Chapter 52

Primality testing

By Sariel Har-Peled, April 26, $2022^{(1)}$
"The world is what it is; men who are nothing, who allow themselves to become nothing, have no place in it."

- Bend in the river, V.S. Naipaul

Introduction - how to read this write-up

In this note, we present a simple randomized algorithms for primality testing. The challenge is that it requires a non-trivial amount of number theory, which is not the purpose of this course. Nevertheless, this note is more or less self contained, and all necessary background is provided (assuming some basic mathematical familiarity with groups, fields and modulo arithmetic). It is however not really necessary to understand all the number theory material needed, and the reader can take it as given. In particular, I recommend to read the number theory background part without reading all of the proofs (at least on first reading). Naturally, a complete and total understanding of this material one needs to read everything carefully.

The description of the primality testing algorithm in this write-up is not minimal - there are shorter descriptions out there. However, it is modular - assuming the number theory machinery used is correct, the algorithm description is relatively straightforward.

52.1. Number theory background

52.1.1. Modulo arithmetic

52.1.1.1. Prime and coprime

For integer numbers x and y, let $x \mid y$ denotes that x divides y. The greatest common divisor ($\boldsymbol{g c d}$) of two numbers x and y, denoted by $\operatorname{gcd}(x, y)$, is the largest integer that divides both x and y. The least common multiple (lcm) of x and y, denoted by $\operatorname{lcm}(x, y)=x y / \operatorname{gcd}(x, y)$, is the smallest integer α, such that $x \mid \alpha$ and $y \mid \alpha$. An integer number $p>0$ is prime if it is divisible only by 1 and itself (we will consider 1 not to be prime).

Some standard definitions:

$$
\begin{array}{rll}
x, y \text { are coprime } & \Longleftrightarrow & \operatorname{gcd}(x, y)=1, \\
\text { quotient of } x / y & \Longleftrightarrow & x \operatorname{div} y=\lfloor x / y\rfloor, \\
\text { remainder of } x / y & \Longleftrightarrow & x \bmod y=x-y\lfloor x / y\rfloor .
\end{array}
$$

The remainder $x \bmod y$ is sometimes referred to as residue.

52.1.1.2. Computing gcd

[^0]Computing the gcd of two numbers is a classical algorithm, see code on the right - proving that it indeed returns the right result follows by an easy induction. It is easy to verify that if the input is made out of $\log n$ bits, then this algorithm takes $O(\operatorname{poly}(\log n))$ time (i.e., it is polynomial in the input size). Indeed,

EuclidGCD (a, b) :
if $(b=0)$
return a
else
return EuclidGCD $(b, a \bmod b)$
doing basic operations on numbers (i.e., multiplication, division, addition, subtraction, etc) with total of ℓ bits takes $O\left(\ell^{2}\right)$ time (naively - faster algorithms are known).
Exercise 52.1.1. Show that $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)=1$, where F_{i} is the i th Fibonacci number. Argue that for two consecutive Fibonacci numbers EuclidGCD $\left(F_{n}, F_{n-1}\right)$ takes $O(n)$ time, if every operation takes $O(1)$ time.

Lemma 52.1.2. For all $\alpha, \beta>0$ integers, there are integer numbers x and y, such that $\operatorname{gcd}(\alpha, \beta)=$ $\alpha x+\beta y$, which can be computed in polynomial time; that is, $O(\operatorname{poly}(\log \alpha+\log \beta))$.
Proof: If $\alpha=\beta$ then the claim trivially holds. Otherwise, assume that $\alpha>\beta$ (otherwise, swap them), and observe that $\operatorname{gcd}(\alpha, \beta)=\operatorname{gcd}(\alpha \bmod \beta, \beta)$. In particular, by induction, there are integers x^{\prime}, y^{\prime}, such that $\operatorname{gcd}(\alpha \bmod \beta, \beta)=x^{\prime}(\alpha \bmod \beta)+y^{\prime} \beta$. However, $\tau=\alpha \bmod \beta=\alpha-\beta\lfloor\alpha / \beta\rfloor$. As such, we have

$$
\operatorname{gcd}(\alpha, \beta)=\operatorname{gcd}(\alpha \bmod \beta, \beta)=x^{\prime}(\alpha-\beta\lfloor\alpha / \beta\rfloor)+y^{\prime} \beta=x^{\prime} \alpha+\left(y^{\prime}-\beta\lfloor\alpha / \beta\rfloor\right) \beta
$$

as claimed. The running time follows immediately by modifying EuclidGCD to compute these numbers.

We use $\alpha \equiv \beta(\bmod n)$ or $\alpha \equiv_{n} \beta$ to denote that α and β are congruent modulo n; that is $\alpha \bmod n=\beta \bmod n$. Or put differently, we have $n \mid(\alpha-\beta)$. The set $\mathbb{Z}_{n}=\{0, \ldots, n-1\}$ form a group under addition modulo n (see Definition $52.1 .9_{\mathrm{p} 4}$ for a formal definition of a group). The more interesting creature is $\mathbb{Z}_{n}^{*}=\{x \mid x \in\{1, \ldots, n\}, x>0$, and $\operatorname{gcd}(x, n)=1\}$, which is a group modulo n under multiplication.

Remark 52.1.3. Observe that $\mathbb{Z}_{1}^{*}=\{1\}$, while for $n>1, \mathbb{Z}_{n}^{*}$ does not contain n.
Lemma 52.1.4. For any element $\alpha \in \mathbb{Z}_{n}^{*}$, there exists a unique inverse element $\beta=\alpha^{-1} \in \mathbb{Z}_{n}^{*}$ such that $\alpha * \beta \equiv_{n} 1$. Furthermore, the inverse can be computed in polynomial time ${ }^{(2)}$.

Proof: Since $\alpha \in \mathbb{Z}_{n}^{*}$, we have that $\operatorname{gcd}(\alpha, n)=1$. As such, by Lemma 52.1.2, there exists x and y integers, such that $x \alpha+y n=1$. That is $x \alpha \equiv 1(\bmod n)$, and clearly $\beta:=x \bmod n$ is the desired inverse, and it can be computed in polynomial time by Lemma 52.1.2.

As for uniqueness, assume that there are two inverses β, β^{\prime} to $\alpha<n$, such that $\beta<\beta^{\prime}<n$. But then $\beta \alpha \equiv_{n} \beta^{\prime} \alpha \equiv_{n} 1$, which implies that $n \mid\left(\beta^{\prime}-\beta\right) \alpha$, which implies that $n \mid \beta^{\prime}-\beta$, which is impossible as $0<\beta^{\prime}-\beta<n$.

It is now straightforward, but somewhat tedious, to verify the following (the interested reader that had not encountered this stuff before can spend some time proving this).

Lemma 52.1.5. The set \mathbb{Z}_{n} under the + operation modulo n is a group, as is \mathbb{Z}_{n}^{*} under multiplication modulo n. More importantly, for a prime number p, \mathbb{Z}_{p} forms a field with the,$+ *$ operations modulo p (see Definition 52.1.1 $7_{p 6}$).

[^1]
52.1.1.3. The Chinese remainder theorem

Theorem 52.1.6 (Chinese remainder theorem). Let n_{1}, \ldots, n_{k} be coprime numbers, and let $n=$ $n_{1} n_{2} \cdots n_{k}$. For any residues $r_{1} \in \mathbb{Z}_{n_{1}}, \ldots, r_{k} \in \mathbb{Z}_{n_{k}}$, there is a unique $r \in \mathbb{Z}_{n}$, which can be computed in polynomial time, such that $r \equiv r_{i}\left(\bmod n_{i}\right)$, for $i=1, \ldots, k$.

Proof: By the coprime property of the n_{i} S it follows that $\operatorname{gcd}\left(n_{i}, n / n_{i}\right)=1$. As such, $n / n_{i} \in \mathbb{Z}_{n_{i}}^{*}$, and it has a unique inverse m_{i} modulo n_{i}; that is $\left(n / n_{i}\right) m_{i} \equiv 1\left(\bmod n_{i}\right)$. So set $r=\sum_{i} r_{i} m_{i} n / n_{i}$. Observe that for $i \neq j$, we have that $n_{j} \mid\left(n / n_{i}\right)$, and as such $r_{i} m_{i} n / n_{i}\left(\bmod n_{j}\right) \equiv 0\left(\bmod n_{j}\right)$. As such, we have

$$
r \bmod n_{j}=\left(\sum_{i}\left(r_{i} m_{i} \frac{n}{n_{i}} \bmod n_{j}\right)\right) \bmod n_{j}=\left(r_{j} m_{j} \frac{n}{n_{j}} \bmod n_{j}\right) \bmod n_{j}=r_{j} * 1 \bmod n_{j}=r_{j}
$$

As for uniqueness, if there is another such number r^{\prime}, such that $r<r^{\prime}<n$, then $r^{\prime}-r\left(\bmod n_{i}\right)=0$ implying that $n_{i} \mid r^{\prime}-r$, for all i. Since all the n_{i} s are coprime, this implies that $n \mid r^{\prime}-r$, which is of course impossible.

Lemma 52.1.7 (Fast exponentiation). Given numbers b, c, n, one can compute $b^{c} \bmod n$ in polynomial time.

Proof: The key property we need is that

$$
x y \bmod n=((x \bmod n)(y \bmod n)) \bmod n .
$$

Now, if c is even, then we can compute

$$
b^{c} \bmod n=\left(b^{c / 2}\right)^{2} \bmod n=\left(b^{c / 2} \bmod n\right)^{2} \bmod n
$$

Similarly, if c is odd, we have

$$
b^{c} \bmod n=(b \bmod n)\left(b^{(c-1) / 2}\right)^{2} \bmod n=(b \bmod n)\left(b^{(c-1) / 2} \bmod n\right)^{2} \bmod n
$$

Namely, computing $b^{c} \bmod n$ can be reduced to recursively computing $b^{\lfloor c / 2\rfloor} \bmod n$, and a constant number of operations (on numbers that are smaller than n). Clearly, the depth of the recursion is $O(\log c)$.

52.1.1.4. Euler totient function

The Euler totient function $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$ is the number of positive integer numbers that at most n and are coprime with n. If n is prime then $\phi(n)=n-1$.

Lemma 52.1.8. Let $n=p_{1}^{k_{1}} \cdots p_{t}^{k_{t}}$, where the $p_{i} s$ are prime numbers and the $k_{i} s$ are positive integers (this is the prime factorization of n). Then $\phi(n)=\prod_{i=1}^{t} p_{i}^{k_{i}-1}\left(p_{i}-1\right)$. and this quantity can be computed in polynomial time if the factorization is given.

Proof: Observe that $\phi(1)=1$ (see Remark 52.1.3), and for a prime number p, we have that $\phi(p)=p-1$. Now, for $k>1$, and p prime we have that $\phi\left(p^{k}\right)=p^{k-1}(p-1)$, as a number $x \leq p^{k}$ is coprime with p^{k}, if and only if $x \bmod p \neq 0$, and $(p-1) / p$ fraction of the numbers in this range have this property.

Now, if n and m are relative primes, then $\operatorname{gcd}(x, n m)=1 \Longleftrightarrow \operatorname{gcd}(x, n)=1$ and $\operatorname{gcd}(x, m)=1$. In particular, there are $\phi(n) \phi(m)$ pairs $(\alpha, \beta) \in \mathbb{Z}_{n}^{*} \times \mathbb{Z}_{m}^{*}$, such that $\operatorname{gcd}(\alpha, n)=1$ and $\operatorname{gcd}(\beta, m)=1$. By the Chinese remainder theorem (Theorem 52.1.6), each such pair represents a unique number in the range $1, \ldots, n m$, as desired.

Now, the claim follows by easy induction on the prime factorization of the given number.

52.1.2. Structure of the modulo group \mathbb{Z}_{n}

52.1.2.1. Some basic group theory

Definition 52.1.9. A group is a set, \mathcal{G}, together with an operation \times that combines any two elements a and b to form another element, denoted $a \times b$ or $a b$. To qualify as a group, the set and operation, (G, \times), must satisfy the following:
(A) (Closure) For all $a, b \in \mathcal{G}$, the result of the operation, $a \times b \in \mathcal{G}$.
(B) (Associativity) For all $a, b, c \in \mathcal{G}$, we have $(a \times b) \times c=a \times(b \times c)$.
(C) (Identity element) There exists an element $\mathrm{i} \in \mathcal{G}$, called the identity element, such that for every element $a \in \mathcal{G}$, the equation $\mathrm{i} \times a=a \times \mathrm{i}=a$ holds.
(D) (Inverse element) For each $a \in \mathcal{G}$, there exists an element $b \in \mathcal{G}$ such that $a \times b=b \times a=\mathrm{i}$.

A group is abelian (aka, commutative group) if for all $a, b \in \mathcal{G}$, we have that $a \times b=b \times a$.
In the following we restrict our attention to abelian groups since it makes the discussion somewhat simpler. In particular, some of the claims below holds even without the restriction to abelian groups.

The identity element is unique. Indeed, if both $f, g \in \mathcal{G}$ are identity elements, then $f=f \times g=g$. Similarly, for every element $x \in \mathcal{G}$ there exists a unique inverse $y=x^{-1}$. Indeed, if there was another inverse z, then $y=y \times \mathrm{i}=y \times(x \times z)=(y \times x) \times z=\mathrm{i} \times z=z$.

52.1.2.2. Subgroups

For a group \mathcal{G}, a subset $\mathcal{H} \subseteq \mathcal{G}$ that is also a group (under the same operation) is a subgroup.
For $x, y \in \mathcal{G}$, let us define $x \sim y$ if $x / y \in \mathcal{H}$. Here $x / y=x y^{-1}$ and y^{-1} is the inverse of y in \mathcal{G}. Observe that $(y / x)(x / y)=\left(y x^{-1}\right)\left(x y^{-1}\right)=\mathrm{i}$. That is y / x is the inverse of x / y, and it is in \mathcal{H}. But that implies that $x \sim y \Longrightarrow y \sim x$. Now, if $x \sim y$ and $y \sim z$, then $x / y, y / z \in \mathcal{H}$. But then $x / y \times y / z \in \mathcal{H}$, and furthermore $x / y \times y / z=x y^{-1} y z^{-1}=x z^{-1}=x / z$. that is $x \sim z$. Together, this implies that \sim is an equivalence relationship.

Furthermore, observe that if $x / y=x / z$ then $y^{-1}=x^{-1}(x / y)=x^{-1}(x / z)=z^{-1}$, that is $y=z$. In particular, the equivalence class of $x \in \mathcal{G}$, is $[x]=\{z \in \mathcal{G} \mid x \sim z\}$. Observe that if $x \in \mathcal{H}$ then $\mathrm{i} / x=\mathrm{i} x^{-1}=x^{-1} \in \mathcal{H}$, and thus $\mathrm{i} \sim x$. That is $\mathcal{H}=[x]$. The following is now easy.

Lemma 52.1.10. Let \mathcal{G} be an abelian group, and let $\mathcal{H} \subseteq \mathcal{G}$ be a subgroup. Consider the set $\mathcal{G} / \mathcal{H}=$ $\{[x] \mid x \in \mathcal{G}\}$. We claim that $|[x]|=|[y]|$ for any $x, y \in \mathcal{G}$. Furthermore $\mathcal{G} / \mathcal{H}$ is a group (that is, the quotient group), with $[x] \times[y]=[x \times y]$.

Proof: Pick an element $\alpha \in[x]$, and $\beta \in[y]$, and consider the mapping $f(x)=x \alpha^{-1} \beta$. We claim that f is one to one and onto from $[x]$ to $[y]$. For any $\gamma \in[x]$, we have that $\gamma \alpha^{-1}=\gamma / \alpha \in \mathcal{H}$ As such, $f(\gamma)=\gamma \alpha^{-1} \beta \in[\beta]=[y]$. Now, for any $\gamma, \gamma^{\prime} \in[x]$ such that $\gamma \neq \gamma^{\prime}$, we have that if
$f(\gamma)=\gamma \alpha^{-1} \beta=\gamma^{\prime} \alpha^{-1} \beta=f\left(\gamma^{\prime}\right)$, then by multiplying by $\beta^{-1} \alpha$, we have that $\gamma=\gamma^{\prime}$. That is, f is one to one, implying that $|[x]|=|[y]|$.

The second claim follows by careful but tediously checking that the conditions in the definition of a group holds.

Lemma 52.1.11. For a finite abelian group \mathcal{G} and a subgroup $\mathcal{H} \subseteq \mathcal{G}$, we have that $|\mathcal{H}|$ divides $|\mathcal{G}|$.
Proof: By Lemma 52.1.10, we have that $|\mathcal{G}|=|\mathcal{H}| \cdot|\mathcal{G} / \mathcal{H}|$, as $\mathcal{H}=[\mathrm{i}]$.

52.1.2.3. Cyclic groups

Lemma 52.1.12. For a finite group \mathcal{G}, and any element $g \in \mathcal{G}$, the set $\langle g\rangle=\left\{g^{i} \mid i \geq 0\right\}$ is a group.
Proof: Since \mathcal{G} is finite, there are integers $i>j \geq 1$, such that $i \neq j$ and $g^{i}=g^{j}$, but then $g^{j} \times g^{i-j}=$ $g^{i}=g^{j}$. That is $g^{i-j}=\mathrm{i}$ and, by definition, we have $g^{i-j} \in\langle g\rangle$. It is now straightforward to verify that the other properties of a group hold for $\langle g\rangle$.

In particular, for an element $g \in \mathcal{G}$, we define its order as $\operatorname{ord}(g)=|\langle g\rangle|$, which clearly is the minimum positive integer m, such that $g^{m}=\mathrm{i}$. Indeed, for $j>m$, observe that $g^{j}=g^{j \bmod m} \in X=$ $\left\{\mathrm{i}, g, g^{2}, \ldots, g^{m-1}\right\}$, which implies that $\langle g\rangle=X$.

A group \mathcal{G} is $\boldsymbol{c y c l i c}$, if there is an element $g \in \mathcal{G}$, such that $\langle g\rangle=\mathcal{G}$. In such a case g is a generator of \mathcal{G}.

Lemma 52.1.13. For any finite abelian group \mathcal{G}, and any $g \in \mathcal{G}$, we have that $\operatorname{ord}(g)$ divides $|\mathcal{G}|$, and $g^{|\mathcal{G}|}=\mathrm{i}$.

Proof: By Lemma 52.1.12, the set $\langle g\rangle$ is a subgroup of \mathcal{G}. By Lemma 52.1.11, we have that $\operatorname{ord}(g)=$ $|\langle g\rangle|\left||\mathcal{G}|\right.$. As such, $g^{|\mathcal{G}|}=\left(g^{\operatorname{ord}(g)}\right)^{|\mathcal{G}| / \operatorname{ord}(g)}=(\mathrm{i})^{|\mathcal{G}| / \operatorname{ord}(g)}=\mathrm{i}$.

52.1.2.4. Modulo group

Lemma 52.1.14. For any integer n, consider the additive group \mathbb{Z}_{n}. Then, for any $x \in \mathbb{Z}_{n}$, we have that $x \cdot \operatorname{ord}(x)=\operatorname{lcm}(x, n)$. In particular, $\operatorname{ord}(x)=\frac{\operatorname{lcm}(n, x)}{x}=\frac{n}{\operatorname{gcd}(n, x)}$. If n is prime, and $x \neq 0$ then $\operatorname{ord}(x)=\left|\mathbb{Z}_{n}\right|=n$, and \mathbb{Z}_{n} is a cyclic group.

Proof: We are working modulo n here under additions, and the identity element is 0 . As such, $x \cdot \operatorname{ord}(x) \equiv_{n}$ 0 , which implies that $n \mid x \operatorname{ord}(x)$. By definition, $\operatorname{ord}(x)$ is the minimal number that has this property, implying that $\operatorname{ord}(x)=\frac{\operatorname{lcm}(n, x)}{x}$. Now, $\operatorname{lcm}(n, x)=n x / \operatorname{gcd}(n, x)$. The second claim is now easy.

Theorem 52.1.15. (Euler's theorem) For all n and $x \in \mathbb{Z}_{n}^{*}$, we have $x^{\phi(n)} \equiv 1(\bmod n)$.
(Fermat's theorem) If p is a prime then $\forall x \in \mathbb{Z}_{p}^{*} \quad x^{p-1} \equiv 1(\bmod p)$.
Proof: The group \mathbb{Z}_{n}^{*} is abelian and has $\phi(n)$ elements, with 1 being the identity element (duh!). As

The second claim follows by setting $n=p$, and recalling that $\phi(p)=p-1$, if p is a prime.

One might be tempted to think that Lemma 52.1.14 implies that if p is a prime then \mathbb{Z}_{p}^{*} is a cyclic group, but this does not follow, as the cardinality of \mathbb{Z}_{p}^{*} is $\phi(p)=p-1$, which is not a prime number (for $p>2$). To prove that \mathbb{Z}_{p}^{*} is cyclic, let us go back shortly to the totient function.

Lemma 52.1.16. For any $n>0$, we have $\sum_{d \mid n} \phi(d)=n$.
Proof: For any $g>0$, let $V_{g}=\{x \mid x \in\{1, \ldots, n\}$ and $\operatorname{gcd}(x, n)=g\}$. Now, $x \in V_{g} \Longleftrightarrow \operatorname{gcd}(x, n)=g$ $\Longleftrightarrow \operatorname{gcd}(x / g, n / g)=1 \Longleftrightarrow x / g \in \mathbb{Z}_{n / g}^{*}$. Since $V_{1}, V_{2}, \ldots, V_{n}$ form a partition of $\{1, \ldots, n\}$, it follows that $n=\sum_{g}\left|V_{g}\right|=\sum_{g \mid n}\left|\mathbb{Z}_{n / g}^{*}\right|=\sum_{g \mid n} \phi(n / g)=\sum_{d \mid n} \phi(d)$.

52.1.2.5. Fields

Definition 52.1.17. A field is an algebraic structure $\langle\mathbb{F},+, *, 0,1\rangle$ consisting of two abelian groups:
(A) \mathbb{F} under + , with 0 being the identity element.
(B) $\mathbb{F} \backslash\{0\}$ under $*$, with 1 as the identity element (here $0 \neq 1$).

Also, the following property (distributivity of multiplication over addition) holds:

$$
\forall a, b, c \in \mathbb{F} \quad a *(b+c)=(a * b)+(a * c)
$$

We need the following: A polynomial p of degree k over a field \mathbb{F} has at most k roots. indeed, if p has the root α then it can be written as $p(x)=(x-\alpha) q(x)$, where $q(x)$ is a polynomial of one degree lower. To see this, we divide $p(x)$ by the polynomial $(x-\alpha)$, and observe that $p(x)=(x-\alpha) q(x)+\beta$, but clearly $\beta=0$ since $p(\alpha)=0$. As such, if p had t roots $\alpha_{1}, \ldots, \alpha_{t}$, then $p(x)=q(x) \prod_{i=1}^{t}\left(x-\alpha_{i}\right)$, which implies that p would have degree at least t.

52.1.2.6. \mathbb{Z}_{p}^{*} is cyclic for prime numbers

For a prime number p, the group \mathbb{Z}_{p}^{*} has size $\phi(p)=p-1$, which is not a prime number for $p>2$. As such, Lemma 52.1.13 does not imply that there must be an element in \mathbb{Z}_{p}^{*} that has order $p-1$ (and thus \mathbb{Z}_{p}^{*} is cyclic). Instead, our argument is going to be more involved and less direct.

Lemma 52.1.18. For $k<n$, let $R_{k}=\left\{x \in \mathbb{Z}_{p}^{*} \mid \operatorname{ord}(x)=k\right\}$ be the set of all numbers in \mathbb{Z}_{p}^{*} that are of order k. We have that $\left|R_{k}\right| \leq \phi(k)$.

Proof: Clearly, all the elements of R_{k} are roots of the polynomial $x^{k}-1=0(\bmod n)$. By the above, this polynomial has at most k roots. Now, if R_{k} is not empty, then it contains an element $x \in R_{k}$ of order k, which implies that for all $i<j \leq k$, we have that $x^{i} \not \equiv x^{j}(\bmod n)$, as the order of x is the size of $\langle x\rangle$, and the minimum k such that $x^{k} \equiv 1(\bmod n)$. In particular, we have that $R_{k} \subseteq\langle x\rangle$, as for $y=x^{j}$, we have that $y^{k} \equiv_{n} x^{j k} \equiv_{n} 1^{j} \equiv_{n} 1$.

Observe that for $y=x^{i}$, if $g=\operatorname{gcd}(k, i)>1$, then $y^{k / g} \equiv_{n} x^{i(k / g)} \equiv_{n} x^{\operatorname{lcm}(i, k)} \equiv_{n} 1$; that is, ord $(y) \leq$ $k / g<k$, and $y \notin R_{k}$. As such, R_{k} contains only elements of x^{i} such that $\operatorname{gcd}(i, k)=1$. That is $R_{k} \subseteq \mathbb{Z}_{k}^{*}$. The claim now readily follows as $\left|\mathbb{Z}_{k}^{*}\right|=\phi(k)$.

Lemma 52.1.19. For any prime p, the group \mathbb{Z}_{p}^{*} is cyclic.

Proof: For $p=2$ the claim trivially holds, so assume $p>2$. If the set R_{p-1}, from Lemma 52.1.18, is not empty, then there is $g \in R_{p-1}$, it has order $p-1$, and it is a generator of \mathbb{Z}_{p}^{*}, as $\left|\mathbb{Z}_{p}^{*}\right|=p-1$, implying that $\mathbb{Z}_{p}^{*}=\langle g\rangle$ and this group is cyclic.

Now, by Lemma 52.1.13, we have that for any $y \in \mathbb{Z}_{p}^{*}$, we have that $\operatorname{ord}(y)\left|p-1=\left|\mathbb{Z}_{p}^{*}\right|\right.$. This implies that R_{k} is empty if k does not divides $p-1$. On the other hand, R_{1}, \ldots, R_{p-1} form a partition of \mathbb{Z}_{p}^{*}. As such, we have that

$$
p-1=\left|\mathbb{Z}_{p}^{*}\right|=\sum_{k \mid p-1}\left|R_{k}\right| \leq \sum_{k \mid p-1} \phi(k)=p-1,
$$

by Lemma 52.1 .18 and Lemma $52.1 .16_{\mathrm{p} 6}$, implying that the inequality in the above display is equality, and for all $k \mid p-1$, we have that $\left|R_{k}\right|=\phi(k)$. In particular, $\left|R_{p-1}\right|=\phi(p-1)>0$, and by the above the claim follows.

52.1.2.7. \mathbb{Z}_{n}^{*} is cyclic for powers of a prime

Lemma 52.1.20. Consider any odd prime p, and any integer $c \geq 1$, then the group \mathbb{Z}_{n}^{*} is cyclic, where $n=p^{c}$.

Proof: Let g be a generator of \mathbb{Z}_{p}^{*}. Observe that $g^{p-1} \equiv 1 \bmod p$. The number $g<p$, and as such p does not divide g, and also p does not divide g^{p-2}, and also p does not divide $p-1$. As such, p^{2} does not divide $\Delta=(p-1) g^{p-2} p$; that is, $\Delta \not \equiv 0\left(\bmod p^{2}\right)$. As such, we have that

$$
\begin{aligned}
& (g+p)^{p-1} \equiv g^{p-1}+\binom{p-1}{1} g^{p-2} p \equiv g^{p-1}+\Delta \not \equiv g^{p-1} \\
\Longrightarrow \quad & \left(\bmod p^{2}\right) \\
\Longrightarrow+p)^{p-1} \not \equiv 1 \quad\left(\bmod p^{2}\right) \quad \text { or } \quad g^{p-1} \not \equiv 1 & \left(\bmod p^{2}\right) .
\end{aligned}
$$

Renaming $g+p$ to be g, if necessary, we have that $g^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$, but by Theorem $52.1 .15_{\mathrm{p} 5}$, $g^{p-1} \equiv 1(\bmod p)$. As such, $g^{p-1}=1+\beta p$, where p does not divide β. Now, we have

$$
g^{p(p-1)}=(1+\beta p)^{p}=1+\binom{p}{1} \beta p+\beta p^{3}<\text { whatever }>=1+\gamma_{1} p^{2}
$$

where γ_{1} is an integer (the p^{3} is not a typo - the binomial coefficient contributes at least one factor of p - here we are using that $p>2$). In particular, as p does not divides β, it follows that p does not divides γ_{1} either. Let us apply this argumentation again to

$$
g^{p^{2}(p-1)}=\left(1+\gamma_{1} p^{2}\right)^{p}=1+\gamma_{1} p^{3}+p^{4}<\text { whatever }>=1+\gamma_{2} p^{3},
$$

where again p does not divides γ_{2}. Repeating this argument, for $i=1, \ldots, c-2$, we have

$$
\alpha_{i}=g^{p^{i}(p-1)}=\left(g^{p^{i-1}(p-1)}\right)^{p}=\left(1+\gamma_{i-1} p^{i}\right)^{p}=1+\gamma_{i-1} p^{i+1}+p^{i+2}<\text { whatever }>=1+\gamma_{i} p^{i+1}
$$

where p does not divides γ_{i}. In particular, this implies that $\alpha_{c-2}=1+\gamma_{c-2} p^{c-1}$ and p does not divides γ_{c-2}. This in turn implies that $\alpha_{c-2} \not \equiv 1\left(\bmod p^{c}\right)$.

Now, the order of g in \mathbb{Z}_{n}, denoted by k, must divide $\left|\mathbb{Z}_{n}^{*}\right|$ by Lemma $52.1 .13_{\mathrm{p} 5}$. Now $\left|\mathbb{Z}_{n}^{*}\right|=\phi(n)=$ $p^{c-1}(p-1)$, see Lemma 52.1.8p3. So, $k \mid p^{c-1}(p-1)$. Also, $\alpha_{c-2} \not \equiv 1\left(\bmod p^{c}\right)$. implies that k does not divides $p^{c-2}(p-1)$. It follows that $p^{c-1} \mid k$. So, let us write $k=p^{c-1} k^{\prime}$, where $k^{\prime} \leq(p-1)$. This,
by definition, implies that $g^{k} \equiv 1\left(\bmod p^{c}\right)$. Now, $g^{p} \equiv g(\bmod p)$, because g is a generator of \mathbb{Z}_{p}^{*}. As such, we have that

$$
g^{k} \equiv_{p} g^{p^{\delta} k^{\prime}} \equiv_{p}\left(g^{p}\right)^{p^{\delta-1} k^{\prime}} \equiv_{p}(g)^{p^{\delta-1} k^{\prime}} \equiv_{p} \ldots \equiv_{p}(g)^{k^{\prime}} \equiv_{p}\left(g^{k} \bmod p^{c}\right) \bmod p \equiv_{p} 1
$$

Namely, $g^{k^{\prime}} \equiv 1(\bmod p)$, which implies, as g as a generator of \mathbb{Z}_{p}^{*}, that either $k^{\prime}=1$ or $k^{\prime}=p-1$. The case $k^{\prime}=1$ is impossible, as this implies that $g=1$, and it can not be the generator of \mathbb{Z}_{p}^{*}. We conclude that $k=p^{c-1}(p-1)$; that is, \mathbb{Z}_{n}^{*} is cyclic.

52.1.3. Quadratic residues

52.1.3.1. Quadratic residue

Definition 52.1.21. An integer α is a quadratic residue modulo a positive integer n, if $\operatorname{gcd}(\alpha, n)=1$ and for some integer β, we have $\alpha \equiv \beta^{2}(\bmod n)$.

Theorem 52.1.22 (Euler's criterion). Let p be an odd prime, and $\alpha \in \mathbb{Z}_{p}^{*}$. We have that
(A) $\alpha^{(p-1) / 2} \equiv_{p} \pm 1$.
(B) If α is a quadratic residue, then $\alpha^{(p-1) / 2} \equiv_{p} 1$.
(C) If α is not a quadratic residue, then $\alpha^{(p-1) / 2} \equiv_{p}-1$.

Proof: (A) Let $\gamma=\alpha^{(p-1) / 2}$, and observe that $\gamma^{2} \equiv_{p} \alpha^{p-1} \equiv 1$, by Fermat's theorem (Theorem 52.1.15 p 5), which implies that γ is either +1 or -1 , as the polynomial $x^{2}-1$ has at most two roots over a field.
(B) Let $\alpha \equiv_{p} \beta^{2}$, and again by Fermat's theorem, we have $\alpha^{(p-1) / 2} \equiv_{p} \beta^{p-1} \equiv_{p} 1$.
(C) Let X be the set of elements in \mathbb{Z}_{p}^{*} that are not quadratic residues, and consider $\alpha \in X$. Since \mathbb{Z}_{p}^{*} is a group, for any $x \in \mathbb{Z}_{p}^{*}$ there is a unique $y \in \mathbb{Z}_{p}^{*}$ such that $x y \equiv_{p} \alpha$. As such, we partition \mathbb{Z}_{p}^{*} into pairs $C=\left\{\{x, y\} \mid x, y \in \mathbb{Z}_{p}^{*}\right.$ and $\left.x y \equiv_{p} \alpha\right\}$. We have that

$$
\tau \equiv_{p} \prod_{\beta \in \mathbb{Z}_{p}^{*}} \beta \equiv_{p} \prod_{\{x, y\} \in C} x y \equiv_{p} \prod_{\{x, y\} \in C} \alpha \equiv_{p} \alpha^{(p-1) / 2} .
$$

Let consider a similar set of pair, but this time for 1 : $D=\left\{\{x, y\} \mid x, y \in \mathbb{Z}_{p}^{*}, x \neq y\right.$ and $\left.x y \equiv_{p} 1\right\}$. Clearly, D does not contain -1 and 1 , but all other elements in \mathbb{Z}_{p}^{*} are in D. As such,

$$
\tau \equiv \equiv_{p} \prod_{\beta \in \mathbb{Z}_{p}^{*}} \beta \equiv_{p}(-1) 1 \prod_{\{x, y\} \in D} x y \equiv_{p} \prod_{\{x, y\} \in D} 1 \equiv_{p}-1
$$

52.1.3.2. Legendre symbol

For an odd prime p, and an integer a with $\operatorname{gcd}(a, n)=1$, the Legendre symbol $(a \mid p)$ is one if a is a quadratic residue modulo p, and -1 otherwise (if $p \mid a$, we define $(a \mid p)=0$). Euler's criterion (Theorem 52.1.22) implies the following equivalent definition.

Definition 52.1.23. The Legendre symbol, for a prime number p, and $a \in \mathbb{Z}_{p}^{*}$, is

$$
(a \mid p)=a^{(p-1) / 2} \quad(\bmod p)
$$

The following is easy to verify.
Lemma 52.1.24. Let p be an odd prime, and let a, b be integer numbers. We have:
(i) $(-1 \mid p)=(-1)^{(p-1) / 2}$.
(ii) $(a \mid p)(b \mid p)=(a b \mid p)$.
(iii) If $a \equiv_{p} b$ then $(a \mid p)=(b \mid p)$.

Lemma 52.1.25 (Gauss' lemma). Let p be an odd prime and let a be an integer that is not divisible by p. Let $X=\left\{\alpha_{j}=j a(\bmod p) \mid j=1, \ldots,(p-1) / 2\right\}$, and $L=\{x \in X \mid x>p / 2\} \subseteq X$. Then $(a \mid p)=$ $(-1)^{n}$, where $n=|L|$.

Proof: Observe that for any distinct i, j, such that $1 \leq i \leq j \leq(p-1) / 2$, we have that $j a \equiv i a(\bmod p)$ implies that $(j-i) a \equiv 0(\bmod p)$, which is impossible as $j-i<p$ and $\operatorname{gcd}(a, p)=1$. As such, all the elements of X are distinct, and $|X|=(p-1) / 2$. We have a somewhat stronger property: If $j a \equiv p-i a$ $(\bmod p)$ implies $(j+i) a \equiv 0(\bmod p)$, which is impossible. That is, $S=X \backslash L$, and $\bar{L}=\{p-\ell \mid \ell \in L\}$ are disjoint, and $S \cup \bar{L}=\{1, \ldots,(p-1) / 2\}$. As such,
$\left(\frac{p-1}{2}\right)!\equiv \prod_{x \in S} x \cdot \prod_{y \in L}(p-y) \equiv(-1)^{n} \prod_{x \in S} x \cdot \prod_{y \in L} y \equiv(-1)^{n} \prod_{j=1}^{(p-1) / 2} j a \equiv(-1)^{n} a^{(p-1) / 2}\left(\frac{p-1}{2}\right)!\quad(\bmod p)$.
Dividing both sides by $(-1)^{n}((p-1) / 2)$!, we have that $(a \mid p) \equiv a^{(p-1) / 2} \equiv(-1)^{n}(\bmod p)$, as claimed.
Lemma 52.1.26. If p is an odd prime, and $a>2$ and $\operatorname{gcd}(a, p)=1$ then $(a \mid p)=(-1)^{\Delta}$, where $\Delta=\sum_{j=1}^{(p-1) / 2}\lfloor j a / p\rfloor$. Furthermore, we have $(2 \mid p)=(-1)^{\left(p^{2}-1\right) / 8}$.

Proof: Using the notation of Lemma 52.1.25, we have

$$
\begin{aligned}
\sum_{j=1}^{(p-1) / 2} j a & =\sum_{j=1}^{(p-1) / 2}(\lfloor j a / p\rfloor p+(j a \bmod p))=\Delta p+\sum_{x \in S} x+\sum_{y \in L} y=(\Delta+n) p+\sum_{x \in S} x-\sum_{y \in \bar{L}} y \\
& =(\Delta+n) p+\sum_{j=1}^{(p-1) / 2} j-2 \sum_{y \in \bar{L}} y .
\end{aligned}
$$

Rearranging, and observing that $\sum_{j=1}^{(p-1) / 2} j=\frac{p-1}{2} \cdot \frac{1}{2}\left(\frac{p-1}{2}+1\right)=\frac{p^{2}-1}{8}$. We have that

$$
\begin{equation*}
(a-1) \frac{p^{2}-1}{8}=(\Delta+n) p-2 \sum_{y \in \bar{L}} y . \quad \Longrightarrow \quad(a-1) \frac{p^{2}-1}{8} \equiv(\Delta+n) p \quad(\bmod 2) \tag{52.1}
\end{equation*}
$$

Observe that $p \equiv 1(\bmod 2)$, and for any x we have that $x \equiv-x(\bmod 2)$. As such, and if a is odd, then the above implies that $n \equiv \Delta(\bmod 2)$. Now the claim readily follows from Lemma 52.1.25.

As for $(2 \mid p)$, setting $a=2$, observe that $\lfloor j a / p\rfloor=0$, for $j=0, \ldots(p-1) / 2$, and as such $\Delta=0$. Now, Eq. (52.1) implies that $\frac{p^{2}-1}{8} \equiv n(\bmod 2)$, and the claim follows from Lemma 52.1.25.

Theorem 52.1.27 (Law of quadratic reciprocity). If p and q are distinct odd primes, then

$$
(p \mid q)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}(q \mid p)
$$

Proof: Let $S=\{(x, y) \mid 1 \leq x \leq(p-1) / 2$ and $1 \leq y \leq(q-1) / 2\}$. As $\operatorname{lcm}(p, q)=p q$, it follows that there are no $(x, y) \in S$, such that $q x=p y$, as all such numbers are strict smaller than $p q$. Now, let

$$
S_{1}=\{(x, y) \in S \mid q x>p y\} \quad \text { and } \quad S_{2}=\{(x, y) \in S \mid q x<p y\}
$$

Now, $(x, y) \in S_{1} \Longleftrightarrow 1 \leq x \leq(p-1)$, and $1 \leq y \leq\lfloor q x / p\rfloor$. As such, we have $\left|S_{1}\right|=\sum_{x=1}^{(p-1) / 2}\lfloor q x / p\rfloor$, and similarly $\left|S_{2}\right|=\sum_{y=1}^{(q-1) / 2}\lfloor p y / q\rfloor$. We have

$$
\tau=\frac{p-1}{2} \cdot \frac{q-1}{2}=|S|=\left|S_{1}\right|+\left|S_{2}\right|=\underbrace{\sum_{x=1}^{(p-1) / 2}\lfloor q x / p\rfloor}_{\tau_{1}}+\underbrace{\sum_{y=1}^{(q-1) / 2}\lfloor p y / q\rfloor}_{\tau_{2}}
$$

The claim now readily follows by Lemma 52.1.26, as $(-1)^{\tau}=(-1)^{\tau_{1}}(-1)^{\tau_{2}}=(p \mid q)(q \mid p)$.

52.1.3.3. Jacobi symbol

Definition 52.1.28. For any integer a, and an odd number n with prime factorization $n=p_{1}^{k_{1}} \cdots p_{t}^{k_{t}}$, its Jacobi symbol is

$$
\llbracket a \mid n \rrbracket=\prod_{i=1}^{t}\left(a \mid p_{i}\right)^{k_{i}} .
$$

Claim 52.1.29. For odd integers n_{1}, \ldots, n_{k}, we have that $\sum_{i=1}^{k}\left(n_{i}-1\right) / 2 \equiv\left(\prod_{i=1}^{k} n_{i}-1\right) / 2(\bmod 2)$.
Proof: We prove for two odd integers x and y, and apply this repeatedly to get the claim. Indeed, we have $\frac{x-1}{2}+\frac{y-1}{2} \equiv \frac{x y-1}{2}(\bmod 2) \Longleftrightarrow 0 \equiv \frac{x y-x+1-y+1-1}{2}(\bmod 2) \Longleftrightarrow 0 \equiv \frac{x y-x-y+1}{2}$ $(\bmod 2) \Longleftrightarrow 0 \equiv \frac{(x-1)(y-1)}{2}(\bmod 2)$, which is obviously true.

Lemma 52.1.30 (Law of quadratic reciprocity). For n and m positive odd integers, we have that $\llbracket n\left|m \rrbracket=(-1)^{\frac{n-1}{2} \frac{m-1}{2}} \llbracket m\right| n \rrbracket$.

Proof: Let $n=\prod_{i=1}^{v} p_{i}$ and Let $m=\prod_{j=1}^{\mu} q_{j}$ be the prime factorization of the two numbers (allowing repeated factors). If they share a common factor p, then both $\llbracket n \mid m \rrbracket$ and $\llbracket m \mid n \rrbracket$ contain a zero term when expanded, as $(n \mid p)=(m \mid p)=0$. Otherwise, we have

$$
\begin{aligned}
\llbracket n \mid m \rrbracket & =\prod_{i=1}^{v} \prod_{j=1}^{\mu} \llbracket p_{i} \mid q_{j} \rrbracket=\prod_{i=1}^{v} \prod_{j=1}^{\mu}\left(p_{i} \mid q_{j}\right)=\prod_{i=1}^{v} \prod_{j=1}^{\mu}(-1)^{\left(q_{j}-1\right) / 2 \cdot\left(p_{i}-1\right) / 2}\left(q_{j} \mid p_{i}\right) \\
& =\underbrace{\prod_{i=1}^{v} \prod_{j=1}^{\mu}(-1)^{\left(q_{j}-1\right) / 2 \cdot\left(p_{i}-1\right) / 2}}_{s} \cdot\left(\prod_{i=1}^{v} \prod_{j=1}^{\mu}\left(q_{j} \mid p_{i}\right)\right)=s \llbracket m \mid n \rrbracket .
\end{aligned}
$$

by Theorem 52.1.27. As for the value of s, observe that
$s=\prod_{i=1}^{v}\left(\prod_{j=1}^{\mu}(-1)^{\left(q_{j}-1\right) / 2}\right)^{\left(p_{i}-1\right) / 2}=\prod_{i=1}^{v}\left((-1)^{(m-1) / 2}\right)^{\left(p_{i}-1\right) / 2}=\left(\prod_{i=1}^{v}(-1)^{\left(p_{i}-1\right) / 2}\right)^{(m-1) / 2}=(-1)^{(n-1) / 2 \cdot(m-1) / 2}$,
by repeated usage of Claim 52.1.29.
Lemma 52.1.31. For odd integers n and m, we have that $\frac{n^{2}-1}{8}+\frac{m^{2}-1}{8} \equiv \frac{n^{2} m^{2}-1}{8}(\bmod 2)$.
Proof: For an odd integer n, we have that either (i) $2 \mid n-1$ and $4 \mid n+1$, or (ii) $4 \mid n-1$ and $2 \mid n+1$. As such, $8 \mid n^{2}-1=(n-1)(n+1)$. In particular, $64 \mid\left(n^{2}-1\right)\left(m^{2}-1\right)$. We thus have that

$$
\begin{aligned}
\frac{\left(n^{2}-1\right)\left(m^{2}-1\right)}{8} \equiv 0 \quad(\bmod 2) & \Longleftrightarrow \frac{n^{2} m^{2}-n^{2}-m^{2}+1}{8} \equiv 0 \quad(\bmod 2) \\
& \Longleftrightarrow \frac{n^{2} m^{2}-1}{8} \equiv \frac{n^{2}-m^{2}-2}{8} \quad(\bmod 2) \\
& \Longleftrightarrow \frac{n^{2}-1}{8}+\frac{m^{2}-1}{8} \equiv \frac{n^{2} m^{2}-1}{8} \quad(\bmod 2)
\end{aligned}
$$

Lemma 52.1.32. Let m, n be odd integers, and a, b be any integers. We have the following:
(A) $\llbracket a b|n \rrbracket=\llbracket a| n \rrbracket \llbracket b \mid n \rrbracket$.
(B) $\llbracket a|n m \rrbracket=\llbracket a| n \rrbracket \llbracket a \mid m \rrbracket$.
(C) If $a \equiv b(\bmod n)$ then $\llbracket a|n \rrbracket=\llbracket b| n \rrbracket$.
(D) If $\operatorname{gcd}(a, n)>1$ then $\llbracket a \mid n \rrbracket=0$.
(E) $\llbracket 1 \mid n \rrbracket=1$.
(F) $\llbracket 2 \mid n \rrbracket=(-1)^{\left(n^{2}-1\right) / 8}$.
(G) $\llbracket n\left|m \rrbracket=(-1)^{\frac{n-1}{2} \frac{m-1}{2}} \llbracket m\right| n \rrbracket$.

Proof: (A) Follows immediately, as $\left(a b \mid p_{i}\right)=\left(a \mid p_{i}\right)\left(b \mid p_{i}\right)$, see Lemma 52.1.24 ${ }_{\mathrm{p} 9}$.
(B) Immediate from definition.
(C) Follows readily from Lemma 52.1.24p9 (iii).
(D) Indeed, if $p \mid \operatorname{gcd}(a, n)$ and $p>1$, then $(a \mid p)^{k}=(0 \mid p)^{k}=0$ appears as a term in $\llbracket a \mid n \rrbracket$.
(E) Obvious by definition.
(F) By Lemma 52.1.26 ${ }_{\mathrm{p} 9}$, for a prime p, we have $(2 \mid p)=(-1)^{\left(p^{2}-1\right) / 8}$. As such, writing $n=\prod_{i=1}^{t} p_{i}$ as a product of primes (allowing repeated primes), we have

$$
\llbracket 2 \mid n \rrbracket=\prod_{i=1}^{t}\left(2 \mid p_{i}\right)=\prod_{i=1}^{t}(-1)^{\left(p_{i}^{2}-1\right) / 8}=(-1)^{\Delta},
$$

where $\Delta=\sum_{i=1}^{t}\left(p_{i}^{2}-1\right) / 8$. As such, we need to compute the $\Delta(\bmod 2)$, which by Lemma 52.1 .31 , is

$$
\Delta \equiv \sum_{i=1}^{t} \frac{p_{i}^{2}-1}{8} \equiv \frac{\prod_{i=1}^{t} p_{i}^{2}-1}{8} \equiv \frac{n^{2}-1}{8} \quad(\bmod 2),
$$

and as such $\llbracket 2 \mid n \rrbracket=(-1)^{\Delta}=(-1)^{\left(n^{2}-1\right) / 8}$.
(G) This is Lemma 52.1.30.

52.1.3.4. Jacobi (a, n) : Computing the Jacobi symbol

Given a and n (n is an odd number), we are interested in computing (in polynomial time) the Jacobi symbol $\llbracket a \mid n \rrbracket$. The algorithm $\operatorname{Jacobi}(a, n)$ works as follows:
(A) If $a=0$ then return $0 \quad / /$ Since $\llbracket 0 \mid n \rrbracket=0$.
(B) If $a>n$ then return $\operatorname{Jacobi}(a(\bmod n), n) \quad / /$ Lemma 52.1 .32 (C)
(C) If $\operatorname{gcd}(a, n)>1$ then return $0 \quad / /$ Lemma 52.1.32 (D)
(D) If $a=2$ then
(I) Compute $\Delta=n^{2}-1(\bmod 16)$,
(II) Return $(-1)^{\Delta / 8}(\bmod 2) \quad / /$ As $\left(n^{2}-1\right) / 8 \equiv \Delta / 8(\bmod 2)$, and by Lemma 52.1.32 (F)
(E) If $2 \mid a$ then return $\operatorname{Jacobi}(2, n) * \operatorname{Jacobi}(a / 2, n) \quad / / \operatorname{Lemma} 52.1 .32$ (A)
// Must be that a and b are both odd, $a<n$, and they are coprime
(F) $a^{\prime}:=a(\bmod 4), \quad n^{\prime}:=n(\bmod 4), \quad \beta=\left(a^{\prime}-1\right)\left(n^{\prime}-1\right) / 4$.
return $(-1)^{\beta} \operatorname{Jacobi}(n, a) \quad / /$ By Lemma 52.1.32 (G)
Ignoring the recursive calls, all the operations takes polynomial time. Clearly, computing Jacobi $(2, n)$ takes polynomial time. Otherwise, observe that Jacobi reduces its input size by say, one bit, at least every two recursive calls, and except the $a=2$ case, it always perform only a single call. Thus, it follows that its running time is polynomial. We thus get the following.

Lemma 52.1.33. Given integers a and n, where n is odd, then $\llbracket a \mid n \rrbracket$ can be computed in polynomial time.

52.1.3.5. Subgroups induced by the Jacobi symbol

For an n, consider the set

$$
\begin{equation*}
J_{n}=\left\{a \in \mathbb{Z}_{n}^{*}|\llbracket a| n \rrbracket \equiv a^{(n-1) / 2} \bmod n\right\} . \tag{52.2}
\end{equation*}
$$

Claim 52.1.34. The set J_{n} is a subgroup of \mathbb{Z}_{n}^{*}.
Proof: For $a, b \in J_{n}$, we have that $\llbracket a b|n \rrbracket \equiv \llbracket a| n \rrbracket \llbracket b \mid n \rrbracket \equiv a^{(n-1) / 2} b^{(n-1) / 2} \equiv(a b)^{(n-1) / 2} \bmod n$, implying that $a b \in J_{n}$. Now, $\llbracket 1 \mid n \rrbracket=1$, so $1 \in J_{n}$. Now, for $a \in J_{n}$, let a^{-1} the inverse of a (which is a number in \mathbb{Z}_{n}^{*}). Observe that $a\left(a^{-1}\right)=k n+1$, for some k, and as such, we have

$$
1=\llbracket 1|n \rrbracket=\llbracket k n+1| n \rrbracket=\llbracket a a^{-1}|n \rrbracket=\llbracket k n+1| n \rrbracket=\llbracket a\left|n \rrbracket \llbracket a^{-1}\right| n \rrbracket .
$$

And modulo n, we have

$$
1 \equiv \llbracket a\left|n \rrbracket \llbracket a^{-1}\right| n \rrbracket \equiv a^{(n-1) / 2} \llbracket a^{-1} \mid n \rrbracket \bmod n
$$

Which implies that $\left(a^{-1}\right)^{(n-1) / 2} \equiv \llbracket a^{-1} \mid n \rrbracket \bmod n$. That is $a^{-1} \in J_{n}$.
Namely, J_{n} contains the identity, it is closed under inverse and multiplication, and it is now easy to verify that fulfill the other requirements to be a group.

Lemma 52.1.35. Let n be an odd integer that is composite, then $\left|J_{n}\right| \leq\left|\mathbb{Z}_{n}^{*}\right| / 2$.

Proof: Let has the prime factorization $n=\prod_{i=1}^{t} p_{i}^{k_{i}}$. Let $q=p_{1}^{k_{1}}$, and $m=n / q$. By Lemma $52.1 .20_{\mathrm{p} 7}$, the group \mathbb{Z}_{q}^{*} is cyclic, and let g be its generator. Consider the element $a \in \mathbb{Z}_{n}^{*}$ such that

$$
a \equiv g \bmod q \quad \text { and } \quad a \equiv 1 \bmod m .
$$

Such a number a exists and its unique, by the Chinese remainder theorem (Theorem 52.1.6p3). In particular, let $m=\prod_{i=2}^{t} p_{i}^{k_{i}}$, and observe that, for all i, we have $a \equiv 1\left(\bmod p_{i}\right)$, as $p_{i} \mid m$. As such, writing the Jacobi symbol explicitly, we have

$$
\llbracket a|n \rrbracket=\llbracket a| q \rrbracket \prod_{i=2}^{t}\left(a \mid p_{i}\right)^{k_{i}}=\llbracket a\left|q \rrbracket \prod_{i=2}^{t}\left(1 \mid p_{i}\right)^{k_{i}}=\llbracket a\right| q \rrbracket \prod_{i=2}^{t} 1=\llbracket a|q \rrbracket=\llbracket g| q \rrbracket .
$$

since $a \equiv g(\bmod q)$, and Lemma $52.1 .32_{\mathrm{p} 11}(\mathrm{C})$. At this point there are two possibilities:
(A) If $k_{1}=1$, then $q=p_{1}$, and $\llbracket g \mid q \rrbracket=(g \mid q)=g^{(q-1) / 2}(\bmod q)$. But g is a generator of \mathbb{Z}_{q}^{*}, and its order is $q-1$. As such $g^{(q-1) / 2} \equiv-1(\bmod q)$, see Definition $52.1 .23_{\mathrm{p} 8}$. We conclude that $\llbracket a \mid n \rrbracket=-1$. If we assume that $J_{n}=\mathbb{Z}_{n}^{*}$, then $\llbracket a \mid n \rrbracket \equiv a^{(n-1) / 2} \equiv-1(\bmod n)$. Now, as $m \mid n$, we have

$$
a^{(n-1) / 2} \equiv_{m}\left(a^{(n-1) / 2} \bmod n\right) \bmod m \equiv_{m}-1
$$

But this contradicts the choice of a as $a \equiv 1(\bmod m)$.
(B) If $k_{1}>1$ then $q=p_{1}^{k_{1}}$. Arguing as above, we have that $\llbracket a \mid n \rrbracket=(-1)^{k_{1}}$. Thus, if we assume that $J_{n}=\mathbb{Z}_{n}^{*}$, then $a^{(n-1) / 2} \equiv-1(\bmod n)$ or $a^{(n-1) / 2} \equiv 1(\bmod n)$. This implies that $a^{n-1} \equiv 1(\bmod n)$. Thus, $a^{n-1} \equiv 1(\bmod q)$.
Now $a \equiv g \bmod q$, and thus $g^{n-1} \equiv 1(\bmod q)$. This implies that the order of g in \mathbb{Z}_{q}^{*} must divide $n-1$. That is $\operatorname{ord}(g)=\phi(q) \mid n-1$. Now, since $k_{1} \geq 2$, we have that $p_{1} \mid \phi(q)=\left(p_{1}^{k_{1}}\right)\left(p_{1}-1\right)$, see Lemma 52.1.8 $\mathrm{p}_{\mathrm{p} 3}$. We conclude that $p_{1} \mid n-1$ and $p_{1} \mid n$, which is of course impossible, as $p_{1}>1$.

We conclude that J_{n} must be a proper subgroup of \mathbb{Z}_{n}^{*}, but, by Lemma $52.1 .11_{\mathrm{p} 5}$, it must be that $\left|J_{n}\right|\left|\left|\mathbb{Z}_{n}^{*}\right|\right.$. But this implies that $| J_{n}\left|\leq\left|\mathbb{Z}_{n}^{*}\right| / 2\right.$.

52.2. Primality testing

The primality test is now easy ${ }^{3}$. Indeed, given a number n, first check if it is even (duh!). Otherwise, randomly pick a number $r \in\{2, \ldots, n-1\}$. If $\operatorname{gcd}(r, n)>1$ then the number is composite. Otherwise, check if $r \in J_{n}$ (see Eq. $(52.2)_{\text {p12 }}$), by computing $x=\llbracket r \mid n \rrbracket$ in polynomial time, see Section $52.1 .3 .4_{\mathrm{p} 12}$, and $x^{\prime}=a^{(n-1) / 2} \bmod n$. (see Lemma 52.1.7 $7_{\mathrm{p} 3}$). If $x=x^{\prime}$ then the algorithm returns is prime, otherwise it returns it is composite.

Theorem 52.2.1. Given a number n, and a parameter $\delta>0$, there is a randomized algorithm that, decides if the given number is prime or composite. The running time of the algorithm is $O\left((\log n)^{c} \log (1 / \delta)\right)$, where c is some constant. If the algorithm returns that n is composite then it is. If the algorithm returns that n is prime, then is wrong with probability at most δ.

[^2]Proof: Run the above algorithm $m=O(\log (1 / \delta))$ times. If any of the runs returns that it is composite then the algorithm return that n is composite, otherwise the algorithms returns that it is a prime.

If the algorithm fails, then n is a composite, and let r_{1}, \ldots, r_{m} be the random numbers the algorithm picked. The algorithm fails only if $r_{1}, \ldots, r_{m} \in J_{n}$, but since $\left|J_{n}\right| \leq\left|\mathbb{Z}_{n}^{2}\right| / 2$, by Lemma $52.1 .35_{\mathrm{p} 12}$, it follows that this happens with probability at most $\left(\left|J_{n}\right| /\left|\mathbb{Z}_{n}^{2}\right|\right)^{m} \leq 1 / 2^{m} \leq \delta$, as claimed.

52.2.1. Distribution of primes

In the following, let $\pi(n)$ denote the number of primes between 1 and n. Here, we prove that $\pi(n)=$ $\Theta(n / \log n)$.

Lemma 52.2.2. Let Δ be the product of all the prime numbers p, where $m<p \leq 2 m$. We have that $\Delta \leq\binom{ 2 m}{m}$.

Proof: Let X be the product of the all composite numbers between m and $2 m$, we have

$$
\binom{2 m}{m}=\frac{2 m \cdot(2 m-1) \cdots(m+2) \cdot(m+1)}{m \cdot(m-1) \cdots 2 \cdot 1}=\frac{X \cdot \Delta}{m \cdot(m-1) \cdots 2 \cdot 1} .
$$

Since none of the numbers between 2 and m divides any of the factors of Δ, it must be that the number $\frac{X}{m \cdot(m-1) \cdots 2 \cdot 1}$ is an integer number, as $\binom{2 m}{m}$ is an integer. Therefore, $\binom{2 m}{m}=c \cdot \Delta$, for some integer $c>0$, implying the claim.

Lemma 52.2.3. The number of prime numbers between m and $2 m$ is $O(m / \ln m)$.
Proof: Let us denote all primes between m and $2 m$ as $p_{1}<p_{2}<\cdots<p_{k}$. Since $p_{1} \geq m$, it follows from Lemma 52.2.2 that $m^{k} \leq \prod_{i=1}^{k} p_{i} \leq\binom{ 2 m}{m} \leq 2^{2 m}$. Now, taking log of both sides, we have $k \lg m \leq 2 m$. Namely, $k \leq 2 m / \lg m$.

Lemma 52.2.4. $\pi(n)=O(n / \ln n)$.
Proof: Let the number of primes less than n be $\Pi(n)$, then by Lemma 52.2.3, there exist some positive constant C, such that for all $\forall n \geq N$, we have $\Pi(2 n)-\Pi(n) \leq C \cdot n / \ln n$. Namely, $\Pi(2 n) \leq C \cdot n / \ln n+$ $\Pi(n)$. Thus, $\Pi(2 n) \leq \sum_{i=0}^{\lceil\lg n\rceil}\left(\Pi\left(2 n / 2^{i}\right)-\Pi\left(2 n / 2^{i+1}\right)\right) \leq \sum_{i=0}^{\lceil\lg n\rceil} C \cdot \frac{n / 2^{i}}{\ln \left(n / 2^{i}\right)}=O\left(\frac{n}{\ln n}\right)$, by observing that the summation behaves like a decreasing geometric series.

Lemma 52.2.5. For integers m, k and a prime p, if $p^{k} \left\lvert\,\binom{ 2 m}{m}\right.$, then $p^{k} \leq 2 m$.
Proof: Let $T(p, m)$ be the number of times p appear in the prime factorization of $m!$. Formally, $T(p, m)$ is the highest number k such that p^{k} divides m !. We claim that $T(p, m)=\sum_{i=1}^{\infty}\left\lfloor m / p^{i}\right\rfloor$. Indeed, consider an integer $\beta \leq m$, such that $\beta=p^{t} \gamma$, where γ is an integer that is not divisible by p. Observe that β contributes exactly to the first t terms of the summation of $T(p, m)$ - namely, its contribution to m ! as far as powers of p is counted correctly.

Let α be the maximum number such that p^{α} divides $\binom{2 m}{m}=\frac{2 m!}{m!m!}$. Clearly,

$$
\alpha=T(p, 2 m)-2 T(p, m)=\sum_{i=1}^{\infty}\left(\left\lfloor\frac{2 m}{p^{i}}\right\rfloor-2\left\lfloor\frac{m}{p^{i}}\right\rfloor\right) .
$$

It is easy to verify that for any integers x, y, we have that $0 \leq\left\lfloor\frac{2 x}{y}\right\rfloor-2\left\lfloor\frac{x}{y}\right\rfloor \leq 1$. In particular, let k be the largest number such that $\left(\left\lfloor\frac{2 m}{p^{k}}\right\rfloor-2\left\lfloor\frac{m}{p^{k}}\right\rfloor\right)=1$, and observe that $T(p, 2 m) \leq k$ as only the proceedings $k-1$ terms might be non-zero in the summation of $T(p, 2 m)$. But this implies that $\left\lfloor 2 m / p^{k}\right\rfloor \geq 1$, which implies in turn that $p^{k} \leq 2 m$, as desired.

Lemma 52.2.6. $\pi(n)=\Omega(n / \ln n)$.
Proof: Assume $\binom{2 m}{m}$ have k prime factors, and thus can be written as $\binom{2 m}{m}=\prod_{i=1}^{k} p_{i}^{n_{i}}$, By Lemma 52.2.5, we have $p_{i}^{n_{i}} \leq 2 m$. Of course, the above product might not include some prime numbers between 1 and $2 m$, and as such k is a lower bound on the number of primes in this range; that is, $k \leq \pi(2 m)$. This implies $\frac{2^{2 m}}{2 m} \leq\binom{ 2 m}{m} \leq \prod_{i=1}^{k} 2 m=(2 m)^{k}$. By taking \lg of both sides, we have $\frac{2 m-\lg (2 m)}{\lg (2 m)} \leq k \leq \pi(2 m)$.

We summarize the result.
Theorem 52.2.7. Let $\pi(n)$ be the number of distinct prime numbers between 1 and n. We have that $\pi(n)=\Theta(n / \ln n)$.

52.3. Bibliographical notes

Miller [Mil76] presented the primality testing algorithm which runs in deterministic polynomial time but relies on Riemann's Hypothesis (which is still open). Later on, Rabin [Rab80] showed how to convert this algorithm to a randomized algorithm, without relying on the Riemann's hypothesis.

This write-up is based on various sources - starting with the description in [MR95], and then filling in some details from various sources on the web.

What is currently missing from the write-up is a description of the RSA encryption system. This would hopefully be added in the future. There are of course typos in these notes - let me know if you find any.

References

[Mil76] G. L. Miller. Riemann's hypothesis and tests for primality. J. Comput. Sys. Sci., 13(3): 300317, 1976.
[MR95] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge, UK: Cambridge University Press, 1995.
[Rab80] M. O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory, 12(1): 128-138, 1980.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

[^1]: ${ }^{(2)}$ Again, as is everywhere in this chapter, the polynomial time is in the number of bits needed to specify the input.

[^2]: ${ }^{3}$ One could even say "trivial" with heavy Russian accent.

