
Chapter 51

Sampling and the Moments Technique
By Sariel Har-Peled, April 26, 2022①

Sun and rain and bush had made the site look old, like the site of a dead civilization. The ruins, spreading over
so many acres, seemed to speak of a final catastrophe. But the civilization wasn’t dead. It was the civilization I
existed in and in fact was still working towards. And that could make for an odd feeling: to be among the ruins
was to have your time-sense unsettled. You felt like a ghost, not from the past, but from the future. You felt that
your life and ambition had already been lived out for you and you were looking at the relics of that life. You were
in a place where the future had come and gone.

A bend in the river, V. S. Naipaul

51.1. Vertical decomposition

edge

face

vertexGiven a set S of 𝑛 segments in the plane, its arrangement, denoted by
A
(
S
)
, is the decomposition of the plane into faces, edges, and vertices. The

vertices of A
(
S
)

are the endpoints, or the intersection points of the segments
of S, the edges are the maximal connected portions of the segments not
containing any vertex, and the faces are the connected components of the
complement of the union of the segments of S. These definitions are depicted
on the right.

For numerical reasons (and also conceptually), a symbolic representation
would be better than a numerical one. Thus, an intersection vertex would be represented by two pointers
to the segments that their intersection is this vertex. Similarly, an edge would be represented as a pointer
to the segment that contains it, and two pointers to the vertices forming its endpoints.

Naturally, we are assuming here that we have geometric primitives that can resolve any decision
problem of interest that involve a few geometric entities. For example, for a given segment s and a point
p, we would be interested in deciding if p lies vertically below s. From a theoretical point of view, all
these primitives require a constant amount of computation, and are “easy”. In the real world, numerical
issues and degeneracies make implementing these primitives surprisingly challenging. We are going to
ignore this major headache here, but the reader should be aware of it.

We will be interested in computing the arrangement A
(
S
)

and a representation of it that makes it
easy to manipulate. In particular, we would like to be able to quickly resolve questions of the type

(i) are two points in the same face?
(ii) can one traverse from one point to the other without crossing any segment?

The naive representation of each face as polygons (potentially with holes) is not conducive to carrying
out such tasks, since a polygon might be arbitrarily complicated. Instead, we will prefer to break the
arrangement into smaller canonical tiles.

To this end, a vertical trapezoid is a quadrangle with two vertical sides. The breaking of the faces
into such trapezoids is the vertical decomposition of the arrangement A

(
S
)
.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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Formally, for a subset R ⊆ S, let A| (R) denote the vertical decomposition of the plane formed
by the arrangement A

(
R
)

of the segments of R. This is the partition of the plane into interior disjoint
vertical trapezoids formed by erecting vertical walls through each vertex of A| (R).

σ

A vertex of A| (R) is either an endpoint of a segment of R or an intersection
point of two of its segments. From each such vertex we shoot up (similarly,
down) a vertical ray till it hits a segment of R or it continues all the way to
infinity. See the figure on the right.

Note that a vertical trapezoid is defined by at most four segments: two
segments defining its ceiling and floor and two segments defining the two in-
tersection points that induce the two vertical walls on its boundary. Of course,
a vertical trapezoid might be degenerate and thus be defined by fewer segments (i.e., an unbounded
vertical trapezoid or a triangle with a vertical segment as one of its sides).

Vertical decomposition breaks the faces of the arrangement that might be arbitrarily complicated
into entities (i.e., vertical trapezoids) of constant complexity. This makes handling arrangements (de-
composed into vertical trapezoid) much easier computationally.

In the following, we assume that the 𝑛 segments of S have 𝑘 pairwise intersection points overall,
and we want to compute the arrangement A = A

(
S
)
; namely, compute the edges, vertices, and faces

of A
(
S
)
. One possible way is the following: Compute a random permutation of the segments of S:

S = ⟨s1, . . . , s𝑛⟩. Let S𝑖 = ⟨s1, . . . , s𝑖⟩ be the prefix of length 𝑖 of S. Compute A| (S𝑖 ) from A| (S𝑖−1
)
, for

𝑖 = 1, . . . , 𝑛. Clearly, A| (S) = A| (S𝑛), and we can extract A
(
S
)

from it. Namely, in the 𝑖th iteration, we
insert the segment s𝑖 into the arrangement A| (S𝑖−1

)
.

This technique of building the arrangement by inserting the segments one by one is called random-
ized incremental construction.

Who need these pesky arrangements anyway? The reader might wonder who needs arrange-
ments? As a concrete examples, consider a situation where you are give several maps of a city containing
different layers of information (i.e., streets map, sewer map, electric lines map, train lines map, etc).
We would like to compute the overlay map formed by putting all these maps on top of each other. For
example, we might be interested in figuring out if there are any buildings lying on a planned train line,
etc.

More generally, think about a set of general constraints in R𝑑. Each constraint is bounded by a
surface, or a patch of a surface. The decomposition of R𝑑 formed by the arrangement of these surfaces
gives us a description of the parametric space in a way that is algorithmically useful. For example, finding
if there is a point inside all the constraints, when all the constraints are induced by linear inequalities,
is linear programming. Namely, arrangements are a useful way to think about any parametric space
partitioned by various constraints.

51.1.1. Randomized incremental construction (RIC)

Imagine that we had computed the arrangement B𝑖−1 = A| (S𝑖−1
)
. In the 𝑖th iteration we compute B𝑖

by inserting s𝑖 into the arrangement B𝑖−1. This involves splitting some trapezoids (and merging some
others).

As a concrete example, consider Figure 51.1. Here we insert s in the arrangement. To this end we split
the “vertical trapezoids” △pux and △yux, each into three trapezoids. The two trapezoids 𝜎′ and 𝜎′′ now
need to be merged together to form the new trapezoid which appears in the vertical decomposition of the
new arrangement. (Note that the figure does not show all the trapezoids in the vertical decomposition.)
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Figure 51.1

To facilitate this, we need to compute the trapezoids of B𝑖−1 that intersect s𝑖. This is done by
maintaining a conflict graph. Each trapezoid 𝜎 ∈ A| (S𝑖−1

)
maintains a conflict list cl(𝜎) of all the

segments of S that intersect its interior. In particular, the conflict list of 𝜎 cannot contain any segment
of S𝑖−1, and as such it contains only the segments of S \S𝑖−1 that intersect its interior. We also maintain
a similar structure for each segment, listing all the trapezoids of A| (S𝑖−1

)
that it currently intersects (in

its interior). We maintain those lists with cross pointers, so that given an entry (𝜎, 𝑠) in the conflict
list of 𝜎, we can find the entry (𝑠, 𝜎) in the conflict list of 𝑠 in constant time.

si

Thus, given s𝑖, we know what trapezoids need to be split (i.e., all the trapezoids in
cl(s𝑖)). Splitting a trapezoid 𝜎 by a segment s𝑖 is the operation of computing a set of (at
most) four trapezoids that cover 𝜎 and have s𝑖 on their boundary. We compute those new
trapezoids, and next we need to compute the conflict lists of the new trapezoids. This
can be easily done by taking the conflict list of a trapezoid 𝜎 ∈ cl(s𝑖) and distributing its
segments among the 𝑂 (1) new trapezoids that cover 𝜎. Using careful implementation,
this requires a linear time in the size of the conflict list of 𝜎.

Note that only trapezoids that intersect s𝑖 in their interior get split. Also, we need to update the
conflict lists for the segments (that were not inserted yet).

We next sketch the low-level details involved in maintaining these conflict lists. For a segment s that
intersects the interior of a trapezoid 𝜎, we maintain the pair (s, 𝜎). For every trapezoid 𝜎, in the current
vertical decomposition, we maintain a doubly linked list of all such pairs that contain 𝜎. Similarly, for
each segment s we maintain the doubly linked list of all such pairs that contain s. Finally, each such
pair contains two pointers to the location in the two respective lists where the pair is being stored.

It is now straightforward to verify that using this data-structure we can implement the required
operations in linear time in the size of the relevant conflict lists.

In the above description, we ignored the need to merge adjacent trapezoids if they have identical
floor and ceiling – this can be done by a somewhat straightforward and tedious implementation of the
vertical decomposition data-structure, by providing pointers between adjacent vertical trapezoids and
maintaining the conflict list sorted (or by using hashing) so that merge operations can be done quickly.
In any case, this can be done in linear time in the input/output size involved, as can be verified.

51.1.1.1. Analysis

Claim 51.1.1. The (amortized) running time of constructing B𝑖 from B𝑖−1 is proportional to the size
of the conflict lists of the vertical trapezoids in B𝑖 \B𝑖−1 (and the number of such new trapezoids).

Proof: Observe that we can charge all the work involved in the 𝑖th iteration to either the conflict lists of
the newly created trapezoids or the deleted conflict lists. Clearly, the running time of the algorithm in
the 𝑖th iteration is linear in the total size of these conflict lists. Observe that every conflict gets charged
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twice – when it is being created and when it is being deleted. As such, the (amortized) running time in
the 𝑖th iteration is proportional to the total length of the newly created conflict lists. ■

Thus, to bound the running time of the algorithm, it is enough to bound the expected size of the
destroyed conflict lists in 𝑖th iteration (and sum this bound on the 𝑛 iterations carried out by the
algorithm). Or alternatively, bound the expected size of the conflict lists created in the 𝑖th iteration.

Lemma 51.1.2. Let S be a set of 𝑛 segments (in general position②) with 𝑘 intersection points. Let S𝑖
be the first 𝑖 segments in a random permutation of S. The expected size of B𝑖 = A| (S𝑖 ), denoted by 𝜏(𝑖)
(i.e., the number of trapezoids in B𝑖), is 𝑂

(
𝑖 + 𝑘 (𝑖/𝑛)2).

Proof: Consider③ an intersection point p = 𝑠 ∩ 𝑠′, where 𝑠, 𝑠′ ∈ S. The probability that p is present in
A| (S𝑖 ) is equivalent to the probability that both 𝑠 and 𝑠′ are in S𝑖. This probability is

𝛼 =

(𝑛−2
𝑖−2

)(𝑛
𝑖

) =
(𝑛 − 2)!

(𝑖 − 2)! (𝑛 − 𝑖)! ·
𝑖! (𝑛 − 𝑖)!

𝑛! =
𝑖(𝑖 − 1)
𝑛(𝑛 − 1) .

For each intersection point p in A
(
S
)

define an indicator variable 𝑋p, which is 1 if the two segments
defining p are in the random sample S𝑖 and 0 otherwise. We have that E

[
𝑋p

]
= 𝛼, and as such, by

linearity of expectation, the expected number of intersection points in the arrangement A(S𝑖) is

E

[∑︁
p∈𝑉

𝑋p

]
=
∑︁
p∈𝑉
E
[
𝑋p

]
=
∑︁
p∈𝑉

𝛼 = 𝑘𝛼,

where 𝑉 is the set of 𝑘 intersection points of A
(
S
)
. Also, every endpoint of a segment of S𝑖 contributed

its two endpoints to the arrangement A(S𝑖). Thus, we have that the expected number of vertices in
A(S𝑖) is

2𝑖 + 𝑖(𝑖 − 1)
𝑛(𝑛 − 1) 𝑘.

Now, the number of trapezoids in A| (S𝑖 ) is proportional to the number of vertices of A(S𝑖), which implies
the claim. ■

51.1.2. Backward analysis
In the following, we would like to consider the total amount of work involved in the 𝑖th iteration of
the algorithm. The way to analyze these iterations is (conceptually) to run the algorithm for the first 𝑖
iterations and then run “backward” the last iteration.

So, imagine that the overall size of the conflict lists of the trapezoids of B𝑖 is 𝑊𝑖 and the total size
of the conflict lists created only in the 𝑖th iteration is 𝐶𝑖.

②In this case, no two intersection points of input segments are the same, no two intersection points (or vertices) have
the same 𝑥-coordinate, no two segments lie on the same line, etc. Making the geometric algorithm work correctly for all
degenerate inputs is a huge task that can usually be handled by tedious and careful implementation. Thus, we will always
assume general position of the input. In other words, in theory all geometric inputs are inherently good, while in practice
they are all evil (as anybody who tried to implement geometric algorithms can testify). The reader is encouraged not to
use this to draw any conclusions on the human condition.

③The proof is provided in excruciating detail to get the reader used to this kind of argumentation. I would apologize
for this pain, but it is a minor trifle, not to be mentioned, when compared to the other offenses in this book.
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We are interested in bounding the expected size of 𝐶𝑖, since this is (essentially) the amount of work
done by the algorithm in this iteration. Observe that the structure of B𝑖 is defined independently of
the permutation S𝑖 and depends only on the (unordered) set S𝑖 = {s1, . . . , s𝑖}. So, fix S𝑖. What is the
probability that s𝑖 is a specific segment s of S𝑖? Clearly, this is 1/𝑖 since this is the probability of s being
the last element in a permutation of the 𝑖 elements of S𝑖 (i.e., we consider a random permutation of S𝑖).

Now, consider a trapezoid 𝜎 ∈ B𝑖. If 𝜎 was created in the 𝑖th iteration, then s𝑖 must be one of
the (at most four) segments that define it. Indeed, if s𝑖 is not one of the segments that define 𝜎, then
𝜎 existed in the vertical decomposition before s𝑖 was inserted. Since B𝑖 is independent of the internal
ordering of S𝑖, it follows that P[𝜎 ∈ (B𝑖 \B𝑖−1)] ≤ 4/𝑖. In particular, the overall size of the conflict lists
in the end of the 𝑖th iteration is

𝑊𝑖 =
∑︁
𝜎∈B𝑖

|cl(𝜎) |.

As such, the expected overall size of the conflict lists created in the 𝑖th iteration is

E
[
𝐶𝑖

��B𝑖

]
≤

∑︁
𝜎∈B𝑖

4
𝑖
|cl(𝜎) | ≤ 4

𝑖
𝑊𝑖 .

By Lemma 51.1.2, the expected size of B𝑖 is 𝑂
(
𝑖 + 𝑘𝑖2/𝑛2). Let us guess (for the time being) that on

average the size of the conflict list of a trapezoid of B𝑖 is about 𝑂 (𝑛/𝑖). In particular, assume that we
know that

E
[
𝑊𝑖

]
= 𝑂

( (
𝑖 + 𝑖2

𝑛2 𝑘
) 𝑛
𝑖

)
= 𝑂

(
𝑛 + 𝑘 𝑖

𝑛

)
,

by Lemma 51.1.2, implying

E
[
𝐶𝑖
]
= E

[
E
[
𝐶𝑖

�� B𝑖

] ]
≤ E

[
4
𝑖
𝑊𝑖

]
=

4
𝑖
E
[
𝑊𝑖

]
= 𝑂

(
4
𝑖

(
𝑛 + 𝑘𝑖

𝑛

) )
= 𝑂

(
𝑛

𝑖
+ 𝑘
𝑛

)
, (51.1)

using Lemma 51.7.2. In particular, the expected (amortized) amount of work in the 𝑖th iteration is
proportional to E

[
𝐶𝑖
]
. Thus, the overall expected running time of the algorithm is

E

[
𝑛∑︁
𝑖=1

𝐶𝑖

]
=

𝑛∑︁
𝑖=1

𝑂

(
𝑛

𝑖
+ 𝑘
𝑛

)
= 𝑂

(
𝑛 log 𝑛 + 𝑘

)
.

Theorem 51.1.3. Given a set S of 𝑛 segments in the plane with 𝑘 intersections, one can compute the
vertical decomposition of A

(
S
)

in expected 𝑂 (𝑛 log 𝑛 + 𝑘) time.

Intuition and discussion. What remains to be seen is how we came up with the guess that the
average size of a conflict list of a trapezoid of B𝑖 is about 𝑂 (𝑛/𝑖). Note that using 𝜀-nets implies that
the bound 𝑂 ((𝑛/𝑖) log 𝑖) holds with constant probability (see Theorem 51.7.1) for all trapezoids in this
arrangement. As such, this result is only slightly surprising. To prove this, we present in the next
section a “strengthening” of 𝜀-nets to geometric settings.

To get some intuition on how we came up with this guess, consider a set P of 𝑛 points on the line
and a random sample R of 𝑖 points from P. Let Î be the partition of the real line into (maximal) open
intervals by the endpoints of R, such that these intervals do not contain points of R in their interior.

Consider an interval (i.e., a one-dimensional trapezoid) of Î. It is intuitively clear that this interval
(in expectation) would contain 𝑂 (𝑛/𝑖) points. Indeed, fix a point 𝑥 on the real line, and imagine that
we pick each point with probability 𝑖/𝑛 to be in the random sample. The random variable which is the
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Notation What it means Example: Vertical decomposition of segments
S Set of 𝑛 objects segments

R ⊆ S Subset of objects
𝜎 Notation for a region induced by some

objects of S
A vertical trapezoid

𝐷 (𝜎) ⊆ S Defining set of 𝜎: Minimal set of ob-
jects inducing 𝜎.

Subset of segments defining 𝜎. See Figure 51.3.

𝐾 (𝜎) ⊆ S Stopping set of 𝜎: All objects in S that
prevents 𝜎 from being created.

All segments in S that intersects the interior of
the vertical trapezoid 𝜎. See Figure 51.3.

𝑑 Combinatorial dimension: Max size of
defining set.

𝑑 = 4: Every vertical trapezoid is defined by at
most four segments.

𝜔(𝜎) 𝜔(𝜎) = |𝐾 (𝜎) |: Weight of 𝜎.
F (R) Decomposition: Set of regions defined

by R
Set of vertical trapezoids defined by R

T = T (S) Set of all possible regions defined by
subsets of S

Set of all vertical trapezoids that can be in-
duced by the segments of S.

𝜌
𝑟,𝑛

(𝑑, 𝑘) Probability of a region 𝜎 ∈ S to appear in the decomposition of a random sample
R ⊆ S of size 𝑟, where 𝜎 is defined by 𝑑 objects, and its stopping set is of size 𝑘.

𝜎 ∈ F (R) 𝜎 is 𝑡-heavy if 𝜔(𝜎) ≥ 𝑡𝑛/𝑟, where 𝑟 = |R|.
F≥𝑡 (R) Set of all 𝑡-heavy regions of F (R)
E𝑓 (𝑟) E𝑓 (𝑟) = E[|F (R) |]: Expected complexity of decomposition for sample of size 𝑟

E𝑓≥𝑡 (𝑟) E𝑓≥𝑡 (𝑟) = E[|F≥𝑡 (R) |]: Expected number of regions that are 𝑡 heavy in the decom-
position of a random sample of size 𝑟.

Figure 51.2: Notation used in the analysis.

number of points of P we have to scan starting from 𝑥 and going to the right of 𝑥 till we “hit” a point
that is in the random sample behaves like a geometric variable with probability 𝑖/𝑛, and as such its
expected value is 𝑛/𝑖. The same argument works if we scan P to the left of 𝑥. We conclude that the
number of points of P in the interval of Î that contains 𝑥 but does not contain any point of R is 𝑂 (𝑛/𝑖)
in expectation.

Of course, the vertical decomposition case is more involved, as each vertical trapezoid is defined
by four input segments. Furthermore, the number of possible vertical trapezoids is larger. Instead of
proving the required result for this special case, we will prove a more general result which can be applied
in a lot of other settings.

51.2. General settings

51.2.1. Notation
Let S be a set of objects. For a subset R ⊆ S, we define a collection of ‘regions’ denoted by F (R).
For the case of vertical decomposition of segments (i.e., Theorem 51.1.3), the objects are segments, the
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regions are trapezoids, and F (R) is the set of vertical trapezoids in A| (R). Let

T = T (S) =
⋃
R⊆S

F (R)

σ

a

b

c

d

e

f

Figure 51.3: 𝐷 (𝜎) =

{𝑏, 𝑐, 𝑑, 𝑒} and 𝐾 (𝜎) = { 𝑓 }.

denote the set of all possible regions defined by subsets of S.
In the vertical trapezoids case, the set T is the set of all verti-

cal trapezoids that can be defined by any subset of the given input
segments.

We associate two subsets 𝐷 (𝜎), 𝐾 (𝜎) ⊆ S with each region 𝜎 ∈ T .
The defining set 𝐷 (𝜎) of 𝜎 is the subset of S defining the region

𝜎 (the precise requirements from this set are specified in the axioms
below). We assume that for every 𝜎 ∈ T , |𝐷 (𝜎) | ≤ 𝑑 for a (small)
constant 𝑑. The constant 𝑑 is sometime referred to as the combina-
torial dimension. In the case of Theorem 51.1.3, each trapezoid 𝜎 is defined by at most four segments
(or lines) of S that define the region covered by the trapezoid 𝜎, and this set of segments is 𝐷 (𝜎). See
Figure 51.3.

The stopping set 𝐾 (𝜎) of 𝜎 is the set of objects of S such that including any object of 𝐾 (𝜎) in R
prevents 𝜎 from appearing in F (R). In many applications 𝐾 (𝜎) is just the set of objects intersecting
the cell 𝜎; this is also the case in Theorem 51.1.3, where 𝐾 (𝜎) is the set of segments of S intersecting
the interior of the trapezoid 𝜎 (see Figure 51.3). Thus, the stopping set of a region 𝜎, in many cases,
is just the conflict list of this region, when it is being created by an RIC algorithm. The weight of 𝜎 is
𝜔(𝜎) = |𝐾 (𝜎) |.

Definition 51.2.1 (Framework axioms). Let S, F (R), 𝐷 (𝜎), and 𝐾 (𝜎) be such that for any subset R ⊆ S,
the set F (R) satisfies the following axioms:

(i) For any 𝜎 ∈ F (R), we have 𝐷 (𝜎) ⊆ R and R ∩ 𝐾 (𝜎) = ∅.
(ii) If 𝐷 (𝜎) ⊆ R and 𝐾 (𝜎) ∩ R = ∅, then 𝜎 ∈ F (R).

51.2.1.1. Examples of the general framework

(A) Vertical decomposition. Discussed above.
(B) Points on a line. Let S be a set of 𝑛 points on the real line. For a set R ⊆ S, let F (R) be the set

of atomic intervals of the real lines formed by R; that is, the partition of the real line into maximal
connected sets (i.e., intervals and rays) that do not contain a point of R in their interior.
Clearly, in this case, an interval I ∈ F (R) the defining set of I (i.e., 𝐷 (I)) is the set containing the
(one or two) endpoints of I in R. The stopping set of an I is the set 𝐾 (I), which is the set of all
points of S contained in I.

(C) Vertices of the convex-hull in 2d. Consider a set S of 𝑛 points in the plane. A vertex on the
convex hull is defined by the point defining the vertex, and the two edges before and after it on the
convex hull. To this end, a certified vertex of the convex hull (say this vertex is u) is a triplet
(p, u, v), such that p, u and v are consecutive vertices of CH(S) (say, in clockwise order). Observe,
that computing the convex-hull of S is equivalent to computing the set of certified vertices of S.
For a set R ⊆ S, let F (R) denote the set of certified vertices of R (i.e., this is equivalent to the
set of vertices of the convex-hull of R. For a certified vertex 𝜎 ∈ F (R), its defining set is the set
of three vertices p, u, v that (surprise, surprise) define it. Its stopping set, is the set of all points
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in S, that either on the “wrong” side of the line spanning pu, or on the “wrong” side of the line
spanning uv. Equivalently, 𝐾 (𝜎) is the set of all points x ∈ S \ R, such that the convex-hull of
p, u, v, and x does not form a convex quadrilateral.

(D) Edges of the convex-hull in 3d. Let S be a set of points in three dimensions. An edge e of the
convex-hull of a set R ⊆ S of points in R3 is defined by two vertices of S, and it can be certified as
being on the convex hull CH(R), by the two faces f, f′ adjacent to e. If all the points of R are on
the “right” side of both these two faces then e is an edge of the convex hull of R. Computing all
the certified edges of S is equivalent to computing the convex-hull of S.
In the following, assume that each face of any convex-hull of a subset of points of S is a triangle.
As such, a face of the convex-hull would be defined by three points. Formally, the butterfly of
an edge e of CH(R) is (e, p, u), where 𝑝𝑛𝑡, u ∈ R, and such that all the points of R are on the
same side as u of the plane spanned by e and p (we have symmetric condition requiring that all
the points of S are on the same as p of the plane spanned by e and u).
For a set R ⊆ P, let F (R) be its set of butterflies. Clearly, computing all the butterflies of S (i.e.,
F (S)) is equivalent to computing the convex-hull of S.
For a butterfly 𝜎 = (e, p, u) ∈ F (R) its defining set (i.e., 𝐷 (𝜎)) is a set of four points (i.e., the
two points defining its edge e, and the to additional vertices defining the two faces 𝐹𝑎𝑐𝑒 and f′
adjacent to it). Its stopping set 𝐾 (𝜎), is the set of all the points of S \ R that of different sides of
the plane spanned by e and p (resp. e and u) than u (resp. p) [here, the stopping set is the union
of these two sets].

(E) Delaunay triangles in 2d. For a set of S of 𝑛 points in the plane. Consider a subset R ⊆ S. A
Delaunay circle of R is a disc 𝐷 that has three points p1, p2, p3 of R on its boundary, and no
points of R in its interior. Naturally, these three points define a Delaunay triangle △ = △p1p2p3.
The defining set is 𝐷 (△) = {p1, p2, p3}, and the stopping set 𝐾 (△) is the set of all points in S that
are contained in the interior of the disk 𝐷.

51.2.2. Analysis
In the following, S is a set of 𝑛 objects complying with (i) and (ii) of Definition 51.2.1.

The challenge. What makes the analysis not easy is that there are dependencies between the defining
set of a region and its stopping set (i.e., conflict list). In particular, we have the following difficulties
(A) The defining set might be of different sizes depending on the region 𝜎 being considered.
(B) Even if all the regions have a defining set of the same size 𝑑 (say, 4 as in the case of vertical

trapezoids), it is not true that every 𝑑 objects define a valid region. For example, for the case
of segments, the four segments might be vertically separated from each other (i.e., think about
them as being four disjoint intervals on the real line), and they do not define a vertical trapezoid
together. Thus, our analysis is going to be a bit loopy loop – we are going to assume we know how
many regions exists (in expectation) for a random sample of certain size, and use this to derive
the desired bounds.

51.2.2.1. On the probability of a region to be created

Inherently, to analyze a randomized algorithm using this framework, we will be interested in the prob-
ability that a certain region would be created. Thus, let

𝜌
𝑟,𝑛

(𝑑, 𝑘)
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denote the probability that a region 𝜎 ∈ T appears in F (R), where its defining set is of size 𝑑, its
stopping set is of size 𝑘, R is a random sample of size 𝑟 from a set S, and 𝑛 = |S|. Specifically, 𝜎 is a
feasible region that might be created by an algorithm computing F (R).

The sampling model. For describing algorithms it is usually easier to work with samples created
by picking a subset of a certain size (without repetition) from the original set of objects. Usually, in
the algorithmic applications this would be done by randomly permuting the objects and interpreting
a prefix of this permutation as a random sample. Insisting on analyzing this framework in the “right”
sampling model creates some non-trivial technical pain.

Lemma 51.2.2. We have that 𝜌
𝑟,𝑛

(𝑑, 𝑘) ≈
(
1 − 𝑟

𝑛

) 𝑘 ( 𝑟
𝑛

)𝑑
. Formally,

1
22𝑑

(
1 − 4 · 𝑟

𝑛

) 𝑘 ( 𝑟
𝑛

)𝑑
≤ 𝜌

𝑟,𝑛
(𝑑, 𝑘) ≤ 22𝑑

(
1 − 1

2 · 𝑟
𝑛

) 𝑘 ( 𝑟
𝑛

)𝑑
. (51.2)

Proof: Let 𝜎 be the region under consideration that is defined by 𝑑 objects and having 𝑘 stoppers (i.e.,
𝑘 = 𝐾 (𝜎)). We are interested in the probability of 𝜎 being created when taking a sample of size 𝑟
(without repetition) from a set S of 𝑛 objects. Clearly, this probability is 𝜌

𝑟,𝑛
(𝑑, 𝑘) =

(𝑛−𝑑−𝑘
𝑟−𝑑

)
/
(𝑛
𝑟

)
, as

we have to pick the 𝑑 defining objects into the random sample and avoid picking any of the 𝑘 stoppers.
A tedious but careful calculation, delegated to Section 51.4, implies Eq. (51.2).

Instead, here is an elegant argument for why this estimate is correct in a slightly different sampling
model. We pick every element of S into the sample R with probability 𝑟/𝑛, and this is done independently
for each object. In expectation, the random sample is of size 𝑟, and clearly the probability that 𝜎 is
created is the probability that we pick its 𝑑 defining objects (that is, (𝑟/𝑛)𝑑) multiplied by the probability
that we did not pick any of its 𝑘 stoppers (that is, (1 − 𝑟/𝑛)𝑘). ■

Remark 51.2.3. The bounds of Eq. (51.2) hold only when 𝑟, 𝑑, and 𝑘 are in certain (reasonable) ranges.
For the sake of simplicity of exposition we ignore this minor issue. With care, all our arguments work
when one pays careful attention to this minor technicality.

51.2.2.2. On exponential decay

For any natural number 𝑟 and a number 𝑡 > 0, consider R to be a random sample of size 𝑟 from S
without repetition. A region 𝜎 ∈ F (R) as being 𝑡-heavy if 𝜔(𝜎) ≥ 𝑡 · 𝑛

𝑟
. Let F≥𝑡 (R) denote all the

𝑡-heavy regions of F (R).④
Intuitively, and somewhat incorrectly, we expect the average weight of a region of F (R) to be roughly

𝑛/𝑟. We thus expect the size of this set to drop fast as 𝑡 increases. Indeed, Lemma 51.2.2 tells us that
a trapezoid of weight 𝑡 (𝑛/𝑟) has probability

𝜌
𝑟,𝑛

(
𝑑, 𝑡 · 𝑛

𝑟

)
≈
(
1 − 𝑟

𝑛

) 𝑡 (𝑛/𝑟) ( 𝑟
𝑛

)𝑑
≈ exp(−𝑡) ·

( 𝑟
𝑛

)𝑑
≈ exp

(
−𝑡 + 1

)
·
(
1 − 𝑟

𝑛

)𝑛/𝑟 ( 𝑟
𝑛

)𝑑
≈ exp(−𝑡 + 1) · 𝜌

𝑟,𝑛
(𝑑, 𝑛/𝑟)

to be created, since (1 − 𝑟/𝑛)𝑛/𝑟 ≈ 1/𝑒. Namely, a 𝑡-heavy region has exponentially lower probability to
be created than a region of weight 𝑛/𝑟. We next formalize this argument.

④These are the regions that are at least 𝑡 times overweight. Speak about an obesity problem.
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Lemma 51.2.4. Let 𝑟 ≤ 𝑛 and let 𝑡 be parameters, such that 1 ≤ 𝑡 ≤ 𝑟/𝑑. Furthermore, let R be a
sample of size 𝑟, and let R′ be a sample of size 𝑟′ = ⌊𝑟/𝑡⌋, both from S. Let 𝜎 ∈ T be a region with
weight 𝜔(𝜎) ≥ 𝑡 (𝑛/𝑟). Then, P

[
𝜎 ∈ F (R)

]
= 𝑂

(
exp

(
−𝑡/2

)
𝑡𝑑 P

[
𝜎 ∈ F (R′)

] )
.

Proof: For the sake of simplicity of exposition, assume that 𝑘 = 𝜔(𝜎) = 𝑡 (𝑛/𝑟). By Lemma 51.2.2 (i.e.,
Eq. (51.2)) we have

P[𝜎 ∈ F (R)]
P[𝜎 ∈ F (R′)] =

𝜌
𝑟,𝑛

(𝑑, 𝑘)
𝜌
𝑟 ′,𝑛

(𝑑, 𝑘) ≤
22𝑑 (1 − 1

2 · 𝑟
𝑛

) 𝑘 ( 𝑟
𝑛

)𝑑
1

22𝑑

(
1 − 4 𝑟 ′

𝑛

) 𝑘 ( 𝑟 ′
𝑛

)𝑑 ≤ 24𝑑 exp
(
− 𝑘𝑟2𝑛

) (
1 + 8𝑟

′

𝑛

) 𝑘 ( 𝑟
𝑟′

)𝑑
≤ 24𝑑 exp

(
8 𝑘𝑟

′

𝑛
− 𝑘𝑟

2𝑛

) ( 𝑟
𝑟′

)𝑑
= 24𝑑 exp

(
8 𝑡𝑛 ⌊𝑟/𝑡⌋

𝑛𝑟
− 𝑡𝑛𝑟

2𝑛𝑟

) (
𝑟

⌊𝑟/𝑡⌋

)𝑑
= 𝑂

(
exp(−𝑡/2)𝑡𝑑

)
,

since 1/(1 − 𝑥) ≤ 1 + 2𝑥 for 𝑥 ≤ 1/2 and 1 + 𝑦 ≤ exp(𝑦), for all 𝑦. (The constant in the above 𝑂 (·)
depends exponentially on 𝑑.) ■

Let
E𝑓 (𝑟) = E[|F (R) |] and E𝑓≥𝑡 (𝑟) = E[|F≥𝑡 (R) |] ,

where the expectation is over random subsets R ⊆ S of size 𝑟. Note that E𝑓 (𝑟) = E𝑓≥0(𝑟) is the expected
number of regions created by a random sample of size 𝑟. In words, E𝑓≥𝑡 (𝑟) is the expected number of
regions in a structure created by a sample of 𝑟 random objects, such that these regions have weight
which is 𝑡 times larger than the “expected” weight (i.e., 𝑛/𝑟). In the following, we assume that E𝑓 (𝑟) is
a monotone increasing function.

Lemma 51.2.5 (The exponential decay lemma). Given a set S of 𝑛 objects and parameters 𝑟 ≤ 𝑛
and 1 ≤ 𝑡 ≤ 𝑟/𝑑, where 𝑑 = max𝜎∈T (S) |𝐷 (𝜎) |, if axioms (i) and (ii) above hold for any subset of S, then

E𝑓≥𝑡 (𝑟) = 𝑂
(
𝑡𝑑 exp(−𝑡/2) E𝑓 (𝑟)

)
. (51.3)

Proof: Let R be a random sample of size 𝑟 from S and let R′ be a random sample of size 𝑟′ = ⌊𝑟/𝑡⌋ from
S. Let 𝐻 =

⋃
𝑋⊆S,|𝑋 |=𝑟 F≥𝑡 (𝑋) denote the set of all 𝑡-heavy regions that might be created by a sample of

size 𝑟. In the following, the expectation is taken over the content of the random samples R and R′.
For a region 𝜎, let 𝑋𝜎 be the indicator variable that is 1 if and only if 𝜎 ∈ F (R). By linearity of

expectation and since E[𝑋𝜎] = P[𝜎 ∈ F (R)], we have

E𝑓≥𝑡 (𝑟) = E
[
|F≥𝑡 (R) |

]
= E

[∑︁
𝜎∈𝐻

𝑋𝜎

]
=
∑︁
𝜎∈𝐻
E
[
𝑋𝜎

]
=
∑︁
𝜎∈𝐻
P[𝜎 ∈ F (R)]

= 𝑂

(
𝑡𝑑 exp(−𝑡/2)

∑︁
𝜎∈𝐻
P[𝜎 ∈ F (R′)]

)
= 𝑂

(
𝑡𝑑 exp(−𝑡/2)

∑︁
𝜎∈T
P[𝜎 ∈ F (R′)]

)
= 𝑂

(
𝑡𝑑 exp(−𝑡/2) E𝑓 (𝑟′)

)
= 𝑂

(
𝑡𝑑 exp(−𝑡/2) E𝑓 (𝑟)

)
,

by Lemma 51.2.4 and since E𝑓 (𝑟) is a monotone increasing function. ■
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51.2.2.3. Bounding the moments

Consider a different randomized algorithm that in a first round samples 𝑟 objects, R ⊆ S (say, segments),
computes the arrangement induced by these 𝑟 objects (i.e., A| (R)), and then inside each region 𝜎 it
computes the arrangement of the 𝜔(𝜎) objects intersecting the interior of this region, using an algorithm
that takes 𝑂

(
𝜔(𝜎)𝑐

)
time, where 𝑐 > 0 is some fixed constant. The overall expected running time of

this algorithm is
E
[ ∑︁
𝜎∈F (R)

(
𝜔(𝜎)

)𝑐]
.

We are now able to bound this quantity.
Theorem 51.2.6 (Bounded moments theorem). Let R ⊆ S be a random subset of size 𝑟. Let
E𝑓 (𝑟) = E

[
|F (R) |

]
and let 𝑐 ≥ 1 be an arbitrary constant. Then,

E
[ ∑︁
𝜎∈F (R)

(
𝜔(𝜎)

)𝑐]
= 𝑂

(
E𝑓 (𝑟)

(𝑛
𝑟

)𝑐 )
.

Proof: Let R ⊆ S be a random sample of size 𝑟. Observe that all the regions with weight in the range[
(𝑡 − 1) 𝑛

𝑟
, 𝑡 · 𝑛

𝑟

)
are in the set F≥𝑡−1(R) \ F≥𝑡 (R). As such, we have by Lemma 51.2.5 that

𝑊 = E
[ ∑︁
𝜎∈F (R)

𝜔(𝜎)𝑐
]
≤ E

[∑︁
𝑡≥1

(
𝑡
𝑛

𝑟

)𝑐
( |F≥𝑡−1(R) | − |F≥𝑡 (R) | )

]
≤ E

[∑︁
𝑡≥1

(
𝑡
𝑛

𝑟

)𝑐
|F≥𝑡−1(R) |

]
≤

(𝑛
𝑟

)𝑐∑︁
𝑡≥0

(𝑡 + 1)𝑐 E
[
|F≥𝑡 (R) |

]
=

(𝑛
𝑟

)𝑐∑︁
𝑡≥0

(𝑡 + 1)𝑐 E𝑓≥𝑡 (𝑟) =
(𝑛
𝑟

)𝑐∑︁
𝑡≥0

𝑂

(
(𝑡 + 1) 𝑐 + 𝑑 exp(−𝑡/2) E𝑓 (𝑟)

)
= 𝑂

(
E𝑓 (𝑟)

(𝑛
𝑟

)𝑐∑︁
𝑡≥0

(𝑡 + 1) 𝑐 + 𝑑 exp(−𝑡/2)
)
= 𝑂

(
E𝑓 (𝑟)

(𝑛
𝑟

)𝑐)
,

since 𝑐 and 𝑑 are both constants. ■

51.3. Applications

51.3.1. Analyzing the RIC algorithm for vertical decomposition
We remind the reader that the input of the algorithm of Section 51.1.2 is a set S of 𝑛 segments with 𝑘

intersections, and it uses randomized incremental construction to compute the vertical decomposition
of the arrangement A

(
S
)
.

Lemma 51.1.2 shows that the number of vertical trapezoids in the randomized incremental construc-
tion is in expectation E𝑓 (𝑖) = 𝑂

(
𝑖 + 𝑘 (𝑖/𝑛)2). Thus, by Theorem 51.2.6 (used with 𝑐 = 1), we have that

the total expected size of the conflict lists of the vertical decomposition computed in the 𝑖th step is

E
[
𝑊𝑖

]
= E

[∑︁
𝜎∈B𝑖

𝜔(𝜎)
]
= 𝑂

(
E𝑓 (𝑖) 𝑛

𝑖

)
= 𝑂

(
𝑛 + 𝑘 𝑖

𝑛

)
.

This is the missing piece in the analysis of Section 51.1.2. Indeed, the amortized work in the 𝑖th step
of the algorithm is 𝑂 (𝑊𝑖/𝑖) (see Eq. (51.1)), and as such, the expected running time of this algorithm is

E
[
𝑂

( 𝑛∑︁
𝑖=1

𝑊𝑖

𝑖

)]
= 𝑂

( 𝑛∑︁
𝑖=1

1
𝑖

(
𝑛 + 𝑘 𝑖

𝑛

))
= 𝑂 (𝑛 log 𝑛 + 𝑘).

This implies Theorem 51.1.3.
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51.3.2. Cuttings
Let S be a set of 𝑛 lines in the plane, and let 𝑟 be an arbitrary parameter. A (1/𝑟)-cutting of S is a
partition of the plane into constant complexity regions such that each region intersects at most 𝑛/𝑟 lines
of S. It is natural to try to minimize the number of regions in the cutting, as cuttings are a natural tool
for performing “divide and conquer”.

A neat proof of the existence of suboptimal cuttings follows readily from the exponential decay
lemma.

Lemma 51.3.1. Let S be a set of 𝑛 segments in the plane, and let R be a random sample from S of
size ℓ = 𝑐𝑟 ln 𝑟, where 𝑐 is a sufficiently large constant. Then, with probability ≥ 1− 1/𝑟𝑂 (1), the vertical
decomposition of R is a cutting of size 𝑂 (𝑟2 log2 𝑟).

Proof: In our case, the vertical decomposition complexity E𝑓 (ℓ) = 𝑂 (ℓ2) – as ℓ segments have at most(ℓ
2
)

intersections. For 𝑡 = 𝑐 ln 𝑟, a vertical trapezoid 𝜎 in A| (R) is bad if 𝜔(𝜎) > 𝑟 = 𝑡 (𝑛/ℓ). But such a
trapezoid is 𝑡-heavy. Let 𝑋 be the random variable that is the number of bad trapezoids in A| (R). The
exponential decay lemma (Lemma 51.2.5) states that

E[𝑋] = E𝑓≥𝑡 (ℓ) = 𝑂
(
𝑡2 exp(−𝑡/2) E𝑓 (ℓ)

)
= 𝑂

(
(𝑐 ln 𝑟)2 exp(−𝑐 ln 𝑟/2) ℓ2) = 𝑂 (

(ln2 𝑟)𝑟−𝑐/2 (𝑟 log 𝑟)2
)
<

1
𝑟𝑐/4

,

if 𝑐 is sufficiently large. As such, we have P[𝑋 ≥ 1] ≤ 1/𝑟𝑐/4 by Markov’s inequality. ■

We provide an alternative proof to the above using the 𝜀-net theorem.

Lemma 51.3.2. There exists a (1/𝑟)-cutting of a set of lines S in the plane of size 𝑂
(
(𝑟 log 𝑟)2).

Proof: Consider the range space having S as its ground set and vertical trapezoids as its ranges (i.e.,
given a vertical trapezoid 𝜎, its corresponding range is the set of all lines of S that intersect the interior
of 𝜎). This range space has a VC dimension which is a constant as can be easily verified. Let 𝑋 ⊆ S
be an 𝜀-net for this range space, for 𝜀 = 1/𝑟. By Theorem 51.7.1 (𝜀-net theorem), there exists such an
𝜀-net 𝑋 of this range space, of size 𝑂 ((1/𝜀) log(1/𝜀)) = 𝑂 (𝑟 log 𝑟). In fact, Theorem 51.7.1 states that
an appropriate random sample is an 𝜀-net with non-zero probability, which implies, by the probabilistic
method, that such a net (of this size) exists.

Consider the vertical decomposition A| (𝑋 ), where 𝑋 is as above. We claim that this collection of
trapezoids is the desired cutting.

The bound on the size is immediate, as the complexity of A| (𝑋 ) is 𝑂
(
|𝑋 |2

)
and |𝑋 | = 𝑂 (𝑟 log 𝑟).

As for correctness, consider a vertical trapezoid 𝜎 in the arrangement A| (𝑋 ). It does not intersect
any of the lines of 𝑋 in its interior, since it is a trapezoid in the vertical decomposition A| (𝑋 ). Now, if
𝜎 intersected more than 𝑛/𝑟 lines of S in its interior, where 𝑛 = |S|, then it must be that the interior of
𝜎 intersects one of the lines of 𝑋, since 𝑋 is an 𝜀-net for S, a contradiction.

It follows that 𝜎 intersects at most 𝜀𝑛 = 𝑛/𝑟 lines of S in its interior. ■

Claim 51.3.3. Any (1/𝑟)-cutting in the plane of 𝑛 lines contains at least Ω
(
𝑟2) regions.

Proof: An arrangement of 𝑛 lines (in general position) has 𝑀 =
(𝑛
2
)

intersections. However, the number
of intersections of the lines intersecting a single region in the cutting is at most 𝑚 =

(𝑛/𝑟
2
)
. This implies

that any cutting must be of size at least 𝑀/𝑚 = Ω
(
𝑛2/(𝑛/𝑟)2) = Ω

(
𝑟2). ■
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We can get cuttings of size matching the above lower bound using the moments technique.

Theorem 51.3.4. Let S be a set of 𝑛 lines in the plane, and let 𝑟 be a parameter. One can compute a
(1/𝑟)-cutting of S of size 𝑂 (𝑟2).

Proof: Let R ⊆ S be a random sample of size 𝑟, and consider its vertical decomposition A| (R). If a
vertical trapezoid 𝜎 ∈ A| (R) intersects at most 𝑛/𝑟 lines of S, then we can add it to the output cutting.
The other possibility is that a 𝜎 intersects 𝑡 (𝑛/𝑟) lines of S, for some 𝑡 > 1, and let cl(𝜎) ⊂ S be the
conflict list of 𝜎 (i.e., the list of lines of S that intersect the interior of 𝜎). Clearly, a (1/𝑡)-cutting for
the set cl(𝜎) forms a vertical decomposition (clipped inside 𝜎) such that each trapezoid in this cutting
intersects at most 𝑛/𝑟 lines of S. Thus, we compute such a cutting inside each such “heavy” trapezoid
using the algorithm (implicit in the proof) of Lemma 51.3.2, and these subtrapezoids to the resulting
cutting. Clearly, the size of the resulting cutting inside 𝜎 is 𝑂

(
𝑡2 log2 𝑡

)
= 𝑂

(
𝑡4
)
. The resulting two-level

partition is clearly the required cutting. By Theorem 51.2.6, the expected size of the cutting is

𝑂

(
E𝑓 (𝑟) + E

[ ∑︁
𝜎∈F (R)

(
2𝜔(𝜎)
𝑛/𝑟

)4] )
= 𝑂

(
E𝑓 (𝑟) +

( 𝑟
𝑛

)4
E
[ ∑︁
𝜎∈F (R)

(𝜔(𝜎))4
] )

= 𝑂

(
E𝑓 (𝑟) +

( 𝑟
𝑛

)4
E𝑓 (𝑟)

(𝑛
𝑟

)4
)
= 𝑂 (E𝑓 (𝑟)) = 𝑂

(
𝑟2) ,

since E𝑓 (𝑟) is proportional to the complexity of A(R) which is 𝑂 (𝑟2). ■

51.4. Bounds on the probability of a region to be created
Here we prove Lemma 51.2.2 in the “right” sampling model. The casual reader is encouraged to skip
this section, as it contains mostly tedious (and not very insightful) calculations.

Let S be a given set of 𝑛 objects. Let 𝜌
𝑟,𝑛

(𝑑, 𝑘) be the probability that a region 𝜎 ∈ T whose defining
set is of size 𝑑 and whose stopping set is of size 𝑘 appears in F (R), where R is a random sample from S
of size 𝑟 (without repetition).

Lemma 51.4.1. We have 𝜌
𝑟,𝑛

(𝑑, 𝑘) =
(𝑛−𝑑−𝑘
𝑟−𝑑

)(𝑛
𝑟

) =

(𝑛−𝑑−𝑘
𝑟−𝑑

)( 𝑛
𝑟−𝑑

) ·
(𝑟
𝑑

)(𝑛−(𝑟−𝑑)
𝑑

) =

(𝑛−𝑑−𝑘
𝑟−𝑑

)(𝑛−𝑑
𝑟−𝑑

) ·
(𝑟
𝑑

)(𝑛
𝑑

) .

Proof: So, consider a region 𝜎 with 𝑑 defining objects in 𝐷 (𝜎) and 𝑘 detractors in 𝐾 (𝜎). We have to
pick the 𝑑 defining objects of 𝐷 (𝜎) to be in the random sample R of size 𝑟 but avoid picking any of the
𝑘 objects of 𝐾 (𝜎) to be in R.

The second part follows since
(
𝑛

𝑟

)
=

(
𝑛

𝑟 − 𝑑

) (
𝑛 − (𝑟 − 𝑑)

𝑑

)
/
(
𝑟

𝑑

)
. Indeed, for the right-hand side first

pick a sample of size 𝑟 − 𝑑 and then a sample of size 𝑑 from the remaining objects. Merging the two
random samples, we get a random sample of size 𝑟. However, since we do not care if an object is in the
first sample or second sample, we observe that every such random sample is being counted

(𝑟
𝑑

)
times.

The third part is easier, as it follows from
(
𝑛

𝑟 − 𝑑

) (
𝑛 − (𝑟 − 𝑑)

𝑑

)
=

(
𝑛

𝑑

) (
𝑛 − 𝑑
𝑟 − 𝑑

)
. The two sides count

the different ways to pick two subsets from a set of size 𝑛, the first one of size 𝑑 and the second one of
size 𝑟 − 𝑑. ■

Lemma 51.4.2. For 𝑀 ≥ 𝑚 ≥ 𝑡 ≥ 0, we have
( 𝑚 − 𝑡
𝑀 − 𝑡

) 𝑡
≤

(𝑚
𝑡

)(𝑀
𝑡

) ≤
( 𝑚
𝑀

) 𝑡
.
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Proof: We have that 𝛼 =

(𝑚
𝑡

)(𝑀
𝑡

) =
𝑚!

(𝑚 − 𝑡)!𝑡!
(𝑀 − 𝑡)!𝑡!

𝑀! =
𝑚

𝑀
· 𝑚 − 1
𝑀 − 1 · · · 𝑚 − 𝑡 + 1

𝑀 − 𝑡 + 1. Now, since 𝑀 ≥ 𝑚, we

have that 𝑚 − 𝑖
𝑀 − 𝑖 ≤

𝑚

𝑀
, for all 𝑖 ≥ 0. As such, the maximum (resp. minimum) fraction on the right-hand

size is 𝑚/𝑀 (resp. 𝑚−𝑡+1
𝑀−𝑡+1). As such, we have

(
𝑚−𝑡
𝑀−𝑡

) 𝑡 ≤ (
𝑚−𝑡+1
𝑀−𝑡+1

) 𝑡 ≤ 𝛼 ≤ (𝑚/𝑀)𝑡 . ■

Lemma 51.4.3. Let 0 ≤ 𝑋,𝑌 ≤ 𝑁. We have that
(
1 − 𝑋

𝑁

)𝑌
≤

(
1 − 𝑌

2𝑁

)𝑋
.

Proof: Since 1 − 𝛼 ≤ exp(−𝛼) ≤ (1 − 𝛼/2), for 0 ≤ 𝛼 ≤ 1, it follows that(
1 − 𝑋

𝑁

)𝑌
≤ exp

(
−𝑋𝑌
𝑁

)
=

(
exp

(
−𝑌
𝑛

))𝑋
≤

(
1 − 𝑌

2𝑛

)𝑋
. ■

Lemma 51.4.4. For 2𝑑 ≤ 𝑟 ≤ 𝑛/8 and 𝑘 ≤ 𝑛/2, we have that

1
22𝑑

(
1 − 4 · 𝑟

𝑛

) 𝑘 ( 𝑟
𝑛

)𝑑
≤ 𝜌

𝑟,𝑛
(𝑑, 𝑘) ≤ 22𝑑

(
1 − 1

2 · 𝑟
𝑛

) 𝑘 ( 𝑟
𝑛

)𝑑
.

Proof: By Lemma 51.4.1, Lemma 51.4.2, and Lemma 51.4.3 we have

𝜌
𝑟,𝑛

(𝑑, 𝑘) =
(𝑛−𝑑−𝑘
𝑟−𝑑

)(𝑛−𝑑
𝑟−𝑑

) ·
(𝑟
𝑑

)(𝑛
𝑑

) ≤
(
𝑛 − 𝑑 − 𝑘
𝑛 − 𝑑

)𝑟−𝑑 ( 𝑟
𝑛

)𝑑
≤

(
1 − 𝑘

𝑛

)𝑟−𝑑 ( 𝑟
𝑛

)𝑑
≤ 2𝑑

(
1 − 𝑘

𝑛

)𝑟 ( 𝑟
𝑛

)𝑑
≤ 2𝑑

(
1 − 𝑟

2𝑛

) 𝑘 ( 𝑟
𝑛

)𝑑
,

since 𝑘 ≤ 𝑛/2. As for the other direction, by similar argumentation, we have

𝜌
𝑟,𝑛

(𝑑, 𝑘) =
(𝑛−𝑑−𝑘
𝑟−𝑑

)( 𝑛
𝑟−𝑑

) ·
(𝑟
𝑑

)(𝑛−(𝑟−𝑑)
𝑑

) ≥
(
𝑛 − 𝑑 − 𝑘 − (𝑟 − 𝑑)

𝑛 − (𝑟 − 𝑑)

)𝑟−𝑑 (
𝑟 − 𝑑

𝑛 − (𝑟 − 𝑑) − 𝑑

)𝑑
=

(
1 − 𝑑 + 𝑘

𝑛 − (𝑟 − 𝑑)

)𝑟−𝑑 (
𝑟 − 𝑑
𝑛 − 𝑟

)𝑑
≥

(
1 − 𝑑 + 𝑘

𝑛/2

)𝑟 (
𝑟/2
𝑛

)𝑑
≥ 1

2𝑑

(
1 − 4𝑟

𝑛

)𝑑+𝑘 ( 𝑟
𝑛

)𝑑
≥ 1

22𝑑

(
1 − 4𝑟

𝑛

) 𝑘 ( 𝑟
𝑛

)𝑑
,

by Lemma 51.4.3 (setting 𝑁 = 𝑛/4, 𝑋 = 𝑟, and 𝑌 = 𝑑 + 𝑘) and since 𝑟 ≥ 2𝑑 and 4𝑟/𝑛 ≤ 1/2. ■

51.5. Bibliographical notes
The technique described in this chapter is generally attributed to the work by Clarkson and Shor [CS89],
which is historically inaccurate as the technique was developed by Clarkson [Cla88]. Instead of mildly
confusing the matter by referring to it as the Clarkson technique, we decided to make sure to really
confuse the reader and refer to it as the moments technique. The Clarkson technique [Cla88] is in
fact more general and implies a connection between the number of “heavy” regions and “light” regions.
The general framework can be traced back to the earlier paper [Cla87]. This implies several beautiful
results, some of which we cover later in the book.
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For the full details of the algorithm of Section 51.1, the interested reader is refereed to the books
[BCKO08, BY98]. Interestingly, in some cases the merging stage can be skipped; see [Har00a].

Agarwal et al. [AMS98] presented a slightly stronger variant than the original version of Clarkson
[Cla88] that allows a region to disappear even if none of the members of its stopping set are in the
random sample. This stronger setting is used in computing the vertical decomposition of a single face
in an arrangement (instead of the whole arrangement). Here an insertion of a faraway segment of the
random sample might cut off a portion of the face of interest. In particular, in the settings of Agarwal
et al. Axiom (ii) is replaced by the following:

(ii) If 𝜎 ∈ F (R) and R′ is a subset of R with 𝐷 (𝜎) ⊆ R′, then 𝜎 ∈ F (R′).

Interestingly, Clarkson [Cla88] did not prove Theorem 51.2.6 using the exponential decay lemma but
gave a direct proof. In fact, his proof implicitly contains the exponential decay lemma. We chose the
current exposition since it is more modular and provides a better intuition of what is really going on
and is hopefully slightly simpler. In particular, Lemma 51.2.2 is inspired by the work of Sharir [Sha03].

The exponential decay lemma (Lemma 51.2.5) was proved by Chazelle and Friedman [CF90]. The
work of Agarwal et al. [AMS98] is a further extension of this result. Another analysis was provided by
Clarkson et al. [CMS93].

Another way to reach similar results is using the technique of Mulmuley [Mul94], which relies on
a direct analysis on ‘stoppers’ and ‘triggers’. This technique is somewhat less convenient to use but is
applicable to some settings where the moments technique does not apply directly. Also, his concept of
the omega function might explain why randomized incremental algorithms perform better in practice
than their worst case analysis [Mul89].

Backwards analysis in geometric settings was first used by Chew [Che86] and was formalized by
Seidel [Sei93]. It is similar to the “leave one out” argument used in statistics for cross validation. The
basic idea was probably known to the Greeks (or Russians or French) at some point in time.

(Naturally, our summary of the development is cursory at best and not necessarily accurate, and all
possible disclaimers apply. A good summary is provided in the introduction of [Sei93].)
Sampling model. As a rule of thumb all the different sampling approaches are similar and yield similar
results. For example, we used such an alternative sampling approach in the “proof” of Lemma 51.2.2.
It is a good idea to use whichever sampling scheme is the easiest to analyze in figuring out what’s going
on. Of course, a formal proof requires analyzing the algorithm in the sampling model its uses.
Lazy randomized incremental construction. If one wants to compute a single face that contains a
marking point in an arrangement of curves, then the problem in using randomized incremental construc-
tion is that as you add curves, the region of interest shrinks, and regions that were maintained should be
ignored. One option is to perform flooding in the vertical decomposition to figure out what trapezoids
are still reachable from the marking point and maintaining only these trapezoids in the conflict graph.
Doing it in each iteration is way too expensive, but luckily one can use a lazy strategy that performs this
cleanup only a logarithmic number of times (i.e., you perform a cleanup in an iteration if the iteration
number is, say, a power of 2). This strategy complicates the analysis a bit; see [BDS95] for more de-
tails on this lazy randomized incremental construction technique. An alternative technique was
suggested by the author for the (more restricted) case of planar arrangements; see [Har00b]. The idea
is to compute only what the algorithm really needs to compute the output, by computing the vertical
decomposition in an exploratory online fashion. The details are unfortunately overwhelming although
the algorithm seems to perform quite well in practice.
Cuttings. The concept of cuttings was introduced by Clarkson. The first optimal size cuttings were
constructed by Chazelle and Friedman [CF90], who proved the exponential decay lemma to this end.
Our elegant proof follows the presentation by de Berg and Schwarzkopf [BS95]. The problem with this
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approach is that the constant involved in the cutting size is awful⑤. Matoušek [Mat98] showed that
there (1/𝑟)-cuttings with 8𝑟2 + 6𝑟 + 4 trapezoids, by using level approximation. A different approach
was taken by the author [Har00a], who showed how to get cuttings which seem to be quite small (i.e.,
constant-wise) in practice. The basic idea is to do randomized incremental construction but at each
iteration greedily add all the trapezoids with conflict list small enough to the cutting being output.
One can prove that this algorithm also generates 𝑂 (𝑟2) cuttings, but the details are not trivial as the
framework described in this chapter is not applicable for analyzing this algorithm.

Cuttings also can be computed in higher dimensions for hyperplanes. In the plane, cuttings can also
be computed for well-behaved curves; see [SA95].

Another fascinating concept is shallow cuttings. These are cuttings covering only portions of the
arrangement that are in the “bottom” of the arrangement. Matoušek came up with the concept [Mat92].
See [AES99, CCH09] for extensions and applications of shallow cuttings.
Even more on randomized algorithms in geometry. We have only scratched the surface of this
fascinating topic, which is one of the cornerstones of “modern” computational geometry. The interested
reader should have a look at the books by Mulmuley [Mul94], Sharir and Agarwal [SA95], Matoušek
[Mat02], and Boissonnat and Yvinec [BY98].

51.6. Exercises
Exercise 51.6.1 (Convex hulls incrementally). Let P be a set of 𝑛 points in the plane.
(A) Describe a randomized incremental algorithm for computing the convex hull CH(P). Bound the

expected running time of your algorithm.
(B) Assume that for any subset of P, its convex hull has complexity 𝑡 (i.e., the convex hull of the subset

has 𝑡 edges). What is the expected running time of your algorithm in this case? If your algorithm
is not faster for this case (for example, think about the case where 𝑡 = 𝑂 (log 𝑛)), describe a variant
of your algorithm which is faster for this case.

Exercise 51.6.2 (Compressed quadtree made incremental). Given a set P of 𝑛 points in R𝑑, describe a
randomized incremental algorithm for building a compressed quadtree for P that works in expected
𝑂 (𝑑𝑛 log 𝑛) time. Prove the bound on the running time of your algorithm.

51.7. From previous lectures
Theorem 51.7.1 (𝜺-net theorem, [HW87]). Let (X,R) be a range space of VC dimension 𝛿, let x
be a finite subset of X, and suppose that 0 < 𝜀 ≤ 1 and 𝜑 < 1. Let 𝑁 be a set obtained by 𝑚 random
independent draws from x, where

𝑚 ≥ max
(

4
𝜀

lg 4
𝜑
,

8𝛿
𝜀

lg 16
𝜀

)
. (51.4)

Then 𝑁 is an 𝜀-net for x with probability at least 1 − 𝜑.

Lemma 51.7.2. For any two random variables 𝑋 and 𝑌 , we have E
[
E[𝑋 | 𝑌 ]

]
= E

[
𝑋
]
.

⑤This is why all computations related to cuttings should be done on a waiter’s bill pad. As Douglas Adams put it:
“On a waiter’s bill pad, reality and unreality collide on such a fundamental level that each becomes the other and anything
is possible, within certain parameters.”
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