
Chapter 49

The Probabilistic Method III
By Sariel Har-Peled, April 26, 2022①

At other times you seemed to me either pitiable or contemptible, eunuchs, artificially confined to an eternal childhood,
childlike and childish in your cool, tightly fenced, neatly tidied playground and kindergarten, where every nose is
carefully wiped and every troublesome emotion is soothed, every dangerous thought repressed, where everyone plays
nice, safe, bloodless games for a lifetime and every jagged stirring of life, every strong feeling, every genuine passion,
every rapture is promptly checked, deflected and neutralized by meditation therapy.

The Glass Bead Game, Hermann Hesse

49.1. The Lovász Local Lemma

Lemma 49.1.1. (i) P
[
𝐴
�� 𝐵 ∩ 𝐶

]
=
P
[
𝐴 ∩ 𝐵

��𝐶]
P
[
𝐵
��𝐶]

(ii) Let 𝜂1, . . . , 𝜂𝑛 be 𝑛 events which are not necessarily independent. Then,

P
[
∩𝑛
𝑖=1𝜂𝑖

]
= P

[
𝜂1
]
∗ P

[
𝜂2

�� 𝜂1
]
P
[
𝜂3

�� 𝜂1 ∩ 𝜂2
]
∗ . . . ∗ P

[
𝜂𝑛

�� 𝜂1 ∩ . . . ∩ 𝜂𝑛−1
]
.

Proof: (i) We have that

P
[
𝐴 ∩ 𝐵

��𝐶]
P
[
𝐵
��𝐶] =

P[𝐴 ∩ 𝐵 ∩ 𝐶]
P[𝐶]

/
P[𝐵 ∩ 𝐶]
P[𝐶]

=
P[𝐴 ∩ 𝐵 ∩ 𝐶]
P[𝐵 ∩ 𝐶] = P

[
𝐴
�� 𝐵 ∩ 𝐶

]
.

As for (ii), we already saw it and used it in the minimum cut algorithm lecture. ■

Definition 49.1.2. An event E is mutually independent of a set of events C, if for any subset U ⊆ C, we
have that P[E ∩ (⋂E′∈𝑈 E′)] = P[E] P[

⋂
E′∈𝑈 E′].

Let E1, . . . ,E𝑛 be events. A dependency graph for these events is a directed graph G = (V, E),
where {1, . . . , 𝑛}, such that E𝑖 is mutually independent of all the events in

{
E 𝑗

�� (𝑖, 𝑗) ∉ E
}
.

Intuitively, an edge (𝑖, 𝑗) in a dependency graph indicates that E𝑖 and E 𝑗 have (maybe) some depen-
dency between them. We are interested in settings where this dependency is limited enough, that we
can claim something about the probability of all these events happening simultaneously.

Lemma 49.1.3 (Lovász Local Lemma). Let G(V, E) be a dependency graph for events E1, . . . ,E𝑛.
Suppose that there exist 𝑥𝑖 ∈ [0, 1], for 1 ≤ 𝑖 ≤ 𝑛 such that P[E𝑖] ≤ 𝑥𝑖

∏
(𝑖, 𝑗)∈𝐸

(
1 − 𝑥 𝑗

)
. Then P

[
∩𝑛
𝑖=1E𝑖

]
≥

𝑛∏
𝑖=1

(1 − 𝑥𝑖).

We need the following technical lemma.
①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Lemma 49.1.4. Let G(V, E) be a dependency graph for events E1, . . . ,E𝑛. Suppose that there exist
𝑥𝑖 ∈ [0, 1], for 1 ≤ 𝑖 ≤ 𝑛 such that P[E𝑖] ≤ 𝑥𝑖

∏
(𝑖, 𝑗)∈𝐸

(
1 − 𝑥 𝑗

)
. Now, let 𝑆 be a subset of the vertices from

{1, . . . , 𝑛}, and let 𝑖 be an index not in 𝑆. We have that

P
[
E𝑖

���∩ 𝑗∈𝑆E 𝑗

]
≤ 𝑥𝑖 . (49.1)

Proof: The proof is by induction on 𝑘 = |𝑆 |.
For 𝑘 = 0, we have by assumption that P

[
E𝑖

���∩ 𝑗∈𝑆E 𝑗

]
= P[E𝑖] ≤ 𝑥𝑖

∏
(𝑖, 𝑗)∈𝐸

(
1 − 𝑥 𝑗

)
≤ 𝑥𝑖.

Thus, let 𝑁 =
{
𝑗 ∈ 𝑆

�� (𝑖, 𝑗) ∈ 𝐸
}
, and let 𝑅 = 𝑆 \ 𝑁. If 𝑁 = ∅, then we have that E𝑖 is mutually

independent of the events of C(𝑅) =
{
E 𝑗

�� 𝑗 ∈ 𝑅
}
. Thus, P

[
E𝑖

���∩ 𝑗∈𝑆E 𝑗

]
= P

[
E𝑖

���∩ 𝑗∈𝑅E 𝑗

]
= P[E𝑖] ≤ 𝑥𝑖,

by arguing as above.
By Lemma 49.1.1 (i), we have that

P

E𝑖

������⋂𝑗∈𝑆 E 𝑗

 =
P
[
E𝑖 ∩

(
∩ 𝑗∈𝑁E 𝑗

) ���∩𝑚∈𝑅E𝑚

]
P
[
∩ 𝑗∈𝑁E 𝑗

���∩𝑚∈𝑅E𝑚

] .

We bound the numerator by

P
[
E𝑖 ∩

(
∩ 𝑗∈𝑁E 𝑗

) ���∩𝑚∈𝑅E𝑚

]
≤ P

[
E𝑖

���∩𝑚∈𝑅E𝑚

]
= P[E𝑖] ≤ 𝑥𝑖

∏
(𝑖, 𝑗)∈𝐸

(
1 − 𝑥 𝑗

)
,

since E𝑖 is mutually independent of C(𝑅). As for the denominator, let 𝑁 = { 𝑗1, . . . , 𝑗𝑟}. We have, by
Lemma 49.1.1 (ii), that

P
[
E 𝑗1 ∩ . . . ∩ E 𝑗𝑟

���∩𝑚∈𝑅E𝑚

]
= P

[
E 𝑗1

���∩𝑚∈𝑅E𝑚

]
P
[
E 𝑗2

���E 𝑗1 ∩
(
∩𝑚∈𝑅E𝑚

)]
· · · P

[
E 𝑗𝑟

���E 𝑗1 ∩ . . . ∩ E 𝑗𝑟−1 ∩
(
∩𝑚∈𝑅E𝑚

)]
=

(
1 − P

[
E 𝑗1

���∩𝑚∈𝑅E𝑚

]) (
1 − P

[
E 𝑗2

���E 𝑗1 ∩
(
∩𝑚∈𝑅E𝑚

)])
· · ·

(
1 − P

[
E 𝑗𝑟

���E 𝑗1 ∩ . . . ∩ E 𝑗𝑟−1 ∩
(
∩𝑚∈𝑅E𝑚

)])
≥

(
1 − 𝑥 𝑗1

)
· · ·

(
1 − 𝑥 𝑗𝑟

)
≥

∏
(𝑖, 𝑗)∈𝐸

(
1 − 𝑥 𝑗

)
,

by Eq. (49.1) and induction, as every probability term in the above expression has less than |𝑆 | items
involved. It thus follows, that P

[
E𝑖

��� ⋂ 𝑗∈𝑆 E 𝑗

]
≤ 𝑥𝑖. ■

Proof of Lovász local lemma (Lemma 49.1.3): Using Lemma 49.1.4, we have that

P
[
∩𝑛
𝑖=1E𝑖

]
= (1 − P[E1])

(
1 − P

[
E2

���E1
])

· · ·
(
1 − P

[
E𝑛

���∩𝑛−1
𝑖=1 E𝑖

])
≥

𝑛∏
𝑖=1

(1 − 𝑥𝑖).

■

2

Corollary 49.1.5. Let E1, . . . ,E𝑛 be events, with P[E𝑖] ≤ 𝑝 for all 𝑖. If each event is mutually inde-
pendent of all other events except for at most 𝑑, and if 𝑒𝑝(𝑑 + 1) ≤ 1, then P

[
∩𝑛
𝑖=1E𝑖

]
> 0.

Proof: If 𝑑 = 0 the result is trivial, as the events are independent. Otherwise, there is a dependency
graph, with every vertex having degree at most 𝑑. Apply Lemma 49.1.3 with 𝑥𝑖 =

1
𝑑+1 . Observe that

𝑥𝑖 (1 − 𝑥𝑖)𝑑 =
1

𝑑 + 1

(
1 − 1

𝑑 + 1

)𝑑
>

1
𝑑 + 1 · 1

𝑒
≥ 𝑝,

by assumption and the since
(
1 − 1

𝑑+1
)𝑑

> 1/𝑒, see Lemma 49.1.6 below. ■

The following is standard by now, and we include it only for the sake of completeness.

Lemma 49.1.6. For any 𝑛 ≥ 1, we have
(
1 − 1

𝑛 + 1

)𝑛
>

1
𝑒

.

Proof: This is equivalent to
(

𝑛
𝑛+1

)𝑛
> 1

𝑒
. Namely, we need to prove 𝑒 >

(
𝑛+1
𝑛

)𝑛. But this obvious, since(
𝑛+1
𝑛

)𝑛
=
(
1 + 1

𝑛

)𝑛
< exp(𝑛(1/𝑛)) = 𝑒. ■

49.2. Application to 𝑘-SAT
We are given a instance 𝐼 of 𝑘-SAT, where every clause contains 𝑘 literals, there are 𝑚 clauses, and
every one of the 𝑛 variables, appears in at most 2𝑘/50 clauses.

Consider a random assignment, and let E𝑖 be the event that the 𝑖th clause was not satisfied. We
know that 𝑝 = P[E𝑖] = 2−𝑘 , and furthermore, E𝑖 depends on at most 𝑑 = 𝑘2𝑘/50 other events. Since
𝑒𝑝(𝑑 + 1) = 𝑒

(
𝑘 · 2𝑘/50 + 1

)
2−𝑘 < 1, for 𝑘 ≥ 4, we conclude that by Corollary 49.1.5, that

P
[
𝐼 have a satisfying assignment

]
= P

[
∪𝑖E𝑖

]
> 0.

49.2.1. An efficient algorithm
The above just proves that a satisfying assignment exists. We next show a polynomial algorithm (in 𝑚)
for the computation of such an assignment (the algorithm will not be polynomial in 𝑘).

Let G be the dependency graph for 𝐼, where the vertices are the clauses of 𝐼, and two clauses are
connected if they share a variable. In the first stage of the algorithm, we assign values to the variables
one by one, in an arbitrary order. In the beginning of this process all variables are unspecified, at each
step, we randomly assign a variable either 0 or 1 with equal probability.

Definition 49.2.1. A clause E𝑖 is dangerous if both the following conditions hold:
(i) 𝑘/2 literals of E𝑖 have been fixed.
(ii) E𝑖 is still unsatisfied.

After assigning each value, we discover all the dangerous clauses, and we defer (“freeze”) all the
unassigned variables participating in such a clause. We continue in this fashion till all the unspecified
variables are frozen. This completes the first stage of the algorithm.

At the second stage of the algorithm, we will compute a satisfying assignment to the variables using
brute force. This would be done by taking the surviving formula 𝐼′ and breaking it into fragments, so

3

that each fragment does not share any variable with any other fragment (naively, it might be that all of
𝐼′ is one fragment). We can find a satisfying assignment to each fragment separately, and if each such
fragment is “small” the resulting algorithm would be “fast”.

We need to show that 𝐼′ has a satisfying assignment and that the fragments are indeed small.

49.2.1.1. Analysis

A clause had survived if it is not satisfied by the variables fixed in the first stage. Note, that a clause
that survived must have a dangerous clause as a neighbor in the dependency graph G. Not that 𝐼′,
the instance remaining from 𝐼 after the first stage, has at least 𝑘/2 unspecified variables in each clause.
Furthermore, every clause of 𝐼′ has at most 𝑑 = 𝑘2𝑘/50 neighbors in G′, where G′ is the dependency
graph for 𝐼′. It follows, that again, we can apply Lovász local lemma to conclude that 𝐼′ has a satisfying
assignment.

Definition 49.2.2. Two connected graphs G1 = (𝑉1, 𝐸1) and G2 = (𝑉2, 𝐸2), where 𝑉1, 𝑉2 ⊆ {1, . . . , 𝑛} are
unique if 𝑉1 ≠ 𝑉2.

Lemma 49.2.3. Let G be a graph with degree at most 𝑑 and with 𝑛 vertices. Then, the number of
unique subgraphs of G having 𝑟 vertices is at most 𝑛𝑑2𝑟 .

Proof: Consider a unique subgraph 𝐺 of G, which by definition is connected. Let 𝐻 be a connected
subtree of G spanning 𝐺. Duplicate every edge of 𝐻, and let 𝐻′ denote the resulting graph. Clearly, 𝐻′

is Eulerian, and as such posses a Eulerian path 𝜋 of length at most 2(𝑟 − 1), which can be specified, by
picking a starting vertex 𝑣, and writing down for the 𝑖-th vertex of 𝜋 which of the 𝑑 possible neighbors,
is the next vertex in 𝜋. Thus, there are st most 𝑛𝑑2(𝑟−1) ways of specifying 𝜋, and thus, there are at
most 𝑛𝑑2(𝑟−1) unique subgraphs in G of size 𝑟. ■

Lemma 49.2.4. With probability 1 − 𝑜(1), all connected components of G′ have size at most 𝑂 (log𝑚),
where G′ denote the dependency graph for 𝐼′.

Proof: Let G4 be a graph formed from G by connecting any pair of vertices of G of distance exactly 4
from each other. The degree of a vertex of G4 is at most 𝑂 (𝑑4).

Let 𝑈 be a set of 𝑟 vertices of G, such that every pair is in distance at least 4 from each other in G.
We are interested in bounding the probability that all the clauses of 𝑈 survive the first stage.

The probability of a clause to be dangerous is at most 2−𝑘/2, as we assign (random) values to half
of the variables of this clause. Now, a clause survive only if it is dangerous or one of its neighbors is
dangerous. Thus, the probability that a clause survive is bounded by 2−𝑘/2(𝑑 + 1).

Furthermore, the survival of two clauses E𝑖 and E 𝑗 in 𝑈 is an independent event, as no neighbor of
E𝑖 shares a variable with a neighbor of E 𝑗 (because of the distance 4 requirement). We conclude, that
the probability that all the vertices of 𝑈 to appear in G′ is bounded by(

2−𝑘/2(𝑑 + 1)
)𝑟
.

In fact, we are interested in sets 𝑈 that induce a connected subgraphs of G4. The number of unique
such sets of size 𝑟 is bounded by the number of unique subgraphs of G4 of size 𝑟, which is bounded by
𝑚𝑑8𝑟 , by Lemma 49.2.3. Thus, the probability of any connected subgraph of G4 of size 𝑟 = log2 𝑚 to
survive in G′ is smaller than

𝑚𝑑8𝑟
(
2−𝑘/2(𝑑 + 1)

)𝑟
= 𝑚

(
𝑘2𝑘/50

)8𝑟 (
2−𝑘/2(𝑘2𝑘/50 + 1)

)𝑟
≤ 𝑚2𝑘𝑟/5 · 2−𝑘𝑟/4 = 𝑚2−𝑘𝑟/20 = 𝑜(1),

4

since 𝑘 ≥ 50. (Here, a subgraph survive of G4 survive, if all its vertices appear in G′.) Note, however, that
if a connected component of G′ has more than 𝐿 vertices, than there must be a connected component
having 𝐿/𝑑3 vertices in G4 that had survived in G′. We conclude, that with probability 𝑜(1), no
connected component of G′ has more than 𝑂 (𝑑3 log𝑚) = 𝑂 (log𝑚) vertices (note, that we consider 𝑘 to
be a constant, and thus, also 𝑑). ■

Thus, after the first stage, we are left with fragments of (𝑘/2)-SAT, where every fragment has size
at most 𝑂 (log𝑚), and thus having at most 𝑂 (log𝑚) variables. Thus, we can by brute force find the
satisfying assignment to each such fragment in time polynomial in 𝑚. We conclude:

Theorem 49.2.5. The above algorithm finds a satisfying truth assignment for any instance of 𝑘-SAT
containing 𝑚 clauses, which each variable is contained in at most 2𝑘/50 clauses, in expected time poly-
nomial in 𝑚.

5

	The Probabilistic Method III
	The Lovász Local Lemma
	Application to k-SAT
	An efficient algorithm

