
Chapter 52

Primality testing
By Sariel Har-Peled, April 26, 2022①

“The world is what it is; men who are nothing, who allow themselves to become nothing, have
no place in it.”

— Bend in the river, V.S. Naipaul

Introduction – how to read this write-up
In this note, we present a simple randomized algorithms for primality testing. The challenge is that it
requires a non-trivial amount of number theory, which is not the purpose of this course. Nevertheless,
this note is more or less self contained, and all necessary background is provided (assuming some basic
mathematical familiarity with groups, fields and modulo arithmetic). It is however not really necessary
to understand all the number theory material needed, and the reader can take it as given. In particular,
I recommend to read the number theory background part without reading all of the proofs (at least
on first reading). Naturally, a complete and total understanding of this material one needs to read
everything carefully.

The description of the primality testing algorithm in this write-up is not minimal – there are shorter
descriptions out there. However, it is modular – assuming the number theory machinery used is correct,
the algorithm description is relatively straightforward.

52.1. Number theory background

52.1.1. Modulo arithmetic
52.1.1.1. Prime and coprime

For integer numbers 𝑥 and 𝑦, let 𝑥 | 𝑦 denotes that 𝑥 divides 𝑦. The greatest common divisor (gcd) of
two numbers 𝑥 and 𝑦, denoted by gcd(𝑥, 𝑦), is the largest integer that divides both 𝑥 and 𝑦. The least
common multiple (lcm) of 𝑥 and 𝑦, denoted by lcm(𝑥, 𝑦) = 𝑥𝑦/gcd(𝑥, 𝑦), is the smallest integer 𝛼, such
that 𝑥 | 𝛼 and 𝑦 | 𝛼. An integer number 𝑝 > 0 is prime if it is divisible only by 1 and itself (we will
consider 1 not to be prime).

Some standard definitions:

𝑥, 𝑦 are coprime ⇐⇒ gcd(𝑥, 𝑦) = 1,
quotient of 𝑥/𝑦 ⇐⇒ 𝑥 div 𝑦 = ⌊𝑥/𝑦⌋ ,

remainder of 𝑥/𝑦 ⇐⇒ 𝑥 mod 𝑦 = 𝑥 − 𝑦 ⌊𝑥/𝑦⌋ .

The remainder 𝑥 mod 𝑦 is sometimes referred to as residue.

52.1.1.2. Computing gcd

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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EuclidGCD(𝑎, 𝑏):
if (𝑏 = 0)

return 𝑎

else
return EuclidGCD(𝑏, 𝑎 mod 𝑏)

Computing the gcd of two numbers is a classical
algorithm, see code on the right – proving that it in-
deed returns the right result follows by an easy induc-
tion. It is easy to verify that if the input is made out
of log 𝑛 bits, then this algorithm takes 𝑂 (poly(log 𝑛))
time (i.e., it is polynomial in the input size). Indeed,
doing basic operations on numbers (i.e., multiplication, division, addition, subtraction, etc) with total
of ℓ bits takes 𝑂

(
ℓ2) time (naively – faster algorithms are known).

Exercise 52.1.1. Show that gcd(𝐹𝑛, 𝐹𝑛−1) = 1, where 𝐹𝑖 is the 𝑖th Fibonacci number. Argue that for two
consecutive Fibonacci numbers EuclidGCD(𝐹𝑛, 𝐹𝑛−1) takes 𝑂 (𝑛) time, if every operation takes 𝑂 (1)
time.

Lemma 52.1.2. For all 𝛼, 𝛽 > 0 integers, there are integer numbers 𝑥 and 𝑦, such that gcd(𝛼, 𝛽) =

𝛼𝑥 + 𝛽𝑦, which can be computed in polynomial time; that is, 𝑂
(
poly

(
log 𝛼 + log 𝛽

))
.

Proof: If 𝛼 = 𝛽 then the claim trivially holds. Otherwise, assume that 𝛼 > 𝛽 (otherwise, swap them),
and observe that gcd(𝛼, 𝛽) = gcd(𝛼 mod 𝛽, 𝛽). In particular, by induction, there are integers 𝑥′, 𝑦′, such
that gcd(𝛼 mod 𝛽, 𝛽) = 𝑥′(𝛼 mod 𝛽) + 𝑦′𝛽. However, 𝜏 = 𝛼 mod 𝛽 = 𝛼 − 𝛽 ⌊𝛼/𝛽⌋. As such, we have

gcd(𝛼, 𝛽) = gcd(𝛼 mod 𝛽, 𝛽) = 𝑥′
(
𝛼 − 𝛽 ⌊𝛼/𝛽⌋

)
+ 𝑦′𝛽 = 𝑥′𝛼 + (𝑦′ − 𝛽 ⌊𝛼/𝛽⌋)𝛽,

as claimed. The running time follows immediately by modifying EuclidGCD to compute these num-
bers. ■

We use 𝛼 ≡ 𝛽 (mod 𝑛) or 𝛼 ≡𝑛 𝛽 to denote that 𝛼 and 𝛽 are congruent modulo 𝑛; that is
𝛼 mod 𝑛 = 𝛽 mod 𝑛. Or put differently, we have 𝑛 | (𝛼 − 𝛽). The set Z𝑛 =

{
0, . . . , 𝑛 − 1

}
form a

group under addition modulo 𝑛 (see Definition 52.1.9p4 for a formal definition of a group). The more
interesting creature is Z∗𝑛 =

{
𝑥

�� 𝑥 ∈ {1, . . . , 𝑛} , 𝑥 > 0, and gcd(𝑥, 𝑛) = 1
}
, which is a group modulo 𝑛

under multiplication.

Remark 52.1.3. Observe that Z∗1 = {1}, while for 𝑛 > 1, Z∗𝑛 does not contain 𝑛.

Lemma 52.1.4. For any element 𝛼 ∈ Z∗𝑛, there exists a unique inverse element 𝛽 = 𝛼−1 ∈ Z∗𝑛 such that
𝛼 ∗ 𝛽 ≡𝑛 1. Furthermore, the inverse can be computed in polynomial time②.

Proof: Since 𝛼 ∈ Z∗𝑛, we have that gcd(𝛼, 𝑛) = 1. As such, by Lemma 52.1.2, there exists 𝑥 and 𝑦

integers, such that 𝑥𝛼 + 𝑦𝑛 = 1. That is 𝑥𝛼 ≡ 1 (mod 𝑛), and clearly 𝛽 := 𝑥 mod 𝑛 is the desired inverse,
and it can be computed in polynomial time by Lemma 52.1.2.

As for uniqueness, assume that there are two inverses 𝛽, 𝛽′ to 𝛼 < 𝑛, such that 𝛽 < 𝛽′ < 𝑛. But then
𝛽𝛼 ≡𝑛 𝛽′𝛼 ≡𝑛 1, which implies that 𝑛 | (𝛽′ − 𝛽)𝛼, which implies that 𝑛 | 𝛽′ − 𝛽, which is impossible as
0 < 𝛽′ − 𝛽 < 𝑛. ■

It is now straightforward, but somewhat tedious, to verify the following (the interested reader that
had not encountered this stuff before can spend some time proving this).

Lemma 52.1.5. The set Z𝑛 under the + operation modulo 𝑛 is a group, as is Z∗𝑛 under multiplication
modulo 𝑛. More importantly, for a prime number 𝑝, Z𝑝 forms a field with the +, ∗ operations modulo 𝑝

(see Definition 52.1.17p6).
②Again, as is everywhere in this chapter, the polynomial time is in the number of bits needed to specify the input.
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52.1.1.3. The Chinese remainder theorem

Theorem 52.1.6 (Chinese remainder theorem). Let 𝑛1, . . . , 𝑛𝑘 be coprime numbers, and let 𝑛 =

𝑛1𝑛2 · · · 𝑛𝑘 . For any residues 𝑟1 ∈ Z𝑛1 , . . . , 𝑟𝑘 ∈ Z𝑛𝑘 , there is a unique 𝑟 ∈ Z𝑛, which can be computed in
polynomial time, such that 𝑟 ≡ 𝑟𝑖 (mod 𝑛𝑖), for 𝑖 = 1, . . . , 𝑘.

Proof: By the coprime property of the 𝑛𝑖s it follows that gcd(𝑛𝑖, 𝑛/𝑛𝑖) = 1. As such, 𝑛/𝑛𝑖 ∈ Z∗𝑛𝑖 , and it
has a unique inverse 𝑚𝑖 modulo 𝑛𝑖; that is (𝑛/𝑛𝑖)𝑚𝑖 ≡ 1 (mod 𝑛𝑖). So set 𝑟 =

∑
𝑖 𝑟𝑖𝑚𝑖𝑛/𝑛𝑖. Observe that

for 𝑖 ≠ 𝑗 , we have that 𝑛 𝑗 | (𝑛/𝑛𝑖), and as such 𝑟𝑖𝑚𝑖𝑛/𝑛𝑖 (mod 𝑛 𝑗 ) ≡ 0 (mod 𝑛 𝑗 ). As such, we have

𝑟 mod 𝑛 𝑗 =

(∑︁
𝑖

(
𝑟𝑖𝑚𝑖

𝑛

𝑛𝑖
mod 𝑛 𝑗

))
mod 𝑛 𝑗 =

(
𝑟 𝑗𝑚 𝑗

𝑛

𝑛 𝑗

mod 𝑛 𝑗

)
mod 𝑛 𝑗 = 𝑟 𝑗 ∗ 1 mod 𝑛 𝑗 = 𝑟 𝑗 .

As for uniqueness, if there is another such number 𝑟′, such that 𝑟 < 𝑟′ < 𝑛, then 𝑟′ − 𝑟 (mod 𝑛𝑖) = 0
implying that 𝑛𝑖 | 𝑟′ − 𝑟, for all 𝑖. Since all the 𝑛𝑖s are coprime, this implies that 𝑛 | 𝑟′ − 𝑟, which is of
course impossible. ■

Lemma 52.1.7 (Fast exponentiation). Given numbers 𝑏, 𝑐, 𝑛, one can compute 𝑏𝑐 mod 𝑛 in polyno-
mial time.

Proof: The key property we need is that

𝑥𝑦 mod 𝑛 =

(
(𝑥 mod 𝑛) (𝑦 mod 𝑛)

)
mod 𝑛.

Now, if 𝑐 is even, then we can compute

𝑏𝑐 mod 𝑛 =

(
𝑏𝑐/2

)2
mod 𝑛 =

(
𝑏𝑐/2 mod 𝑛

)2
mod 𝑛.

Similarly, if 𝑐 is odd, we have

𝑏𝑐 mod 𝑛 = (𝑏 mod 𝑛)
(
𝑏 (𝑐−1)/2

)2
mod 𝑛 = (𝑏 mod 𝑛)

(
𝑏 (𝑐−1)/2 mod 𝑛

)2
mod 𝑛.

Namely, computing 𝑏𝑐 mod 𝑛 can be reduced to recursively computing 𝑏⌊𝑐/2⌋ mod 𝑛, and a constant
number of operations (on numbers that are smaller than 𝑛). Clearly, the depth of the recursion is
𝑂 (log 𝑐). ■

52.1.1.4. Euler totient function

The Euler totient function 𝜙(𝑛) =
��Z∗𝑛�� is the number of positive integer numbers that at most 𝑛 and

are coprime with 𝑛. If 𝑛 is prime then 𝜙(𝑛) = 𝑛 − 1.

Lemma 52.1.8. Let 𝑛 = 𝑝
𝑘1
1 · · · 𝑝𝑘𝑡𝑡 , where the 𝑝𝑖s are prime numbers and the 𝑘𝑖s are positive integers

(this is the prime factorization of 𝑛). Then 𝜙(𝑛) =
𝑡∏

𝑖=1
𝑝
𝑘𝑖−1
𝑖

(𝑝𝑖−1). and this quantity can be computed

in polynomial time if the factorization is given.
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Proof: Observe that 𝜙(1) = 1 (see Remark 52.1.3), and for a prime number 𝑝, we have that 𝜙(𝑝) = 𝑝−1.
Now, for 𝑘 > 1, and 𝑝 prime we have that 𝜙(𝑝𝑘 ) = 𝑝𝑘−1(𝑝 − 1), as a number 𝑥 ≤ 𝑝𝑘 is coprime with 𝑝𝑘 ,
if and only if 𝑥 mod 𝑝 ≠ 0, and (𝑝 − 1)/𝑝 fraction of the numbers in this range have this property.

Now, if 𝑛 and 𝑚 are relative primes, then gcd(𝑥, 𝑛𝑚) = 1 ⇐⇒ gcd(𝑥, 𝑛) = 1 and gcd(𝑥, 𝑚) = 1. In
particular, there are 𝜙(𝑛)𝜙(𝑚) pairs (𝛼, 𝛽) ∈ Z∗𝑛 ×Z∗𝑚, such that gcd(𝛼, 𝑛) = 1 and gcd(𝛽, 𝑚) = 1. By the
Chinese remainder theorem (Theorem 52.1.6), each such pair represents a unique number in the range
1, . . . , 𝑛𝑚, as desired.

Now, the claim follows by easy induction on the prime factorization of the given number. ■

52.1.2. Structure of the modulo group Z𝑛
52.1.2.1. Some basic group theory

Definition 52.1.9. A group is a set, G, together with an operation × that combines any two elements
𝑎 and 𝑏 to form another element, denoted 𝑎 × 𝑏 or 𝑎𝑏. To qualify as a group, the set and operation,
(G,×), must satisfy the following:
(A) (Closure) For all 𝑎, 𝑏 ∈ G, the result of the operation, 𝑎 × 𝑏 ∈ G.
(B) (Associativity) For all 𝑎, 𝑏, 𝑐 ∈ G, we have (𝑎 × 𝑏) × 𝑐 = 𝑎 × (𝑏 × 𝑐).
(C) (Identity element) There exists an element i ∈ G, called the identity element, such that for

every element 𝑎 ∈ G, the equation i × 𝑎 = 𝑎 × i = 𝑎 holds.
(D) (Inverse element) For each 𝑎 ∈ G, there exists an element 𝑏 ∈ G such that 𝑎 × 𝑏 = 𝑏 × 𝑎 = i.

A group is abelian (aka, commutative group) if for all 𝑎, 𝑏 ∈ G, we have that 𝑎 × 𝑏 = 𝑏 × 𝑎.

In the following we restrict our attention to abelian groups since it makes the discussion somewhat
simpler. In particular, some of the claims below holds even without the restriction to abelian groups.

The identity element is unique. Indeed, if both 𝑓 , 𝑔 ∈ G are identity elements, then 𝑓 = 𝑓 × 𝑔 = 𝑔.
Similarly, for every element 𝑥 ∈ G there exists a unique inverse 𝑦 = 𝑥−1. Indeed, if there was another
inverse 𝑧, then 𝑦 = 𝑦 × i = 𝑦 × (𝑥 × 𝑧) = (𝑦 × 𝑥) × 𝑧 = i × 𝑧 = 𝑧.

52.1.2.2. Subgroups

For a group G, a subset H ⊆ G that is also a group (under the same operation) is a subgroup.
For 𝑥, 𝑦 ∈ G, let us define 𝑥 ∼ 𝑦 if 𝑥/𝑦 ∈ H . Here 𝑥/𝑦 = 𝑥𝑦−1 and 𝑦−1 is the inverse of 𝑦 in G.

Observe that (𝑦/𝑥) (𝑥/𝑦) =
(
𝑦𝑥−1) (𝑥𝑦−1) = i. That is 𝑦/𝑥 is the inverse of 𝑥/𝑦, and it is in H . But that

implies that 𝑥 ∼ 𝑦 =⇒ 𝑦 ∼ 𝑥. Now, if 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧, then 𝑥/𝑦, 𝑦/𝑧 ∈ H . But then 𝑥/𝑦 × 𝑦/𝑧 ∈ H ,
and furthermore 𝑥/𝑦 × 𝑦/𝑧 = 𝑥𝑦−1𝑦𝑧−1 = 𝑥𝑧−1 = 𝑥/𝑧. that is 𝑥 ∼ 𝑧. Together, this implies that ∼ is an
equivalence relationship.

Furthermore, observe that if 𝑥/𝑦 = 𝑥/𝑧 then 𝑦−1 = 𝑥−1(𝑥/𝑦) = 𝑥−1(𝑥/𝑧) = 𝑧−1, that is 𝑦 = 𝑧.
In particular, the equivalence class of 𝑥 ∈ G, is [𝑥] =

{
𝑧 ∈ G

�� 𝑥 ∼ 𝑧
}
. Observe that if 𝑥 ∈ H then

i/𝑥 = i𝑥−1 = 𝑥−1 ∈ H , and thus i ∼ 𝑥. That is H = [𝑥]. The following is now easy.

Lemma 52.1.10. Let G be an abelian group, and let H ⊆ G be a subgroup. Consider the set G/H ={
[𝑥]

�� 𝑥 ∈ G
}
. We claim that

��[𝑥]�� = ��[𝑦]�� for any 𝑥, 𝑦 ∈ G. Furthermore G/H is a group (that is, the
quotient group), with [𝑥] × [𝑦] = [𝑥 × 𝑦].

Proof: Pick an element 𝛼 ∈ [𝑥], and 𝛽 ∈ [𝑦], and consider the mapping 𝑓 (𝑥) = 𝑥𝛼−1𝛽. We claim
that 𝑓 is one to one and onto from [𝑥] to [𝑦]. For any 𝛾 ∈ [𝑥], we have that 𝛾𝛼−1 = 𝛾/𝛼 ∈ H
As such, 𝑓 (𝛾) = 𝛾𝛼−1𝛽 ∈ [𝛽] = [𝑦]. Now, for any 𝛾, 𝛾′ ∈ [𝑥] such that 𝛾 ≠ 𝛾′, we have that if
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𝑓 (𝛾) = 𝛾𝛼−1𝛽 = 𝛾′𝛼−1𝛽 = 𝑓 (𝛾′), then by multiplying by 𝛽−1𝛼, we have that 𝛾 = 𝛾′. That is, 𝑓 is one to
one, implying that

��[𝑥]�� = ��[𝑦]��.
The second claim follows by careful but tediously checking that the conditions in the definition of a

group holds. ■

Lemma 52.1.11. For a finite abelian group G and a subgroup H ⊆ G, we have that |H | divides |G|.

Proof: By Lemma 52.1.10, we have that |G| = |H | · |G/H |, as H = [i]. ■

52.1.2.3. Cyclic groups

Lemma 52.1.12. For a finite group G, and any element 𝑔 ∈ G, the set ⟨𝑔⟩ =
{
𝑔𝑖

�� 𝑖 ≥ 0
}

is a group.

Proof: Since G is finite, there are integers 𝑖 > 𝑗 ≥ 1, such that 𝑖 ≠ 𝑗 and 𝑔𝑖 = 𝑔 𝑗 , but then 𝑔 𝑗 × 𝑔𝑖− 𝑗 =

𝑔𝑖 = 𝑔 𝑗 . That is 𝑔𝑖− 𝑗 = i and, by definition, we have 𝑔𝑖− 𝑗 ∈ ⟨𝑔⟩. It is now straightforward to verify that
the other properties of a group hold for ⟨𝑔⟩. ■

In particular, for an element 𝑔 ∈ G, we define its order as ord(𝑔) =
��⟨𝑔⟩��, which clearly is the

minimum positive integer 𝑚, such that 𝑔𝑚 = i. Indeed, for 𝑗 > 𝑚, observe that 𝑔 𝑗 = 𝑔 𝑗 mod 𝑚 ∈ 𝑋 ={
i, 𝑔, 𝑔2, . . . , 𝑔𝑚−1}, which implies that ⟨𝑔⟩ = 𝑋.

A group G is cyclic, if there is an element 𝑔 ∈ G, such that ⟨𝑔⟩ = G. In such a case 𝑔 is a generator
of G.

Lemma 52.1.13. For any finite abelian group G, and any 𝑔 ∈ G, we have that ord(𝑔) divides |G|, and
𝑔 |G| = i.

Proof: By Lemma 52.1.12, the set ⟨𝑔⟩ is a subgroup of G. By Lemma 52.1.11, we have that ord(𝑔) =��⟨𝑔⟩�� | |G|. As such, 𝑔 |G| =
(
𝑔ord(𝑔)

) |G|/ord(𝑔)
=

(
i
) |G|/ord(𝑔)

= i. ■

52.1.2.4. Modulo group

Lemma 52.1.14. For any integer 𝑛, consider the additive group Z𝑛. Then, for any 𝑥 ∈ Z𝑛, we have
that 𝑥 · ord(𝑥) = lcm(𝑥, 𝑛). In particular, ord(𝑥) = lcm(𝑛, 𝑥)

𝑥
=

𝑛

gcd(𝑛, 𝑥) . If 𝑛 is prime, and 𝑥 ≠ 0 then
ord(𝑥) = |Z𝑛 | = 𝑛, and Z𝑛 is a cyclic group.

Proof: We are working modulo 𝑛 here under additions, and the identity element is 0. As such, 𝑥·ord(𝑥) ≡𝑛

0, which implies that 𝑛 | 𝑥 ord(𝑥). By definition, ord(𝑥) is the minimal number that has this property,
implying that ord(𝑥) = lcm(𝑛, 𝑥)

𝑥
. Now, lcm(𝑛, 𝑥) = 𝑛𝑥/gcd(𝑛, 𝑥). The second claim is now easy. ■

Theorem 52.1.15. (Euler’s theorem) For all 𝑛 and 𝑥 ∈ Z∗𝑛, we have 𝑥𝜙(𝑛) ≡ 1 (mod 𝑛).
(Fermat’s theorem) If 𝑝 is a prime then ∀𝑥 ∈ Z∗𝑝 𝑥𝑝−1 ≡ 1 (mod 𝑝).

Proof: The group Z∗𝑛 is abelian and has 𝜙(𝑛) elements, with 1 being the identity element (duh!). As
such, by Lemma 52.1.13, we have that 𝑥𝜙(𝑛) = 𝑥 |Z∗𝑛 | ≡ 1 (mod 𝑛), as claimed.

The second claim follows by setting 𝑛 = 𝑝, and recalling that 𝜙(𝑝) = 𝑝 − 1, if 𝑝 is a prime. ■
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One might be tempted to think that Lemma 52.1.14 implies that if 𝑝 is a prime then Z∗𝑝 is a cyclic
group, but this does not follow, as the cardinality of Z∗𝑝 is 𝜙(𝑝) = 𝑝 − 1, which is not a prime number
(for 𝑝 > 2). To prove that Z∗𝑝 is cyclic, let us go back shortly to the totient function.

Lemma 52.1.16. For any 𝑛 > 0, we have
∑

𝑑 |𝑛 𝜙(𝑑) = 𝑛.

Proof: For any 𝑔 > 0, let 𝑉𝑔 =
{
𝑥

�� 𝑥 ∈ {1, . . . , 𝑛} and gcd(𝑥, 𝑛) = 𝑔
}
. Now, 𝑥 ∈ 𝑉𝑔 ⇐⇒ gcd(𝑥, 𝑛) = 𝑔

⇐⇒ gcd(𝑥/𝑔, 𝑛/𝑔) = 1 ⇐⇒ 𝑥/𝑔 ∈ Z∗
𝑛/𝑔. Since 𝑉1, 𝑉2, . . . , 𝑉𝑛 form a partition of {1, . . . , 𝑛}, it follows

that 𝑛 =
∑︁
𝑔

��𝑉𝑔

�� = ∑︁
𝑔 |𝑛

���Z∗𝑛/𝑔��� = ∑︁
𝑔 |𝑛

𝜙(𝑛/𝑔) =
∑︁
𝑑 |𝑛

𝜙(𝑑). ■

52.1.2.5. Fields

Definition 52.1.17. A field is an algebraic structure ⟨F, +, ∗, 0, 1⟩ consisting of two abelian groups:
(A) F under +, with 0 being the identity element.
(B) F \ {0} under ∗, with 1 as the identity element (here 0 ≠ 1).

Also, the following property (distributivity of multiplication over addition) holds:

∀𝑎, 𝑏, 𝑐 ∈ F 𝑎 ∗ (𝑏 + 𝑐) = (𝑎 ∗ 𝑏) + (𝑎 ∗ 𝑐).

We need the following: A polynomial 𝑝 of degree 𝑘 over a field F has at most 𝑘 roots. indeed, if 𝑝

has the root 𝛼 then it can be written as 𝑝(𝑥) = (𝑥 − 𝛼)𝑞(𝑥), where 𝑞(𝑥) is a polynomial of one degree
lower. To see this, we divide 𝑝(𝑥) by the polynomial (𝑥 − 𝛼), and observe that 𝑝(𝑥) = (𝑥 − 𝛼)𝑞(𝑥) + 𝛽,
but clearly 𝛽 = 0 since 𝑝(𝛼) = 0. As such, if 𝑝 had 𝑡 roots 𝛼1, . . . , 𝛼𝑡 , then 𝑝(𝑥) = 𝑞(𝑥)∏𝑡

𝑖=1(𝑥 − 𝛼𝑖),
which implies that 𝑝 would have degree at least 𝑡.

52.1.2.6. Z∗𝑝 is cyclic for prime numbers

For a prime number 𝑝, the group Z∗𝑝 has size 𝜙(𝑝) = 𝑝 − 1, which is not a prime number for 𝑝 > 2. As
such, Lemma 52.1.13 does not imply that there must be an element in Z∗𝑝 that has order 𝑝−1 (and thus
Z∗𝑝 is cyclic). Instead, our argument is going to be more involved and less direct.

Lemma 52.1.18. For 𝑘 < 𝑛, let 𝑅𝑘 =
{
𝑥 ∈ Z∗𝑝

�� ord(𝑥) = 𝑘
}

be the set of all numbers in Z∗𝑝 that are of
order 𝑘. We have that |𝑅𝑘 | ≤ 𝜙(𝑘).

Proof: Clearly, all the elements of 𝑅𝑘 are roots of the polynomial 𝑥𝑘 −1 = 0 (mod 𝑛). By the above, this
polynomial has at most 𝑘 roots. Now, if 𝑅𝑘 is not empty, then it contains an element 𝑥 ∈ 𝑅𝑘 of order 𝑘,
which implies that for all 𝑖 < 𝑗 ≤ 𝑘, we have that 𝑥𝑖 . 𝑥 𝑗 (mod 𝑛), as the order of 𝑥 is the size of ⟨𝑥⟩,
and the minimum 𝑘 such that 𝑥𝑘 ≡ 1 (mod 𝑛). In particular, we have that 𝑅𝑘 ⊆ ⟨𝑥⟩, as for 𝑦 = 𝑥 𝑗 , we
have that 𝑦𝑘 ≡𝑛 𝑥

𝑗 𝑘 ≡𝑛 1 𝑗 ≡𝑛 1.
Observe that for 𝑦 = 𝑥𝑖, if 𝑔 = gcd(𝑘, 𝑖) > 1, then 𝑦𝑘/𝑔 ≡𝑛 𝑥𝑖(𝑘/𝑔) ≡𝑛 𝑥lcm(𝑖,𝑘) ≡𝑛 1; that is, ord(𝑦) ≤

𝑘/𝑔 < 𝑘, and 𝑦 ∉ 𝑅𝑘 . As such, 𝑅𝑘 contains only elements of 𝑥𝑖 such that gcd(𝑖, 𝑘) = 1. That is 𝑅𝑘 ⊆ Z∗
𝑘
.

The claim now readily follows as
��Z∗

𝑘

�� = 𝜙(𝑘). ■

Lemma 52.1.19. For any prime 𝑝, the group Z∗𝑝 is cyclic.
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Proof: For 𝑝 = 2 the claim trivially holds, so assume 𝑝 > 2. If the set 𝑅𝑝−1, from Lemma 52.1.18, is not
empty, then there is 𝑔 ∈ 𝑅𝑝−1, it has order 𝑝 − 1, and it is a generator of Z∗𝑝, as

��Z∗𝑝 �� = 𝑝 − 1, implying
that Z∗𝑝 = ⟨𝑔⟩ and this group is cyclic.

Now, by Lemma 52.1.13, we have that for any 𝑦 ∈ Z∗𝑝, we have that ord(𝑦) | 𝑝 − 1 =
��Z∗𝑝 ��. This

implies that 𝑅𝑘 is empty if 𝑘 does not divides 𝑝 − 1. On the other hand, 𝑅1, . . . , 𝑅𝑝−1 form a partition
of Z∗𝑝. As such, we have that

𝑝 − 1 =
��Z∗𝑝 �� = ∑︁

𝑘 |𝑝−1
|𝑅𝑘 | ≤

∑︁
𝑘 |𝑝−1

𝜙(𝑘) = 𝑝 − 1,

by Lemma 52.1.18 and Lemma 52.1.16p6, implying that the inequality in the above display is equality,
and for all 𝑘 | 𝑝 − 1, we have that |𝑅𝑘 | = 𝜙(𝑘). In particular,

��𝑅𝑝−1
�� = 𝜙(𝑝 − 1) > 0, and by the above

the claim follows. ■

52.1.2.7. Z∗𝑛 is cyclic for powers of a prime

Lemma 52.1.20. Consider any odd prime 𝑝, and any integer 𝑐 ≥ 1, then the group Z∗𝑛 is cyclic, where
𝑛 = 𝑝𝑐.

Proof: Let 𝑔 be a generator of Z∗𝑝. Observe that 𝑔𝑝−1 ≡ 1 mod 𝑝. The number 𝑔 < 𝑝, and as such 𝑝

does not divide 𝑔, and also 𝑝 does not divide 𝑔𝑝−2, and also 𝑝 does not divide 𝑝 − 1. As such, 𝑝2 does
not divide Δ = (𝑝 − 1)𝑔𝑝−2𝑝; that is, Δ . 0 (mod 𝑝2). As such, we have that

(𝑔 + 𝑝)𝑝−1 ≡ 𝑔𝑝−1 +
(
𝑝 − 1

1

)
𝑔𝑝−2𝑝 ≡ 𝑔𝑝−1 + Δ . 𝑔𝑝−1 (mod 𝑝2)

=⇒ (𝑔 + 𝑝)𝑝−1 . 1 (mod 𝑝2) or 𝑔𝑝−1 . 1 (mod 𝑝2).

Renaming 𝑔 + 𝑝 to be 𝑔, if necessary, we have that 𝑔𝑝−1 . 1 (mod 𝑝2), but by Theorem 52.1.15p5,
𝑔𝑝−1 ≡ 1 (mod 𝑝). As such, 𝑔𝑝−1 = 1 + 𝛽𝑝, where 𝑝 does not divide 𝛽. Now, we have

𝑔𝑝(𝑝−1) = (1 + 𝛽𝑝)𝑝 = 1 +
(
𝑝

1

)
𝛽𝑝 + 𝛽𝑝3<whatever> = 1 + 𝛾1𝑝

2,

where 𝛾1 is an integer (the 𝑝3 is not a typo – the binomial coefficient contributes at least one factor of
𝑝 – here we are using that 𝑝 > 2). In particular, as 𝑝 does not divides 𝛽, it follows that 𝑝 does not
divides 𝛾1 either. Let us apply this argumentation again to

𝑔𝑝2 (𝑝−1) =
(
1 + 𝛾1𝑝

2) 𝑝 = 1 + 𝛾1𝑝
3 + 𝑝4<whatever> = 1 + 𝛾2𝑝

3,

where again 𝑝 does not divides 𝛾2. Repeating this argument, for 𝑖 = 1, . . . , 𝑐 − 2, we have

𝛼𝑖 = 𝑔𝑝𝑖 (𝑝−1) =
(
𝑔𝑝𝑖−1 (𝑝−1)

) 𝑝
=

(
1 + 𝛾𝑖−1𝑝

𝑖
) 𝑝

= 1 + 𝛾𝑖−1𝑝
𝑖+1 + 𝑝𝑖+2<whatever> = 1 + 𝛾𝑖𝑝

𝑖+1,

where 𝑝 does not divides 𝛾𝑖. In particular, this implies that 𝛼𝑐−2 = 1 + 𝛾𝑐−2𝑝
𝑐−1 and 𝑝 does not divides

𝛾𝑐−2. This in turn implies that 𝛼𝑐−2 . 1 (mod 𝑝𝑐).
Now, the order of 𝑔 in Z𝑛, denoted by 𝑘, must divide

��Z∗𝑛�� by Lemma 52.1.13p5. Now
��Z∗𝑛�� = 𝜙(𝑛) =

𝑝𝑐−1(𝑝 − 1), see Lemma 52.1.8p3. So, 𝑘 | 𝑝𝑐−1(𝑝 − 1). Also, 𝛼𝑐−2 . 1 (mod 𝑝𝑐). implies that 𝑘 does
not divides 𝑝𝑐−2(𝑝 − 1). It follows that 𝑝𝑐−1 | 𝑘. So, let us write 𝑘 = 𝑝𝑐−1𝑘′, where 𝑘′ ≤ (𝑝 − 1). This,
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by definition, implies that 𝑔𝑘 ≡ 1 (mod 𝑝𝑐). Now, 𝑔𝑝 ≡ 𝑔 (mod 𝑝), because 𝑔 is a generator of Z∗𝑝. As
such, we have that

𝑔𝑘 ≡𝑝 𝑔𝑝 𝛿 𝑘 ′ ≡𝑝 (𝑔𝑝)𝑝
𝛿−1𝑘 ′ ≡𝑝 (𝑔)𝑝 𝛿−1𝑘 ′ ≡𝑝 . . . ≡𝑝 (𝑔)𝑘 ′ ≡𝑝

(
𝑔𝑘 mod 𝑝𝑐

)
mod 𝑝 ≡𝑝 1.

Namely, 𝑔𝑘 ′ ≡ 1 (mod 𝑝), which implies, as 𝑔 as a generator of Z∗𝑝, that either 𝑘′ = 1 or 𝑘′ = 𝑝 − 1. The
case 𝑘′ = 1 is impossible, as this implies that 𝑔 = 1, and it can not be the generator of Z∗𝑝. We conclude
that 𝑘 = 𝑝𝑐−1(𝑝 − 1); that is, Z∗𝑛 is cyclic. ■

52.1.3. Quadratic residues
52.1.3.1. Quadratic residue

Definition 52.1.21. An integer 𝛼 is a quadratic residue modulo a positive integer 𝑛, if gcd(𝛼, 𝑛) = 1
and for some integer 𝛽, we have 𝛼 ≡ 𝛽2 (mod 𝑛).

Theorem 52.1.22 (Euler’s criterion). Let 𝑝 be an odd prime, and 𝛼 ∈ Z∗𝑝. We have that
(A) 𝛼(𝑝−1)/2 ≡𝑝 ±1.
(B) If 𝛼 is a quadratic residue, then 𝛼(𝑝−1)/2 ≡𝑝 1.
(C) If 𝛼 is not a quadratic residue, then 𝛼(𝑝−1)/2 ≡𝑝 −1.

Proof: (A) Let 𝛾 = 𝛼(𝑝−1)/2, and observe that 𝛾2 ≡𝑝 𝛼𝑝−1 ≡ 1, by Fermat’s theorem (Theorem 52.1.15p5),
which implies that 𝛾 is either +1 or −1, as the polynomial 𝑥2 − 1 has at most two roots over a field.

(B) Let 𝛼 ≡𝑝 𝛽2, and again by Fermat’s theorem, we have 𝛼(𝑝−1)/2 ≡𝑝 𝛽𝑝−1 ≡𝑝 1.
(C) Let 𝑋 be the set of elements in Z∗𝑝 that are not quadratic residues, and consider 𝛼 ∈ 𝑋. Since

Z∗𝑝 is a group, for any 𝑥 ∈ Z∗𝑝 there is a unique 𝑦 ∈ Z∗𝑝 such that 𝑥𝑦 ≡𝑝 𝛼. As such, we partition Z∗𝑝 into
pairs 𝐶 =

{
{𝑥, 𝑦}

�� 𝑥, 𝑦 ∈ Z∗𝑝 and 𝑥𝑦 ≡𝑝 𝛼
}
. We have that

𝜏 ≡𝑝

∏
𝛽∈Z∗𝑝

𝛽 ≡𝑝

∏
{𝑥,𝑦}∈𝐶

𝑥𝑦 ≡𝑝

∏
{𝑥,𝑦}∈𝐶

𝛼 ≡𝑝 𝛼(𝑝−1)/2.

Let consider a similar set of pair, but this time for 1: 𝐷 =
{
{𝑥, 𝑦}

�� 𝑥, 𝑦 ∈ Z∗𝑝, 𝑥 ≠ 𝑦 and 𝑥𝑦 ≡𝑝 1
}
. Clearly,

𝐷 does not contain −1 and 1, but all other elements in Z∗𝑝 are in 𝐷. As such,

𝜏 ≡𝑝

∏
𝛽∈Z∗𝑝

𝛽 ≡𝑝 (−1)1
∏

{𝑥,𝑦}∈𝐷
𝑥𝑦 ≡𝑝

∏
{𝑥,𝑦}∈𝐷

1 ≡𝑝 −1. ■

52.1.3.2. Legendre symbol

For an odd prime 𝑝, and an integer 𝑎 with gcd(𝑎, 𝑛) = 1, the Legendre symbol (𝑎 | 𝑝) is one if 𝑎

is a quadratic residue modulo 𝑝, and −1 otherwise (if 𝑝 | 𝑎, we define (𝑎 | 𝑝) = 0). Euler’s criterion
(Theorem 52.1.22) implies the following equivalent definition.

Definition 52.1.23. The Legendre symbol, for a prime number 𝑝, and 𝑎 ∈ Z∗𝑝, is

(𝑎 | 𝑝) = 𝑎 (𝑝−1)/2 (mod 𝑝).
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The following is easy to verify.

Lemma 52.1.24. Let 𝑝 be an odd prime, and let 𝑎, 𝑏 be integer numbers. We have:
(i) (−1 | 𝑝) = (−1) (𝑝−1)/2.

(ii) (𝑎 | 𝑝) (𝑏 | 𝑝) = (𝑎𝑏 | 𝑝).
(iii) If 𝑎 ≡𝑝 𝑏 then (𝑎 | 𝑝) = (𝑏 | 𝑝).

Lemma 52.1.25 (Gauss’ lemma). Let 𝑝 be an odd prime and let 𝑎 be an integer that is not divisible
by 𝑝. Let 𝑋 =

{
𝛼 𝑗 = 𝑗𝑎 (mod 𝑝)

�� 𝑗 = 1, . . . , (𝑝 − 1)/2
}
, and 𝐿 =

{
𝑥 ∈ 𝑋

�� 𝑥 > 𝑝/2
}
⊆ 𝑋. Then (𝑎 | 𝑝) =

(−1)𝑛, where 𝑛 = |𝐿 |.

Proof: Observe that for any distinct 𝑖, 𝑗 , such that 1 ≤ 𝑖 ≤ 𝑗 ≤ (𝑝 − 1)/2, we have that 𝑗𝑎 ≡ 𝑖𝑎 (mod 𝑝)
implies that ( 𝑗 − 𝑖)𝑎 ≡ 0 (mod 𝑝), which is impossible as 𝑗 − 𝑖 < 𝑝 and gcd(𝑎, 𝑝) = 1. As such, all the
elements of 𝑋 are distinct, and |𝑋 | = (𝑝 − 1)/2. We have a somewhat stronger property: If 𝑗𝑎 ≡ 𝑝 − 𝑖𝑎

(mod 𝑝) implies ( 𝑗 + 𝑖)𝑎 ≡ 0 (mod 𝑝), which is impossible. That is, 𝑆 = 𝑋 \ 𝐿, and 𝐿 =
{
𝑝 − ℓ

�� ℓ ∈ 𝐿
}

are disjoint, and 𝑆 ∪ 𝐿 =

{
1, . . . , (𝑝 − 1)/2

}
. As such,

(
𝑝 − 1

2

)
! ≡

∏
𝑥∈𝑆

𝑥 ·
∏
𝑦∈𝐿

(𝑝 − 𝑦) ≡ (−1)𝑛
∏
𝑥∈𝑆

𝑥 ·
∏
𝑦∈𝐿

𝑦 ≡ (−1)𝑛
(𝑝−1)/2∏

𝑗=1
𝑗𝑎 ≡ (−1)𝑛𝑎 (𝑝−1)/2

(
𝑝 − 1

2

)
! (mod 𝑝).

Dividing both sides by (−1)𝑛 ((𝑝− 1)/2)!, we have that (𝑎 | 𝑝) ≡ 𝑎 (𝑝−1)/2 ≡ (−1)𝑛 (mod 𝑝), as claimed.■

Lemma 52.1.26. If 𝑝 is an odd prime, and 𝑎 > 2 and gcd(𝑎, 𝑝) = 1 then (𝑎 | 𝑝) = (−1)Δ, where

Δ =

(𝑝−1)/2∑︁
𝑗=1

⌊ 𝑗𝑎/𝑝⌋. Furthermore, we have (2 | 𝑝) = (−1) (𝑝2−1)/8.

Proof: Using the notation of Lemma 52.1.25, we have

(𝑝−1)/2∑︁
𝑗=1

𝑗𝑎 =

(𝑝−1)/2∑︁
𝑗=1

(
⌊ 𝑗𝑎/𝑝⌋ 𝑝 + ( 𝑗𝑎 mod 𝑝)

)
= Δ𝑝 +

∑︁
𝑥∈𝑆

𝑥 +
∑︁
𝑦∈𝐿

𝑦 = (Δ + 𝑛)𝑝 +
∑︁
𝑥∈𝑆

𝑥 −
∑︁
𝑦∈𝐿

𝑦

= (Δ + 𝑛)𝑝 +
(𝑝−1)/2∑︁

𝑗=1
𝑗 − 2

∑︁
𝑦∈𝐿

𝑦.

Rearranging, and observing that
∑(𝑝−1)/2

𝑗=1 𝑗 =
𝑝−1
2 · 1

2

(
𝑝−1
2 + 1

)
=

𝑝2−1
8 . We have that

(𝑎 − 1) 𝑝
2 − 1
8 = (Δ + 𝑛)𝑝 − 2

∑︁
𝑦∈𝐿

𝑦. =⇒ (𝑎 − 1) 𝑝
2 − 1
8 ≡ (Δ + 𝑛)𝑝 (mod 2). (52.1)

Observe that 𝑝 ≡ 1 (mod 2), and for any 𝑥 we have that 𝑥 ≡ −𝑥 (mod 2). As such, and if 𝑎 is odd,
then the above implies that 𝑛 ≡ Δ (mod 2). Now the claim readily follows from Lemma 52.1.25.

As for (2 | 𝑝), setting 𝑎 = 2, observe that ⌊ 𝑗𝑎/𝑝⌋ = 0, for 𝑗 = 0, . . . (𝑝 − 1)/2, and as such Δ = 0.
Now, Eq. (52.1) implies that 𝑝2−1

8 ≡ 𝑛 (mod 2), and the claim follows from Lemma 52.1.25. ■

9



Theorem 52.1.27 (Law of quadratic reciprocity). If 𝑝 and 𝑞 are distinct odd primes, then

(𝑝 | 𝑞) = (−1)
𝑝−1

2
𝑞−1

2 (𝑞 | 𝑝) .

Proof: Let 𝑆 =
{
(𝑥, 𝑦)

�� 1 ≤ 𝑥 ≤ (𝑝 − 1)/2 and 1 ≤ 𝑦 ≤ (𝑞 − 1)/2
}
. As lcm(𝑝, 𝑞) = 𝑝𝑞, it follows that

there are no (𝑥, 𝑦) ∈ 𝑆, such that 𝑞𝑥 = 𝑝𝑦, as all such numbers are strict smaller than 𝑝𝑞. Now, let

𝑆1 =
{
(𝑥, 𝑦) ∈ 𝑆

�� 𝑞𝑥 > 𝑝𝑦
}

and 𝑆2 =
{
(𝑥, 𝑦) ∈ 𝑆

�� 𝑞𝑥 < 𝑝𝑦
}
.

Now, (𝑥, 𝑦) ∈ 𝑆1 ⇐⇒ 1 ≤ 𝑥 ≤ (𝑝 − 1), and 1 ≤ 𝑦 ≤ ⌊𝑞𝑥/𝑝⌋. As such, we have |𝑆1 | =
∑(𝑝−1)/2

𝑥=1 ⌊𝑞𝑥/𝑝⌋,
and similarly |𝑆2 | =

∑(𝑞−1)/2
𝑦=1 ⌊𝑝𝑦/𝑞⌋. We have

𝜏 =
𝑝 − 1

2 · 𝑞 − 1
2 = |𝑆 | = |𝑆1 | + |𝑆2 | =

(𝑝−1)/2∑︁
𝑥=1

⌊𝑞𝑥/𝑝⌋︸            ︷︷            ︸
𝜏1

+
(𝑞−1)/2∑︁
𝑦=1

⌊𝑝𝑦/𝑞⌋︸            ︷︷            ︸
𝜏2

.

The claim now readily follows by Lemma 52.1.26, as (−1)𝜏 = (−1)𝜏1 (−1)𝜏2 = (𝑝 | 𝑞) (𝑞 | 𝑝). ■

52.1.3.3. Jacobi symbol

Definition 52.1.28. For any integer 𝑎, and an odd number 𝑛 with prime factorization 𝑛 = 𝑝
𝑘1
1 · · · 𝑝𝑘𝑡𝑡 , its

Jacobi symbol is

J𝑎 | 𝑛K =
𝑡∏

𝑖=1
(𝑎 | 𝑝𝑖)𝑘𝑖 .

Claim 52.1.29. For odd integers 𝑛1, . . . , 𝑛𝑘 , we have that
∑𝑘

𝑖=1(𝑛𝑖 − 1)/2 ≡
(∏𝑘

𝑖=1 𝑛𝑖 − 1
)
/2 (mod 2).

Proof: We prove for two odd integers 𝑥 and 𝑦, and apply this repeatedly to get the claim. Indeed, we
have 𝑥 − 1

2 + 𝑦 − 1
2 ≡ 𝑥𝑦 − 1

2 (mod 2) ⇐⇒ 0 ≡ 𝑥𝑦 − 𝑥 + 1 − 𝑦 + 1 − 1
2 (mod 2) ⇐⇒ 0 ≡ 𝑥𝑦 − 𝑥 − 𝑦 + 1

2
(mod 2) ⇐⇒ 0 ≡ (𝑥 − 1) (𝑦 − 1)

2 (mod 2), which is obviously true. ■

Lemma 52.1.30 (Law of quadratic reciprocity). For 𝑛 and 𝑚 positive odd integers, we have that
J𝑛 | 𝑚K = (−1) 𝑛−1

2
𝑚−1

2 J𝑚 | 𝑛K .

Proof: Let 𝑛 =
∏a

𝑖=1 𝑝𝑖 and Let 𝑚 =
∏`

𝑗=1 𝑞 𝑗 be the prime factorization of the two numbers (allowing
repeated factors). If they share a common factor 𝑝, then both J𝑛 | 𝑚K and J𝑚 | 𝑛K contain a zero term
when expanded, as (𝑛 | 𝑝) = (𝑚 | 𝑝) = 0. Otherwise, we have

J𝑛 | 𝑚K =
a∏
𝑖=1

∏̀
𝑗=1

q
𝑝𝑖 | 𝑞 𝑗

y
=

a∏
𝑖=1

∏̀
𝑗=1

(
𝑝𝑖 | 𝑞 𝑗

)
=

a∏
𝑖=1

∏̀
𝑗=1

(−1) (𝑞 𝑗−1)/2·(𝑝𝑖−1)/2 (
𝑞 𝑗 | 𝑝𝑖

)
=

a∏
𝑖=1

∏̀
𝑗=1

(−1) (𝑞 𝑗−1)/2·(𝑝𝑖−1)/2

︸                              ︷︷                              ︸
𝑠

·
(

a∏
𝑖=1

∏̀
𝑗=1

(
𝑞 𝑗 | 𝑝𝑖

))
= 𝑠 J𝑚 | 𝑛K .
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by Theorem 52.1.27. As for the value of 𝑠, observe that

𝑠 =

a∏
𝑖=1

(∏̀
𝑗=1

(−1) (𝑞 𝑗−1)/2
) (𝑝𝑖−1)/2

=

a∏
𝑖=1

(
(−1) (𝑚−1)/2

) (𝑝𝑖−1)/2
=

(
a∏
𝑖=1

(−1) (𝑝𝑖−1)/2
) (𝑚−1)/2

= (−1) (𝑛−1)/2·(𝑚−1)/2,

by repeated usage of Claim 52.1.29. ■

Lemma 52.1.31. For odd integers 𝑛 and 𝑚, we have that 𝑛2 − 1
8 + 𝑚2 − 1

8 ≡ 𝑛2𝑚2 − 1
8 (mod 2).

Proof: For an odd integer 𝑛, we have that either (i) 2 | 𝑛 − 1 and 4 | 𝑛 + 1, or (ii) 4 | 𝑛 − 1 and 2 | 𝑛 + 1.
As such, 8 | 𝑛2 − 1 = (𝑛 − 1) (𝑛 + 1). In particular, 64 |

(
𝑛2 − 1

) (
𝑚2 − 1

)
. We thus have that(

𝑛2 − 1
) (
𝑚2 − 1

)
8 ≡ 0 (mod 2) ⇐⇒ 𝑛2𝑚2 − 𝑛2 − 𝑚2 + 1

8 ≡ 0 (mod 2)

⇐⇒ 𝑛2𝑚2 − 1
8 ≡ 𝑛2 − 𝑚2 − 2

8 (mod 2)

⇐⇒ 𝑛2 − 1
8 + 𝑚2 − 1

8 ≡ 𝑛2𝑚2 − 1
8 (mod 2). ■

Lemma 52.1.32. Let 𝑚, 𝑛 be odd integers, and 𝑎, 𝑏 be any integers. We have the following:
(A) J𝑎𝑏 | 𝑛K = J𝑎 | 𝑛K J𝑏 | 𝑛K.
(B) J𝑎 | 𝑛𝑚K = J𝑎 | 𝑛K J𝑎 | 𝑚K.
(C) If 𝑎 ≡ 𝑏 (mod 𝑛) then J𝑎 | 𝑛K = J𝑏 | 𝑛K.
(D) If gcd(𝑎, 𝑛) > 1 then J𝑎 | 𝑛K = 0.
(E) J1 | 𝑛K = 1.
(F) J2 | 𝑛K = (−1) (𝑛2−1)/8.
(G) J𝑛 | 𝑚K = (−1) 𝑛−1

2
𝑚−1

2 J𝑚 | 𝑛K .

Proof: (A) Follows immediately, as (𝑎𝑏 | 𝑝𝑖) = (𝑎 | 𝑝𝑖) (𝑏 | 𝑝𝑖), see Lemma 52.1.24p9.
(B) Immediate from definition.
(C) Follows readily from Lemma 52.1.24p9 (iii).
(D) Indeed, if 𝑝 | gcd(𝑎, 𝑛) and 𝑝 > 1, then (𝑎 | 𝑝)𝑘 = (0 | 𝑝)𝑘 = 0 appears as a term in J𝑎 | 𝑛K.
(E) Obvious by definition.
(F) By Lemma 52.1.26p9, for a prime 𝑝, we have (2 | 𝑝) = (−1) (𝑝2−1)/8. As such, writing 𝑛 =

∏𝑡
𝑖=1 𝑝𝑖

as a product of primes (allowing repeated primes), we have

J2 | 𝑛K =
𝑡∏

𝑖=1
(2 | 𝑝𝑖) =

𝑡∏
𝑖=1

(−1) (𝑝2
𝑖
−1)/8 = (−1)Δ,

where Δ =
∑𝑡

𝑖=1(𝑝2
𝑖
− 1)/8. As such, we need to compute the Δ (mod 2), which by Lemma 52.1.31, is

Δ ≡
𝑡∑︁

𝑖=1

𝑝2
𝑖
− 1
8 ≡

∏𝑡
𝑖=1 𝑝

2
𝑖
− 1

8 ≡ 𝑛2 − 1
8 (mod 2),

and as such J2 | 𝑛K = (−1)Δ = (−1) (𝑛2−1)/8.
(G) This is Lemma 52.1.30. ■
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52.1.3.4. Jacobi(𝑎, 𝑛): Computing the Jacobi symbol

Given 𝑎 and 𝑛 (𝑛 is an odd number), we are interested in computing (in polynomial time) the Jacobi
symbol J𝑎 | 𝑛K. The algorithm Jacobi(𝑎, 𝑛) works as follows:
(A) If 𝑎 = 0 then return 0 // Since J0 | 𝑛K = 0.
(B) If 𝑎 > 𝑛 then return Jacobi(𝑎 (mod 𝑛), 𝑛) // Lemma 52.1.32 (C)
(C) If gcd(𝑎, 𝑛) > 1 then return 0 // Lemma 52.1.32 (D)
(D) If 𝑎 = 2 then

(I) Compute Δ = 𝑛2 − 1 (mod 16),
(II) Return (−1)Δ/8 (mod 2) // As (𝑛2 − 1)/8 ≡ Δ/8 (mod 2), and by Lemma 52.1.32 (F)

(E) If 2 | 𝑎 then return Jacobi(2, 𝑛) * Jacobi(𝑎/2, 𝑛) // Lemma 52.1.32 (A)

// Must be that 𝑎 and 𝑏 are both odd, 𝑎 < 𝑛, and they are coprime
(F) 𝑎′ := 𝑎 (mod 4), 𝑛′ := 𝑛 (mod 4), 𝛽 = (𝑎′ − 1) (𝑛′ − 1)/4.

return (−1)𝛽 Jacobi(𝑛, 𝑎) // By Lemma 52.1.32 (G)

Ignoring the recursive calls, all the operations takes polynomial time. Clearly, computing Ja-
cobi(2, 𝑛) takes polynomial time. Otherwise, observe that Jacobi reduces its input size by say, one
bit, at least every two recursive calls, and except the 𝑎 = 2 case, it always perform only a single call.
Thus, it follows that its running time is polynomial. We thus get the following.

Lemma 52.1.33. Given integers 𝑎 and 𝑛, where 𝑛 is odd, then J𝑎 | 𝑛K can be computed in polynomial
time.

52.1.3.5. Subgroups induced by the Jacobi symbol

For an 𝑛, consider the set

𝐽𝑛 =

{
𝑎 ∈ Z∗𝑛

��� J𝑎 | 𝑛K ≡ 𝑎 (𝑛−1)/2 mod 𝑛

}
. (52.2)

Claim 52.1.34. The set 𝐽𝑛 is a subgroup of Z∗𝑛.

Proof: For 𝑎, 𝑏 ∈ 𝐽𝑛, we have that J𝑎𝑏 | 𝑛K ≡ J𝑎 | 𝑛K J𝑏 | 𝑛K ≡ 𝑎 (𝑛−1)/2𝑏 (𝑛−1)/2 ≡ (𝑎𝑏) (𝑛−1)/2 mod 𝑛,

implying that 𝑎𝑏 ∈ 𝐽𝑛. Now, J1 | 𝑛K = 1, so 1 ∈ 𝐽𝑛. Now, for 𝑎 ∈ 𝐽𝑛, let 𝑎−1 the inverse of 𝑎 (which is a
number in Z∗𝑛). Observe that 𝑎(𝑎−1) = 𝑘𝑛 + 1, for some 𝑘, and as such, we have

1 = J1 | 𝑛K = J𝑘𝑛 + 1 | 𝑛K =
q
𝑎𝑎−1 | 𝑛

y
= J𝑘𝑛 + 1 | 𝑛K = J𝑎 | 𝑛K

q
𝑎−1 | 𝑛

y
.

And modulo 𝑛, we have

1 ≡ J𝑎 | 𝑛K
q
𝑎−1 | 𝑛

y
≡ 𝑎 (𝑛−1)/2 q

𝑎−1 | 𝑛
y

mod 𝑛.

Which implies that
(
𝑎−1) (𝑛−1)/2 ≡

q
𝑎−1 | 𝑛

y
mod 𝑛. That is 𝑎−1 ∈ 𝐽𝑛.

Namely, 𝐽𝑛 contains the identity, it is closed under inverse and multiplication, and it is now easy to
verify that fulfill the other requirements to be a group. ■

Lemma 52.1.35. Let 𝑛 be an odd integer that is composite, then |𝐽𝑛 | ≤
��Z∗𝑛�� /2.
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Proof: Let has the prime factorization 𝑛 =
∏𝑡

𝑖=1 𝑝
𝑘𝑖
𝑖

. Let 𝑞 = 𝑝
𝑘1
1 , and 𝑚 = 𝑛/𝑞. By Lemma 52.1.20p7,

the group Z∗𝑞 is cyclic, and let 𝑔 be its generator. Consider the element 𝑎 ∈ Z∗𝑛 such that

𝑎 ≡ 𝑔 mod 𝑞 and 𝑎 ≡ 1 mod 𝑚.

Such a number 𝑎 exists and its unique, by the Chinese remainder theorem (Theorem 52.1.6p3). In
particular, let 𝑚 =

∏𝑡
𝑖=2 𝑝

𝑘𝑖
𝑖

, and observe that, for all 𝑖, we have 𝑎 ≡ 1 (mod 𝑝𝑖), as 𝑝𝑖 | 𝑚. As such,
writing the Jacobi symbol explicitly, we have

J𝑎 | 𝑛K = J𝑎 | 𝑞K
𝑡∏

𝑖=2
(𝑎 | 𝑝𝑖)𝑘𝑖 = J𝑎 | 𝑞K

𝑡∏
𝑖=2

(1 | 𝑝𝑖)𝑘𝑖 = J𝑎 | 𝑞K
𝑡∏

𝑖=2
1 = J𝑎 | 𝑞K = J𝑔 | 𝑞K .

since 𝑎 ≡ 𝑔 (mod 𝑞), and Lemma 52.1.32p11 (C). At this point there are two possibilities:
(A) If 𝑘1 = 1, then 𝑞 = 𝑝1, and J𝑔 | 𝑞K = (𝑔 | 𝑞) = 𝑔(𝑞−1)/2 (mod 𝑞). But 𝑔 is a generator of Z∗𝑞, and

its order is 𝑞 − 1. As such 𝑔(𝑞−1)/2 ≡ −1 (mod 𝑞), see Definition 52.1.23p8. We conclude that
J𝑎 | 𝑛K = −1. If we assume that 𝐽𝑛 = Z∗𝑛, then J𝑎 | 𝑛K ≡ 𝑎 (𝑛−1)/2 ≡ −1 (mod 𝑛). Now, as 𝑚 | 𝑛, we
have

𝑎 (𝑛−1)/2 ≡𝑚

(
𝑎 (𝑛−1)/2 mod 𝑛

)
mod 𝑚 ≡𝑚 −1.

But this contradicts the choice of 𝑎 as 𝑎 ≡ 1 (mod 𝑚).
(B) If 𝑘1 > 1 then 𝑞 = 𝑝

𝑘1
1 . Arguing as above, we have that J𝑎 | 𝑛K = (−1)𝑘1 . Thus, if we assume that

𝐽𝑛 = Z
∗
𝑛, then 𝑎 (𝑛−1)/2 ≡ −1 (mod 𝑛) or 𝑎 (𝑛−1)/2 ≡ 1 (mod 𝑛). This implies that 𝑎𝑛−1 ≡ 1 (mod 𝑛).

Thus, 𝑎𝑛−1 ≡ 1 (mod 𝑞).
Now 𝑎 ≡ 𝑔 mod 𝑞, and thus 𝑔𝑛−1 ≡ 1 (mod 𝑞). This implies that the order of 𝑔 in Z∗𝑞 must divide
𝑛−1. That is ord(𝑔) = 𝜙(𝑞) | 𝑛−1. Now, since 𝑘1 ≥ 2, we have that 𝑝1 | 𝜙(𝑞) =

(
𝑝
𝑘1
1

)
(𝑝1 − 1), see

Lemma 52.1.8p3. We conclude that 𝑝1 | 𝑛 − 1 and 𝑝1 | 𝑛, which is of course impossible, as 𝑝1 > 1.

We conclude that 𝐽𝑛 must be a proper subgroup of Z∗𝑛, but, by Lemma 52.1.11p5, it must be that
|𝐽𝑛 | |

��Z∗𝑛��. But this implies that |𝐽𝑛 | ≤
��Z∗𝑛�� /2. ■

52.2. Primality testing

The primality test is now easy③. Indeed, given a number 𝑛, first check if it is even (duh!). Otherwise,
randomly pick a number 𝑟 ∈ {2, . . . , 𝑛 − 1}. If gcd(𝑟, 𝑛) > 1 then the number is composite. Otherwise,
check if 𝑟 ∈ 𝐽𝑛 (see Eq. (52.2)p12), by computing 𝑥 = J𝑟 | 𝑛K in polynomial time, see Section 52.1.3.4p12,
and 𝑥′ = 𝑎 (𝑛−1)/2 mod 𝑛. (see Lemma 52.1.7p3). If 𝑥 = 𝑥′ then the algorithm returns is prime, otherwise
it returns it is composite.

Theorem 52.2.1. Given a number 𝑛, and a parameter 𝛿 > 0, there is a randomized algorithm that, de-
cides if the given number is prime or composite. The running time of the algorithm is 𝑂

(
(log 𝑛)𝑐 log(1/𝛿)

)
,

where 𝑐 is some constant. If the algorithm returns that 𝑛 is composite then it is. If the algorithm returns
that 𝑛 is prime, then is wrong with probability at most 𝛿.

③One could even say “trivial” with heavy Russian accent.
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Proof: Run the above algorithm 𝑚 = 𝑂 (log(1/𝛿)) times. If any of the runs returns that it is composite
then the algorithm return that 𝑛 is composite, otherwise the algorithms returns that it is a prime.

If the algorithm fails, then 𝑛 is a composite, and let 𝑟1, . . . , 𝑟𝑚 be the random numbers the algorithm
picked. The algorithm fails only if 𝑟1, . . . , 𝑟𝑚 ∈ 𝐽𝑛, but since |𝐽𝑛 | ≤

��Z2
𝑛

�� /2, by Lemma 52.1.35p12, it
follows that this happens with probability at most

(
|𝐽𝑛 | /

��Z2
𝑛

��)𝑚 ≤ 1/2𝑚 ≤ 𝛿, as claimed. ■

52.2.1. Distribution of primes
In the following, let 𝜋(𝑛) denote the number of primes between 1 and 𝑛. Here, we prove that 𝜋(𝑛) =
Θ(𝑛/log 𝑛).

Lemma 52.2.2. Let Δ be the product of all the prime numbers 𝑝, where 𝑚 < 𝑝 ≤ 2𝑚. We have that
Δ ≤

(2𝑚
𝑚

)
.

Proof: Let 𝑋 be the product of the all composite numbers between 𝑚 and 2𝑚, we have(
2𝑚
𝑚

)
=

2𝑚 · (2𝑚 − 1) · · · (𝑚 + 2) · (𝑚 + 1)
𝑚 · (𝑚 − 1) · · · 2 · 1 =

𝑋 · Δ
𝑚 · (𝑚 − 1) · · · 2 · 1 .

Since none of the numbers between 2 and 𝑚 divides any of the factors of Δ, it must be that the number
𝑋

𝑚·(𝑚−1)···2·1 is an integer number, as
(2𝑚
𝑚

)
is an integer. Therefore,

(2𝑚
𝑚

)
= 𝑐 · Δ, for some integer 𝑐 > 0,

implying the claim. ■

Lemma 52.2.3. The number of prime numbers between 𝑚 and 2𝑚 is 𝑂 (𝑚/ln𝑚).

Proof: Let us denote all primes between 𝑚 and 2𝑚 as 𝑝1 < 𝑝2 < · · · < 𝑝𝑘 . Since 𝑝1 ≥ 𝑚, it follows from
Lemma 52.2.2 that 𝑚𝑘 ≤ ∏𝑘

𝑖=1 𝑝𝑖 ≤
(2𝑚
𝑚

)
≤ 22𝑚. Now, taking log of both sides, we have 𝑘 lg𝑚 ≤ 2𝑚.

Namely, 𝑘 ≤ 2𝑚/lg𝑚. ■

Lemma 52.2.4. 𝜋(𝑛) = 𝑂 (𝑛/ln 𝑛).

Proof: Let the number of primes less than 𝑛 be Π(𝑛), then by Lemma 52.2.3, there exist some positive
constant 𝐶, such that for all ∀𝑛 ≥ 𝑁, we have Π(2𝑛) − Π(𝑛) ≤ 𝐶 · 𝑛/ln 𝑛. Namely, Π(2𝑛) ≤ 𝐶 · 𝑛/ln 𝑛 +

Π(𝑛). Thus, Π(2𝑛) ≤
⌈lg 𝑛⌉∑︁
𝑖=0

(
Π

(
2𝑛/2𝑖

)
− Π

(
2𝑛/2𝑖+1)) ≤

⌈lg 𝑛⌉∑︁
𝑖=0

𝐶 · 𝑛/2𝑖
ln(𝑛/2𝑖) = 𝑂

( 𝑛

ln 𝑛

)
, by observing that the

summation behaves like a decreasing geometric series. ■

Lemma 52.2.5. For integers 𝑚, 𝑘 and a prime 𝑝, if 𝑝𝑘 |
(2𝑚
𝑚

)
, then 𝑝𝑘 ≤ 2𝑚.

Proof: Let 𝑇 (𝑝, 𝑚) be the number of times 𝑝 appear in the prime factorization of 𝑚!. Formally, 𝑇 (𝑝, 𝑚)
is the highest number 𝑘 such that 𝑝𝑘 divides 𝑚!. We claim that 𝑇 (𝑝, 𝑚) = ∑∞

𝑖=1
⌊
𝑚/𝑝𝑖

⌋
. Indeed, consider

an integer 𝛽 ≤ 𝑚, such that 𝛽 = 𝑝𝑡𝛾, where 𝛾 is an integer that is not divisible by 𝑝. Observe that 𝛽

contributes exactly to the first 𝑡 terms of the summation of 𝑇 (𝑝, 𝑚) – namely, its contribution to 𝑚! as
far as powers of 𝑝 is counted correctly.

Let 𝛼 be the maximum number such that 𝑝𝛼 divides
(2𝑚
𝑚

)
= 2𝑚!

𝑚!𝑚! . Clearly,

𝛼 = 𝑇 (𝑝, 2𝑚) − 2𝑇 (𝑝, 𝑚) =
∞∑︁
𝑖=1

(⌊
2𝑚
𝑝𝑖

⌋
− 2

⌊
𝑚

𝑝𝑖

⌋)
.
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It is easy to verify that for any integers 𝑥, 𝑦, we have that 0 ≤
⌊

2𝑥
𝑦

⌋
−2

⌊
𝑥
𝑦

⌋
≤ 1. In particular, let 𝑘 be the

largest number such that
( ⌊

2𝑚
𝑝𝑘

⌋
− 2

⌊
𝑚

𝑝𝑘

⌋ )
= 1, and observe that 𝑇 (𝑝, 2𝑚) ≤ 𝑘 as only the proceedings

𝑘 − 1 terms might be non-zero in the summation of 𝑇 (𝑝, 2𝑚). But this implies that
⌊
2𝑚/𝑝𝑘

⌋
≥ 1, which

implies in turn that 𝑝𝑘 ≤ 2𝑚, as desired. ■

Lemma 52.2.6. 𝜋(𝑛) = Ω(𝑛/ln 𝑛).

Proof: Assume
(2𝑚
𝑚

)
have 𝑘 prime factors, and thus can be written as

(2𝑚
𝑚

)
=

∏𝑘
𝑖=1 𝑝

𝑛𝑖
𝑖
, By Lemma 52.2.5,

we have 𝑝
𝑛𝑖
𝑖
≤ 2𝑚. Of course, the above product might not include some prime numbers between 1 and

2𝑚, and as such 𝑘 is a lower bound on the number of primes in this range; that is, 𝑘 ≤ 𝜋(2𝑚). This

implies 22𝑚

2𝑚 ≤
(
2𝑚
𝑚

)
≤

𝑘∏
𝑖=1

2𝑚 = (2𝑚)𝑘 . By taking lg of both sides, we have 2𝑚 − lg(2𝑚)
lg(2𝑚) ≤ 𝑘 ≤ 𝜋(2𝑚).■

We summarize the result.

Theorem 52.2.7. Let 𝜋(𝑛) be the number of distinct prime numbers between 1 and 𝑛. We have that
𝜋(𝑛) = Θ(𝑛/ln 𝑛).

52.3. Bibliographical notes
Miller [Mil76] presented the primality testing algorithm which runs in deterministic polynomial time but
relies on Riemann’s Hypothesis (which is still open). Later on, Rabin [Rab80] showed how to convert
this algorithm to a randomized algorithm, without relying on the Riemann’s hypothesis.

This write-up is based on various sources – starting with the description in [MR95], and then filling
in some details from various sources on the web.

What is currently missing from the write-up is a description of the RSA encryption system. This
would hopefully be added in the future. There are of course typos in these notes – let me know if you
find any.
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