
Chapter 48

The Probabilistic Method
By Sariel Har-Peled, April 26, 2022①

“Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible
discovered Gustible’s planet. The discovery turned out to be a tragic mistake.
Gustible’s planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They
immediately mind-read Angary J. Gustible’s entire mind and life history, and embarrassed him very deeply by
making up an opera concerning his recent divorce.”

Gustible’s Planet, Cordwainer Smith

48.1. Introduction
The probabilistic method is a combinatorial technique to use probabilistic algorithms to create objects
having desirable properties, and furthermore, prove that such objects exist. The basic technique is based
on two basic observations:

1. If E[𝑋] = 𝜇, then there exists a value 𝑥 of 𝑋, such that 𝑥 ≥ E[𝑋].

2. If the probability of event E is larger than zero, then E exists and it is not empty.

The surprising thing is that despite the elementary nature of those two observations, they lead to a
powerful technique that leads to numerous nice and strong results. Including some elementary proofs
of theorems that previously had very complicated and involved proofs.

The main proponent of the probabilistic method, was Paul Erdős. An excellent text on the topic is
the book by Noga Alon and Joel Spencer [AS00].

This topic is worthy of its own course. The interested student is refereed to the course “Math 475
— The Probabilistic Method”.

48.1.1. Examples

48.1.1.1. Max cut

Computing the maximum cut (i.e., max cut) in a graph is a NP-Complete problem, which is
APX-Hard (i.e., no better than a constant approximation is possible if P ≠ NP). We present later
on a better approximation algorithm, but the following simple algorithm already gives a pretty good
approximation.

Theorem 48.1.1. For any undirected graph G = (V, E) with 𝑛 vertices and 𝑚 edges, there is a partition
of the vertex set 𝑉 into two sets 𝑆 and 𝑇 , such that | (𝑆, 𝑇) | = |{𝑢𝑣 ∈ E | 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇}| ≥ 𝑚

2 . One can
compute a partition, in 𝑂 (𝑛) time, such that E

[
| (𝑆, 𝑇) |

]
= 𝑚/2.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof: Consider the following experiment: randomly assign each vertex to 𝑆 or 𝑇 , independently and
equal probability.

For an edge 𝑒 = 𝑢𝑣, the probability that one endpoint is in 𝑆, and the other in 𝑇 is 1/2, and let 𝑋𝑒

be the indicator variable with value 1 if this happens. Clearly,

E
[��{𝑢𝑣 ∈ E

�� (𝑢, 𝑣) ∈ 𝑆 × 𝑇 ∪ 𝑇 × 𝑆
}��] = ∑︁

𝑒∈𝐸 (𝐺)
E[𝑋𝑒] =

∑︁
𝑒∈𝐸 (𝐺)

1
2 =

𝑚

2 .

Thus, there must be an execution of the algorithm that computes a cut that is at least as large as the
expectation – namely, a partition of V that satisfies the realizes a cut with ≥ 𝑚/2 edges. ■

48.2. Maximum Satisfiability
In the MAX-SAT problem, we are given a binary formula 𝐹 in CNF (Conjunctive normal form), and
we would like to find an assignment that satisfies as many clauses as possible of 𝐹, for example 𝐹 =

(𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧). Of course, an assignment satisfying all the clauses of the formula, and thus 𝐹 itself,
would be even better – but this problem is of course NPC. As such, we are looking for how well can be
we do when we relax the problem to maximizing the number of clauses to be satisfied..

Theorem 48.2.1. For any set of 𝑚 clauses, there is a truth assignment of variables that satisfies at
least 𝑚/2 clauses.

Proof: Assign every variable a random value. Clearly, a clause with 𝑘 variables, has probability 1 − 2−𝑘
to be satisfied. Using linearity of expectation, and the fact that every clause has at least one variable, it
follows, that E[𝑋] = 𝑚/2, where 𝑋 is the random variable counting the number of clauses being satisfied.
In particular, there exists an assignment for which 𝑋 ≥ 𝑚/2. ■

For an instant 𝐼, let 𝑚opt(𝐼), denote the maximum number of clauses that can be satisfied by the
“best” assignment. For an algorithm Alg, let 𝑚Alg(𝐼) denote the number of clauses satisfied computed
by the algorithm Alg. The approximation factor of Alg, is 𝑚Alg(𝐼)/𝑚opt(𝐼). Clearly, the algorithm
of Theorem 48.2.1 provides us with 1/2-approximation algorithm.

For every clause, 𝐶 𝑗 in the given instance, let 𝑧 𝑗 ∈ {0, 1} be a variable indicating whether 𝐶 𝑗 is
satisfied or not. Similarly, let 𝑥𝑖 = 1 if the 𝑖th variable is being assigned the value TRUE. Let 𝐶+

𝑗
be

indices of the variables that appear in 𝐶 𝑗 in the positive, and 𝐶−
𝑗

the indices of the variables that appear
in the negative. Clearly, to solve MAX-SAT, we need to solve:

max
𝑚∑︁
𝑗=1

𝑧 𝑗

subject to
∑︁
𝑖∈𝐶+

𝑗

𝑥𝑖 +
∑︁
𝑖∈𝐶−

𝑗

(1 − 𝑥𝑖) ≥ 𝑧 𝑗 for all 𝑗

𝑥𝑖, 𝑧 𝑗 ∈ {0, 1} for all 𝑖, 𝑗

We relax this into the following linear program:

2

max
𝑚∑︁
𝑗=1

𝑧 𝑗

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑦𝑖, 𝑧 𝑗 ≤ 1 for all 𝑖, 𝑗∑︁
𝑖∈𝐶+

𝑗

𝑦𝑖 +
∑︁
𝑖∈𝐶−

𝑗

(1 − 𝑦𝑖) ≥ 𝑧 𝑗 for all 𝑗 .

Which can be solved in polynomial time. Let 𝑡̂ denote the values assigned to the variable 𝑡 by the
linear-programming solution. Clearly,

∑𝑚
𝑗=1 𝑧 𝑗 is an upper bound on the number of clauses of 𝐼 that can

be satisfied.
We set the variable 𝑦𝑖 to 1 with probability 𝑦𝑖. This is an instance randomized rounding.

Lemma 48.2.2. Let 𝐶 𝑗 be a clause with 𝑘 literals. The probability that it is satisfied by randomized
rounding is at least 𝛽𝑘 𝑧 𝑗 ≥ (1 − 1/𝑒)𝑧 𝑗 , where

𝛽𝑘 = 1 −
(
1 − 1

𝑘

) 𝑘
≈ 1 − 1

𝑒
.

Proof: Assume 𝐶 𝑗 = 𝑦1 ∨ 𝑣2 . . .∨ 𝑣𝑘 . By the LP, we have 𝑦1 + · · · + 𝑦𝑘 ≥ 𝑧 𝑗 . Furthermore, the probability
that 𝐶 𝑗 is not satisfied is

∏𝑘
𝑖=1(1 − 𝑦𝑖). Note that 1 − ∏𝑘

𝑖=1(1 − 𝑦𝑖) is minimized when all the 𝑦𝑖’s are
equal (by symmetry). Namely, when 𝑦𝑖 = 𝑧 𝑗/𝑘. Consider the function 𝑓 (𝑥) = 1 − (1 − 𝑥/𝑘)𝑘 . This
function is larger than 𝑔(𝑥) = 𝛽𝑘𝑥, for all 0 ≤ 𝑥 ≤ 1, as can be easily verified (see Tedium 48.2.3).

Thus,

P
[
𝐶 𝑗 is satisfied

]
= 1 −

𝑘∏
𝑖=1

(1 − 𝑦𝑖) ≥ 𝑓
(
𝑧 𝑗

)
≥ 𝛽𝑘 𝑧 𝑗 .

The second part of the inequality, follows from the fact that 𝛽𝑘 ≥ 1 − 1/𝑒, for all 𝑘 ≥ 0. Indeed, for
𝑘 = 1, 2 the claim trivially holds. Furthermore,

1 −
(
1 − 1

𝑘

) 𝑘
≥ 1 − 1

𝑒
⇔

(
1 − 1

𝑘

) 𝑘
≤ 1

𝑒
,

but this holds since 1 − 𝑥 ≤ 𝑒−𝑥 implies that 1 − 1
𝑘
≤ 𝑒−1/𝑘 , and as such

(
1 − 1

𝑘

) 𝑘 ≤ 𝑒−𝑘/𝑘 = 1/𝑒. ■

Tedium 48.2.3. Consider the two functions

𝑓 (𝑥) = 1 − (1 − 𝑥/𝑘)𝑘 and 𝑔(𝑥) =
(
1 −

(
1 − 1

𝑘

) 𝑘)
𝑥.

We have 𝑓 ′(𝑥) = (1 − 𝑥/𝑘)𝑘−1 and 𝑓 ′′(𝑥) = − 𝑘−1
𝑘
(1 − 𝑥/𝑘)𝑘−2. That is 𝑓 ′′(𝑥) ≤ 0, for 𝑥 ∈ [0, 1]. As such

𝑓 is a concave function.
Observe that 𝑓 (0) = 0 = 𝑔(0) and 𝑓 (1) =

(
1 −

(
1 − 1

𝑘

) 𝑘)
= 𝑔(1). Since 𝑓 is concave, and 𝑔 is linear,

it follows that 𝑓 (𝑥) ≥ 𝑔(𝑥), for all 𝑥 ∈ [0, 1].

Theorem 48.2.4. Given an instance 𝐼 of MAX-SAT, the expected number of clauses satisfied by linear
programming and randomized rounding is at least (1−1/𝑒) ≈ 0.632𝑚opt(𝐼), where 𝑚opt(𝐼) is the maximum
number of clauses that can be satisfied on that instance.

3

Theorem 48.2.5. Given an instance 𝐼 of MAX-SAT, let 𝑛1 be the expected number of clauses satisfied
by randomized assignment, and let 𝑛2 be the expected number of clauses satisfied by linear programming
followed by randomized rounding. Then, max(𝑛1, 𝑛2) ≥ (3/4)∑ 𝑗 𝑧 𝑗 ≥ (3/4)𝑚opt(𝐼).

Proof: It is enough to show that (𝑛1 + 𝑛2)/2 ≥ 3
4
∑

𝑗 𝑧 𝑗 . Let 𝑆𝑘 denote the set of clauses that contain 𝑘

literals. We know that

𝑛1 =
∑︁
𝑘

∑︁
𝐶 𝑗∈𝑆𝑘

(
1 − 2−𝑘

)
≥

∑︁
𝑘

∑︁
𝐶 𝑗∈𝑆𝑘

(
1 − 2−𝑘

)
𝑧 𝑗 .

By Lemma 48.2.2 we have 𝑛2 ≥ ∑
𝑘

∑
𝐶 𝑗∈𝑆𝑘 𝛽𝑘 𝑧 𝑗 . Thus,

𝑛1 + 𝑛2
2 ≥

∑︁
𝑘

∑︁
𝐶 𝑗∈𝑆𝑘

1 − 2−𝑘 + 𝛽𝑘

2 𝑧 𝑗 .

One can verify that
(
1 − 2−𝑘

)
+ 𝛽𝑘 ≥ 3/2, for all 𝑘. ② Thus, we have

𝑛1 + 𝑛2
2 ≥ 3

4
∑︁
𝑘

∑︁
𝐶 𝑗∈𝑆𝑘

𝑧 𝑗 =
3
4
∑︁
𝑗

𝑧 𝑗 . ■

48.3. From previous lectures
Theorem 48.3.1. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables, such that P[𝑋𝑖 = 1] = P[𝑋𝑖 = −1] =
1
2 , for 𝑖 = 1, . . . , 𝑛. Let 𝑌 =

∑𝑛
𝑖=1 𝑋𝑖. Then, for any Δ > 0, we have

P
[
𝑌 ≥ Δ

]
≤ exp

(
−Δ2/2𝑛

)
.

References
[AS00] N. Alon and J. H. Spencer. The probabilistic method. 2nd. Wiley InterScience, 2000.

②Indeed, by the proof of Lemma 48.2.2, we have that 𝛽𝑘 ≥ 1 − 1/𝑒. Thus,
(
1 − 2−𝑘) + 𝛽𝑘 ≥ 2 − 1/𝑒 − 2−𝑘 ≥ 3/2 for

𝑘 ≥ 3. Thus, we only need to check the inequality for 𝑘 = 1 and 𝑘 = 2, which can be done directly.

4

http://www.cs.nyu.edu/cs/faculty/spencer/nogabook/nogabook.html

	The Probabilistic Method
	Introduction
	Examples

	Maximum Satisfiability
	From previous lectures

