 = 1/(1 − _) and

𝑞 = 1/_, we have that ∫ �� 𝑓 _ (𝑥)𝑔1−_ (𝑥)
�� d𝑥 ≤

(∫
| 𝑓 (𝑥) |d𝑥

)1−_ (∫
| 𝑓 (𝑥) |d𝑥

)_
. (53.4)

Tedium 53.1.9. (A) We need to find the minimum of the following function 𝑓 (_) = exp
(
(1 − _)2/4)𝑟−_ =

exp
(
(1 − _)2/4 − _ ln 𝑟). We have 𝑓 ′(_) = 𝑓3(_)

(
(1 − _)/2 − ln 𝑟

)
. Solving for 𝑓 ′(_) = 0, we have (1 −

_)/2 − ln 𝑟 = 0 =⇒ 1 − _ = 2 ln 𝑟0 =⇒ _ = 1 − 2 ln 𝑟, which works as long as 𝑟 ≥ 𝑒−1/2. Otherwise, we
set _ = 0.

(B) For 𝑟 ≤ 𝑒−1/2, we have, by the above, that 𝑓 (0) = 𝑒1/4 ≈ 1.28 ≤ 1.39 ≈ 2 − 𝑒−1/2 ≤ 2 − 𝑟. For
𝑟 > 𝑒−1/2, by the above, _ = 1 − 2 ln 𝑟, and thus

𝑔(𝑟) = 𝑓 (_) = exp
(
(1 − _)2/4 − _ ln 𝑟) = exp

(
(2 ln 𝑟)2/4 + (1 − 2 ln 𝑟) ln 𝑟

)
= exp

(
ln 𝑟 − ln2 𝑟) ≤ 1 ≤ 2 − 𝑟,

since ln 𝑟 − ln2 𝑟 ≤ ln 𝑟 ≤ 0, for 𝑟 ∈ (0, 1].

Tedium 53.1.10. The function 𝑓 (𝑥) = 𝑥(2 − 𝑥) = 2𝑥 − 𝑥2 is a parabola with a maximum at 2𝑥 = 2 =⇒
𝑥 = 1 =⇒ ∀𝑦 𝑓 (𝑦) ≤ 𝑓 (1) = 1.

53.1.3. Proving Talagrand’s inequality
Proving Talagrand’s inequality is now easy peasy.

Talagrand’s inequality restatement (Theorem 53.1.3). For any set 𝑆 ⊆ Ω, we have

P[𝑆] P[𝑆𝑡 ] = P[𝑆]
(
1 − P[𝑆𝑡]

)
≤ exp(−𝑡2/4).

Proof: Consider a random point p ∈ Ω. We are interested in the probability p ∉ 𝑆𝑡 . To this end, consider
the random variable 𝑋 = 𝜌(p, 𝑆). By definition, p ∈ 𝑆𝑡 ⇐⇒ 𝑋 ≥ 𝑡. As such, by Markov’s inequality,
we have

P
[
𝑆𝑡

]
= P[𝑋 ≥ 𝑡] = P

[
exp

(
𝑋2/4

)
≥ exp

(
𝑡2/4

) ]
≤
E[exp

(
𝑋2/4

)
]

exp(𝑡2/4) ≤
exp

(
−𝑡2/4

)
P[𝑆]

,

by Theorem 53.1.5. ■

53.2. Concentration via certification
Example 53.2.1. Consider the process of throwing 𝑚 balls into 𝑛 bins. The 𝑖th ball 𝑋𝑖 is uniformly
distributed in Ω𝑖 = J𝑛K. For x = (𝑋1, . . . , 𝑋𝑚) ∈ Ω =

∏𝑚
𝑖=1 Ω𝑖, let ℎ(x) be the number of bins that are

not empty. If ℎ(x) ≥ 𝑘, then there is a set 𝐼 = {𝑖1, . . . , 𝑖𝑘 } of 𝑘 indices, such that for any two distinct
𝑖, 𝑗 ∈ 𝐼, we have that 𝑋𝑖 ≠ 𝑋 𝑗 .

Namely, 𝐼 is a “compact” proof/certificate that ℎ(x) ≥ 𝑘. Furthermore, if for y = (𝑌1, . . . , 𝑌𝑚) ∈ Ω

we have that 𝑋𝛼 = 𝑌𝛼, for all 𝛼 ∈ 𝐼, then ℎ(y) ≥ 𝑘. Here, the certificate for a value 𝑘, was a set of size
𝑘.
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Definition 53.2.2. Let Ω =
∏𝑚

𝑖=1 Ω𝑖. For a function ℎ : Ω → N, it is 𝑓 -certifiable, for a function
𝑓 : N→ N, if whenever ℎ(x) ≥ 𝑘, there exists a set 𝐼 ⊆ J𝑚K, with |𝐼 | ≤ 𝑓 (𝑘), such that, for any y ∈ Ω,
if y agree with ®𝑥 on the coordinates of 𝐼, then ℎ(®𝑦) ≥ 𝑘.

Example 53.2.3. In Example 53.2.1, the function ℎ (i.e., number of bins that are not empty) is 𝑓 -
certifiable, where 𝑓 (𝑘) = 𝑘.

Example 53.2.4. Consider the random graph G(𝑛, 𝑝) over 𝑛 vertices, created by picking every edge with
probability 𝑝. One can interpret such a graph as a random binary vector with

(𝑛
2
)

coordinates, where
the 𝑖th coordinate is 1 ⇐⇒ the 𝑖th edge is in the graph (for some canonical ordering of all possible

(𝑛
2
)

edges).
A triangle in a graph G is a triple of vertices 𝑖, 𝑗 , 𝑘, such that 𝑖 𝑗 , 𝑗 𝑘, 𝑘𝑖 ∈ E(G). For a graph G,

let ℎ(G) be the number of distinct triangles in G. In the above interpretation as a graph as a vector
x ∈ {0, 1}(

𝑛
2) , it is easy to verify that if ℎ(G) ≥ 𝑘 then it can be certified by 3𝑘 coordinates. As such,

the number of triangles in a graph is 𝑓 -certifiable, for 𝑓 (𝑘) = 3𝑘.
Note, that the certificate is only for the lower bound on the value of the function.

We need the following reinterpretation of the 𝑇-distance.

Lemma 53.2.5. Consider a set 𝑆 ⊆ R𝑑 and a point p ∈ R𝑑. We have that 𝜌(p, 𝑆) ≤ 𝑡 ⇐⇒ for all
x = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑, with ∥x∥ = 1, there exists h ∈ 𝐻 (p, 𝑆), such that ⟨x, h⟩ ≤ 𝑡.

Proof: The quantity ℓ = 𝜌(p, 𝑆) is the distance from the origin to the convex polytope 𝐶 (p, 𝑆). In
particular, let y be the closest point to the origin in this polytope, and observe that ℓ = ∥y∥ = ⟨y, y/∥y∥⟩.
In particular, for any other vector x, with ∥x∥ = 1, we have ⟨y, x⟩ ≤ ⟨y, y/∥y∥⟩ ≤ ℓ. Since y is in the
convex-hull of 𝐻 (p, 𝑆), it follows that there is h ∈ 𝐻 (p, 𝑆) such that ⟨y, x⟩ ≤ ⟨h, x⟩ ≤ ℓ.

As for the other direction, assume that ℓ = 𝜌(p, 𝑆) > 𝑡, and let y ∈ 𝐶 (p, 𝑆) be the point realizing this
distance. Arguing as above, we have that for the direction y/∥y∥, and any vertex h ∈ 𝐻 (p, 𝑆) we have
that ⟨h, x⟩ ≥ ⟨h, x⟩ ≥ ℓ > 𝑡. ■

Theorem 53.2.6. Consider a probability space Ω =
∏𝑚

𝑖=1 Ω𝑖, and let ℎ : Ω → be 1-Lipschitz and 𝑓 -
certifiable, for some function 𝑓 . Consider the random variable 𝑋 = ℎ(x), for x picked randomly in Ω.
Then, for any positive real numbers 𝑏 and 𝑡, we have

P
[
𝑋 ≤ 𝑏 − 𝑡

√︁
𝑓 (𝑏)

]
P[𝑋 ≥ 𝑏] ≤ exp(−𝑡2/4).

If ℎ is 𝑘-Lipschitz then P
[
𝑋 ≤ 𝑏 − 𝑡𝑘

√︁
𝑓 (𝑏)

]
P[𝑋 ≥ 𝑏] ≤ exp(−𝑡2/4).

Proof: Set 𝑆 =
{
p ∈ Ω

�� ℎ(p) < 𝑏 − 𝑡
√︁
𝑓 (𝑏)

}
. Consider a point u, such that ℎ(u) ≥ 𝑏. Assume for the

sake of contradiction that u ∈ 𝑆𝑡 . Let 𝐼 ⊆ J𝑚K be the certificate of size ≤ 𝑓 (𝑏) that ℎ(u) ≥ 𝑏. And
consider the vector x = (𝑥1, . . . , 𝑥𝑑), such that 𝑥𝑖 = 1/

√︁
|𝐼 | if 𝑖 ∈ 𝐼, and 𝑥𝑖 = 0 otherwise. Observe that

∥x∥2 = |𝐼 | (1/|𝐼 |) = 1, and thus ∥x∥ = 1. By Lemma 53.2.5, there exists h ∈ 𝐻 (u, 𝑆), such that ⟨x, h⟩ ≤ 𝑡,
since by assumption 𝜌(u, 𝑆) ≤ 𝑡. Let v ∈ 𝑆 be the point realizing h – that is, 𝐻 (p, v) = h.

Let 𝐽 ⊆ 𝐼 be the set of indices of coordinates that are in 𝐼, such that p and v differ on this coordinate.
We have by the definition of x, that |𝐽 | /

√︁
|𝐼 | ≤ ⟨x, h⟩ ≤ 𝑡, which implies that |𝐽 | ≤ 𝑡

√︁
|𝐼 | ≤ 𝑡

√︁
𝑓 (𝑏).

Let u′ be the point that agrees with u on the coordinates of 𝐼, and agrees with v on the other
coordinates. The points u′ and v disagree only on coordinates in 𝐼, but such coordinates of disagreement
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are exactly the coordinates (in 𝐼) where u disagrees with v – which is the set 𝐽 of coordinates. As such,
by the 1-Lipschitz condition, we have that

ℎ(v) ≥ ℎ(u′) − |𝐽 | ≥ ℎ(u) − 𝑡
√︁
𝑓 (𝑏),

but then, by the definition of 𝑆, we have v ∉ 𝑆, which is a contradiction as v ∈ 𝑆.
We conclude that u ∉ 𝑆𝑡 =⇒ u ∈ 𝑆𝑡 . As such, we have P[𝑋 ≥ 𝑏] ≤ P

[
𝑆𝑡

]
. By Talagrand inequality,

we have
P
[
𝑋 < 𝑏 − 𝑡

√︁
𝑓 (𝑏)

]
P[𝑋 ≥ 𝑏] ≤ P[𝑆] P[𝑆𝑡 ] ≤ exp(−𝑡2/4).

The “<” on the left side can be replaced by “≤”, as in the statement of the theorem, by using the value
𝑡 + Y instead of 𝑡, and taking the limit as Y → 0.

The 𝑘-Lipschitz version follows by applying the above inequality to the function ℎ(·)/𝑘. ■

53.3. Some examples
Definition 53.3.1. For a random variable 𝑋 ∈ R, let med(𝑋) denote the maximum number 𝑚, such that
P[𝑋 < 𝑚] ≤ 1/2 and P[𝑋 > 𝑚] ≤ 1/2. The number med(𝑋) is the median of 𝑋.

53.3.1. Longest increasing subsequence
Let x = (𝑋1, . . . , 𝑋𝑛) be a vector of 𝑛 numbers picked randomly and uniformly from [0, 1]. Let ℎ(x) be
the longest increasing subsequence in the associated sequence.

Lemma 53.3.2. We have ℎ(x) = Θ(
√
𝑛) with high probability. Furthermore, for some constant 𝑐 and

any 𝑡 > 0, we have that P
[
|ℎ(x) − med(ℎ(x)) | − 𝑡𝑐𝑛1/4] ≤ 4 exp(−𝑡2/4), Namely, the random variable

ℎ(x) is strongly concentrated.

Proof: Let 𝑌𝑖 be an indicator variable that is 1 ⇐⇒ x[𝑖] ≡ 𝑥(𝑖−1)
√
𝑛+1,, . . . , 𝑥𝑖

√
𝑛 contains a number in the

interval 𝐽 (𝑖) = [(𝑖−1)/
√
𝑛, 𝑖

√
𝑛]. We have P[𝑌𝑖 = 1] = 1− (1−1/

√
𝑛)

√
𝑛 ≥ 1−1/𝑒 ≥ 1/2, since (1−1/𝑚)𝑚 ≤

1/𝑒. If 𝑌𝑖 happens, then we can take the number in x[𝑖] that falls in 𝐽 (𝑖), and add it to the generated
sequence. As such, the length of the generated sequence, which is increasing, is 𝑌 =

∑𝑛
𝑖=1𝑌𝑖. And in

particular, E[𝑌 ] ≥
√
𝑛/2, and Chernoff’s inequality implies that P

[
𝑌 ≥ (1 − 𝛿)

√
𝑛/2

]
≤ exp(−𝛿2√𝑛/8).

The upper bound is more interesting. The probability that a specific subsequence of 𝑡 indices
𝑖1 < 𝑖2 < . . . < 𝑖𝑡 form an increasing subsequence 𝑋𝑖1 < 𝑋𝑖2 < · · · < 𝑋𝑖𝑡 is 1/𝑡!. As such, the expected
number of such increasing sequences of length ≥ ℓ is bounded by

𝛼 =

𝑛∑︁
𝑡=ℓ

(
𝑛

𝑡

)
1
𝑡! ≤

𝑛∑︁
𝑡=ℓ

(𝑛𝑒
𝑡

) 𝑡 1
𝑡! ≤

𝑛∑︁
𝑡=ℓ

(𝑛𝑒
𝑡

) 𝑡 1
(𝑡/𝑒)𝑡 =

𝑛∑︁
𝑡=ℓ

𝑛𝑡𝑒2𝑡

𝑡2𝑡
,

using Lemma 53.6.1. In particular, for ℓ = 4𝑒
√
𝑛, we have

𝛼 ≤
𝑛∑︁
𝑡=ℓ

𝑛𝑡𝑒2𝑡(
4𝑒
√
𝑛
)2𝑡 , =

𝑛∑︁
𝑡=ℓ

1
42𝑡 ≤ 2/48𝑒

√
𝑛 ≪ 1.

By Markov’s inequality, this implies that P
[
ℎ(x) ≥ 4𝑒

√
𝑛
]
≤ 2/48𝑒

√
𝑛.
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The above readily implies that a = med(ℎ(x)) = Θ(
√
𝑛). Furthermore, ℎ(x) is 𝑓 (𝑥) = 𝑥 certifiable,

and it is 1-Lipschitz. Theorem 53.2.6 now implies that

P
[
ℎ(x) ≤ a − 𝑡

√
a
]
/2 ≤ P

[
ℎ(x) ≤ a − 𝑡

√
a
]
P[𝑋 ≥ a] ≤ exp(−𝑡2/4).

As a = 𝑂 (𝑛1/4), we get the following (this requires some further tedious calculations which we omit).

P
[��ℎ(x) − a

�� − 𝑡𝑐𝑛1/4
]
≤ 4 exp(−𝑡2/4),

where 𝑐 is some constant. ■

53.3.2. Largest convex subset
A set of points P is in convex position if they are all vertices of the convex-hull of P.

Lemma 53.3.3. Let P be a set of 𝑛 points picked randomly and uniformly in the unit square [0, 1]2.
Let 𝑌 be the size of the largest subset of point of P that are in convex position. Then, we have that
E[𝑌 ] = Ω(𝑛1/3).

Proof: Let p = (1/2, 1/2), and consider the regular 𝑁-gon 𝑄, for 𝑁 = 𝑛1/3, that its vertices lie on the
circle centered at p, and is of radius 𝑟 = 1/2. Consider the triangle △𝑖 formed by connecting three
consecutive vertices p2𝑖−1, p2𝑖, p2𝑖+1 of 𝑄. We have that 𝛼 = 2𝜋/𝑁, and we pick 𝑛 large enough, so that
𝛼 ≤ 1/4. We remind the reader that 1 − 𝑥2/4 ≥ cos 𝑥 ≥ 1 − 𝑥2/2, for 𝑥 ∈ (0, 1/4). As such, we have that
𝛼2/4 ≤ 1 − cos𝛼 ≤ 𝛼2/2. In particular, this implies that the height of △ is ℎ = 𝑟 (1 − cos(𝛼)), and we
have 𝛼2/8 = 𝑟𝛼2/4 ≤ ℎ ≤ 𝑟𝛼2/2.

Let ℓ = ∥p2𝑖−1 − p2𝑖+1∥ = 2𝑟 sin 𝛼, since 𝑥/2 ≤ sin(𝑥) ≤ 𝑥, we have that 𝛼/2 ≤ ℓ ≤ 𝛼. As such, we
have that

area(△𝑖) = ℎℓ/2 ≥ (𝛼2/8) (𝛼/2) = 𝛼3/16 = (2𝜋/𝑁)3/16 = 8/𝑛.

In particular, the probability that △𝑖 does not contain a point of P is at most (1 − area(△𝑖))𝑛 ≤
(1 − 8/𝑛)𝑛 ≤ exp(−8). We conclude that, in expectation, at least (1 − exp(−8))𝑁/2 triangles contains
points of P. Selecting a point of P from each such triangle results in a convex subset, which implies the
claim. ■

It is not hard to show that 𝑌 = Ω(𝑛1/3), with high probability, see Exercise 53.5.1. This readily
implies that med(𝑌 ) = Ω(𝑛1/3). It is significantly harder, but known, that E[𝑌 ] = 𝑂 (𝑛1/3), see [Val95].
We provide a weaker but easier upper bound next.

Lemma 53.3.4. Let P be a set of 𝑛 points picked randomly and uniformly in the unit square [0, 1]2.
Let 𝑌 be the size of the largest subset of point of P that are in convex position. Then, E[𝑌 ] =

𝑂 (𝑛1/3 log 𝑛/log log 𝑛), with high probability.

Proof: Let 𝑉 be a set of directions of size 𝑂 (𝑛𝑐), where 𝑐 is some constant, such that for any unit
vector 𝑢, there is a vector in v ∈ 𝑉 , such that the angle between 𝑢 and 𝑣 is at most 1/𝑛𝑐. For a vector
v ∈ 𝑉 , consider the grid 𝐺 (v) with directions v, and orthogonal direction v⊥. Every cell of this grid is a
rectangle with sidelength 1/𝑛1/3 in the direction of v, and 1/𝑛2/3 in the orthogonal direction. In addition
the origin is a vertex of 𝐺 (v). This grid is uniquely defined, and every cell in this grid has sidelength 1.
The of number of grid cells of this grid intersecting the unit square is 𝑂 (𝑛), as can be easily verified.
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Let F be the set of all rectangles in all these grids that intersect the unit square. Clearly, the number
of such cells is 𝑂 ( |𝑉 | 𝑛) = 𝑂 (𝑛𝑐+1). Each rectangle in F has area 1/𝑛, and as such by expectation it
contains ≤ 1 point of P (the inequality is there because the rectangle might be partially outside the unit
square). A standard application of Chernoff’s inequality implies that the probability that a rectangle
of F contains more than 10𝑐 log 𝑛/log log 𝑛 points of P is ≤ 1/𝑛2𝑐. As such, with high probability no
rectangle in F contains more than 𝑂 (log 𝑛/log log 𝑛) points of P.

Consider any convex body 𝐶 ⊆ [0, 1]2. The key observation is that 𝜕𝐶 can be covered by 𝑂 (𝑛1/3)
rectangles of F . Indeed, the perimeter of 𝐶 is at most 4. As such, place 𝑂 (𝑛1/3) points along 𝜕𝐶 that are
at distance at most 1/(10𝑛1/3) from each other. Similarly, place additional 𝑂 (𝑛1/3) points on 𝜕𝐶, such
that the angle of the tangents between two consecutive points is at most 1/𝑛1/3 (in radians) [a vertex
of 𝐶 might be picked repeatedly]. Let Q be the resulting set of points. Consider two consecutive points
p, u ∈ Q along 𝜕𝐶, and observe that the distance between them is at most 1/(10𝑛1/3), and the angle
between their two tangents is at most 𝛼 = 1/𝑛1/3. consider the triangle △ formed by the two tangents
to 𝜕𝐶 at p, u, and the segment p, u. This triangle has height bounded by ∥p − u∥ sin 𝛼 ≤ 1/(10𝑛2/3). It
is now straightforward, if somewhat tedious to argue that one of the rectangles of F must contain △.

Now we are almost done – if the maximum cardinality convex subset Q ⊆ P was larger than
𝑐′𝑛1/3 log 𝑛/log log 𝑛, for some constant 𝑐′, then let 𝐶 be the convex-hull of this large subset. The
above would imply that one of the rectangles of F must contain at least Ω(𝑐′ log 𝑛/log log 𝑛) points of
P, but this does not happen with high probability, for 𝑐′ sufficiently large. Thus implying the claim. ■

In particular, the above implies that med(𝑌 ) = 𝑂 (𝑛1/3 log 𝑛).

Theorem 53.3.5. Let P be a set of 𝑛 points picked randomly and uniformly in the unit square [0, 1]2.
Let 𝑌 be the size of the largest subset of point of P that are in convex position. Then, for any 𝑡 > 0, we
have

P
[
|𝑌 − med(𝑌 ) | ≥ 𝑡𝑐𝑛1/6 log1/2 𝑛

]
≤ 2 exp(−𝑡2/4),

for some constant 𝑐.

Proof: Observe that 𝑌 is 1-Lipschitz (i.e., changing the location of one point in P can decrease or increase
the value of 𝑌 by at most 1. In addition 𝑌 is 1-certifiable, since we only need to list the points that form
the convex subset. As such, Theorem 53.2.6 applies. Setting 𝑏 = med(𝑌 ), we have by the above that
med(𝑌 ) = Ω(𝑛1/3) and med(𝑌 ) = 𝑂 (𝑛1/3 log 𝑛). As such, we have

P

[
𝑌 ≤ med(𝑌 ) − 𝑡

√︃
𝑐𝑛1/3 log 𝑛

]
P[𝑋 ≥ med(𝑌 )] ≤ exp(−𝑡2/4).

Similarly, setting 𝑏 = med(𝑌 ) + 𝑡
√︁
𝑐𝑛1/3 log 𝑛 ≤ 2med(𝑌 ), we have

P[𝑌 ≤ med(𝑌 )]P
[
𝑋 ≥ med(𝑌 ) + 𝑡

√︃
𝑐𝑛1/3 log 𝑛

]
≤ exp(−𝑡2/4).

Putting the two inequalities together, we get

P

[
|𝑌 − med(𝑌 ) | ≥ 𝑡

√︃
𝑐𝑛1/3 log 𝑛

]
≤ 2 exp(−𝑡2/4). ■
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53.3.3. Balls into bins revisited
Given n balls, one throw them into b bins, where b ≥ n. A ball that falls into a bin with 𝑖 or more balls
is 𝑖-heavy. Let ℎ≥𝑖 be the number of 𝑖-heavy balls. It turns out that a strong concentration on ℎ≥𝑖
follows readily from Talagrand’s inequality.

Lemma 53.3.6. Consider throwing n balls into b bins, where b ≥ 3n. Then, 𝑒−2𝐹𝑖 ≤ E[ℎ≥𝑖] ≤ 6𝑒𝑖−1𝐹𝑖,
where ℎ≥𝑖 is the number of 𝑖-heavy balls, and 𝐹𝑖 = n(n/𝑖b)𝑖−1. Let 𝛽𝑖 denote the expected number of pairs
of 𝑖-heavy balls that are colliding. We have that 𝛽𝑖 = 𝑂

(
n𝑖(𝑒n/𝑖b)𝑖−1) .

Proof: Let 𝑝 = 1/b. A specific ball falls into a bin with exactly 𝑖 balls, if there are 𝑖 − 1 balls, of the
remaining 𝑛 − 1 balls that falls into the same bin. As such, the probability for that is 𝛾𝑖 = 𝑝𝑖−1(1 −
𝑝)n−𝑖 (n−1

𝑖−1
)
. As such, a specific ball is 𝑖-heavy with probability

𝛼 =

n∑︁
𝑗=𝑖

𝛾 𝑗 =

n−1∑︁
𝑗=𝑖−1

(
n − 1
𝑗

)
𝑝 𝑗 (1 − 𝑝)n− 𝑗−1 ≤

n−1∑︁
𝑗=𝑖−1

(
𝑒(n − 1)

𝑗b

) 𝑗
≤ 2

(
𝑒n

b(𝑖 − 1)

) 𝑖−1
≤ 6

( 𝑒n
𝑖b

) 𝑖−1
,

as (𝑛/𝑖)𝑖 ≤
(𝑛
𝑖

)
≤ (𝑒𝑛/𝑖)𝑖. Since (1 − 𝑝)n− 𝑗−1 ≥ (1 − 1/b)b−1 ≥ 1/𝑒, we have

𝛼 ≥ 1
𝑒

n−1∑︁
𝑗=𝑖−1

(
n − 1
𝑗b

) 𝑗
≥ 1

𝑒

(
n − 1

n · n
(𝑖 − 1)b

) 𝑖−1
≥ 1

𝑒2

( n
𝑖b

) 𝑖−1
.

As such, we have E[ℎ≥𝑖] = n𝛼 = Θ(n(n/b)𝑖−1).
If a ball is in a bin with exactly 𝑗 balls, for 𝑗 ≥ 𝑖, then it collides directly with 𝑗 − 1 other 𝑖-heavy

balls. Thus, the expected number of collisions that a specific ball has with 𝑖-heavy balls is in expectation∑n
𝑗=𝑖 ( 𝑗 − 1)𝛾 𝑗 =

∑n−1
𝑗=𝑖−1 𝑗𝛾 𝑗+1. Summing over all balls, and dividing by two, as every 𝑖-heavy collision is

counted twice, we have that the expected overall number of such collisions is

𝛽𝑖 =
𝑛

2

n−1∑︁
𝑗=𝑖−1

𝑗𝛾 𝑗+1 =
n
2

n∑︁
𝑗=𝑖−1

𝑗

(
n − 1
𝑗

)
𝑝 𝑗 (1 − 𝑝)n− 𝑗−1 = 𝑂

(
n𝑖

( 𝑒n
𝑖b

) 𝑖−1
)
. ■

Lemma 53.3.7. Consider throwing n balls into b bins, where b ≥ 3n. Let 𝑖 be a small constant integer,
ℎ≥𝑖 be the number of 𝑖-heavy balls, and let a𝑖 = med(ℎ≥𝑖). Assume that a𝑖 ≥ 16𝑖2𝑐 log n, where 𝑐 is some
arbitrary constant. Then, for some constant 𝑐′, we have that |a𝑖 − E[ℎ≥𝑖] | ≤ 𝑐′𝑖

√
a𝑖, and

P
[
|ℎ≥𝑖 − a𝑖 | ≥ 6𝑖

√︁
𝑐a𝑖 ln n

]
≤ 1

n𝑐 and P
[��ℎ≥𝑖 − E[ℎ≥𝑖]�� ≥ 𝑐′𝑖

√
a𝑖 + 6𝑖

√︁
𝑐a𝑖 ln n

]
≤ 1

n𝑐 .

Proof: Observe that ℎ≥𝑖 is 1-certifiable – indeed, the certificate is the list of indices of all the balls that
are contained in bins with 𝑖 or more balls. The variable ℎ≥𝑖 is also 𝑖-Lipschitz. Changing the location
of a single ball, can make one bin that contains 𝑖 balls, into a bin that contains only 𝑖 − 1 balls, thus
decreasing ℎ≥𝑖 by 𝑖.

We require that 𝑡𝑖
√
a𝑖 ≤ a𝑖/2 =⇒ 𝑡 ≤ √

a𝑖/(2𝑖). Theorem 53.2.6 implies that

P
[
ℎ≥𝑖 ≤ a𝑖 − 𝑡𝑖

√
a𝑖

]
≤ 2 exp(−𝑡2/4). (53.5)

Setting 𝑏 = a𝑖 + 2𝑡𝑖√a𝑖, we have that

𝑏 − 𝑡𝑖
√
𝑏 ≥ 𝑏 − 𝑡𝑖

√︃
a𝑖 + 2𝑡𝑖√a𝑖 ≥ 𝑏 − 𝑡𝑖

√︁
2a𝑖 = a𝑖 + 2𝑡𝑖√a𝑖 − 𝑡𝑖

√︁
2a𝑖 ≥ a𝑖 .
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This implies that P[ℎ≥𝑖 ≥ 𝑏]/2 ≤ P[ℎ≥𝑖 ≤ a𝑖] P[𝑋 ≥ 𝑏] ≤ P
[
ℎ≥𝑖 ≤ 𝑏 − 𝑡𝑘

√
𝑏

]
P[ℎ≥𝑖 ≥ 𝑏] ≤ exp(−𝑡2/4).

We conclude that
P
[
ℎ≥𝑖 ≥ a𝑖 + 2𝑡𝑖√a𝑖

]
≤ 2 exp(−𝑡2/4). (53.6)

Combining the above, we get that

P
[
|ℎ≥𝑖 − a𝑖 | ≥ 2𝑡𝑖√a𝑖

]
≤ 4 exp(−𝑡2/4)

We require that 4 exp(−𝑡2/4) ≤ 1/n𝑐, which holds for 𝑡 = 3
√
𝑐 ln 𝑛. We get the inequality P

[
|ℎ≥𝑖 − a𝑖 | ≥

6𝑖
√
𝑐a𝑖 ln 𝑛

]
≤ 1/n𝑐, as claimed.

This in turn translates into the requirement that 3
√
𝑐 ln 𝑛 ≤ √

a𝑖/(2𝑖). =⇒ 6𝑖
√
𝑐 ln 𝑛 ≤ √

a𝑖 . =⇒
36𝑖2𝑐 ln 𝑛 ≤ a𝑖 .

Next, we estimate the expectation. We have that

E[ℎ≥𝑖] ≥ a𝑖 −
∞∑︁
𝑡=1

𝑡𝑖
√
a𝑖 P

[
ℎ≥𝑖 ≤ a𝑖 − (𝑡 − 1)𝑖√a𝑖

]
≥ a𝑖 − 𝑖

√
a𝑖

∞∑︁
𝑡=1

𝑡2 exp(−(𝑡 − 1)2/4) ≥ a𝑖 − 10𝑖√a𝑖,

by Eq. (53.5). Similarly, by Eq. (53.6), we have

E[ℎ≥𝑖] ≤ a𝑖 +
∞∑︁
𝑡=1

2𝑡𝑖√a𝑖 P
[
ℎ≥𝑖 ≥ a𝑖 + (𝑡 − 1)𝑖√a𝑖

]
≤ a𝑖 + 4𝑖√a𝑖

∞∑︁
𝑡=1

𝑡 exp(−(𝑡 − 1)2/4) ≤ a𝑖 + 20𝑖√a𝑖,

As such, we have that |E[ℎ≥𝑖] − a𝑖 | ≤ 30𝑖√a𝑖, namely 𝑐′ ≤ 30. Combining the above inequalities implies
the statement of the lemma. ■

Example 53.3.8. Consider throwing n into b = n4/3 bins. Lemma 53.3.6 implies that 𝑒−2𝐹𝑖 ≤ E[ℎ≥𝑖] ≤
6𝑒𝑖−1𝐹𝑖, where 𝐹𝑖 = n/(𝑖b1/3)𝑖−1. As such E[ℎ≥2] = Θ(n2/3), E[ℎ≥3] = Θ(n1/3), and E[ℎ≥4] = Θ(1).

Applying Lemma 53.3.7, we get that the number of balls that collides (i.e., ℎ≥2), is strongly concen-
trated around some value a2 = Θ(n2/3), with the interval where it lies being of length 𝑂

(
n1/3√︁log 𝑛

)
.

53.4. Bibliographical notes
Our presentation follows closely Alon and Spencer [AS00]. Section 53.3.3 is from Har-Peled and Jones
[HJ18].

53.5. Problems
Exercise 53.5.1. Elaborating on the argument of Lemma 53.3.3, prove that, with high probability, a
random set of points picked uniformly in the unit square contains a convex subset of size Ω(𝑛2/3).

53.6. From previous lectures
Lemma 53.6.1. For any positive integer 𝑛, we have:

(i) (1 + 1/𝑛)𝑛 ≤ 𝑒.
(ii) (1 − 1/𝑛)𝑛−1 ≥ 𝑒−1.

(iii) 𝑛! ≥ (𝑛/𝑒)𝑛.

(iv) For any 𝑘 ≤ 𝑛, we have:
(𝑛
𝑘

) 𝑘
≤

(
𝑛

𝑘

)
≤

(𝑛𝑒
𝑘

) 𝑘
.
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