
Chapter 47

Expanders III - The Zig Zag Product
By Sariel Har-Peled, April 26, 2022①

Gradually, but not as gradually as it seemed to some parts of his brain, he began to infuse his tones with a sarcastic
wounding bitterness. Nobody outside a madhouse, he tried to imply, could take seriously a single phrase of this
conjectural, nugatory, deluded, tedious rubbish. Within quite a short time he was contriving to sound like an
unusually fanatical Nazi trooper in charge of a book-burning reading out to the crowd excerpts from a pamphlet
written by a pacifist, Jewish, literate Communist. A growing mutter, half-amused, half-indignant, arose about him,
but he closed his ears to it and read on. Almost unconsciously he began to adopt an unnameable foreign accent
and to read faster and faster, his head spinning. As if in a dream he heard Welch stirring, then whispering, then
talking at his side. he began punctuating his discourse with smothered snorts of derision. He read on, spitting out
the syllables like curses, leaving mispronunciations, omissions, spoonerisms uncorrected, turning over the pages of
his script like a score-reader following a presto movement, raising his voice higher and higher. At last he found his
final paragraph confronting him, stopped, and look at his audience.

Kingsley Amis, Lucky Jim

47.1. Building a large expander with constant degree

47.1.1. Notations
For a vertex 𝑣 ∈ 𝑉 (G), we will denote by 𝑣G [𝑖] = 𝑣 [𝑖] the 𝑖th neighbor of 𝑣 in the graph G (we order the
neighbors of a vertex in an arbitrary order).

The regular graphs we next discuss have consistent labeling. That is, for a regular graph G (we
assume here that G is regular). This means that if 𝑢 is the 𝑖th neighbor 𝑣 then 𝑣 is the 𝑖th neighbor of
𝑢. Formally, this means that 𝑣 [𝑖] [𝑖] = 𝑣, for all 𝑣 and 𝑖. This is a non-trivial property, but its easy to
verify that the low quality expander of Theorem 47.4.3 has this property. It is also easy to verify that
the complete graph can be easily be made into having consistent labeling (exercise). These two graphs
would be sufficient for our construction.

47.1.2. The Zig-Zag product
At this point, we know how to construct a good “small” expander. The question is how to build a large
expander (i.e., large number of vertices) and with constant degree.

The intuition of the construction is the following: It is easy to improve the expansion qualities of a
graph by squaring it. The problem is that the resulting graph G has a degree which is too large. To
overcome this, we will replace every vertex in G by a copy of a small graph that is connected and has low
degree. For example, we could replace every vertex of degree 𝑑 in G by a path having 𝑑 vertices. Every
such vertex is now in charge of original edge of the graph. Naturally, such a replacement operation
reduces the quality of the expansion of the resulting graph. In this case, replacing a vertex with a path
is a potential “disaster”, since every such subpath increases the lengths of the paths of the original graph
by a factor of 𝑑 (and intuitively, a good expander have “short” paths between any pair of vertices).

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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G
H

G r©H

Consider a “large” (𝑛, 𝐷)-graph G and a “small” (𝐷, 𝑑)-graph H. As
a first stage, we replace every vertex of G by a copy of H. The new
graph K has J𝑛K × J𝐷K as a vertex set. Here, the edge 𝑣𝑢 ∈ 𝑉 (G), where
𝑢 = 𝑣 [𝑖] and 𝑣 = 𝑢[ 𝑗], is replaced by the edge connecting (𝑣, 𝑖) ∈ 𝑉 (K)
with (𝑢, 𝑗) ∈ 𝑉 (K). We will refer to this resulting edge (𝑣, 𝑖) (𝑢, 𝑗) as a
long edge. Also, we copy all the edges of the small graph to each one
of its copies. That is, for each 𝑖 ∈ J𝑛K, and 𝑢𝑣 ∈ 𝐸 (H), we add the edge
(𝑖, 𝑢) (𝑖, 𝑣) to K, which is a short edge. We will refer to K, which is a
(𝑛𝐷, 𝑑 + 1)-graph, as a replacement product of G and H, denoted by
G r⃝H. See figure on the right for an example.

G r©H
e1

e3

e2

Again, intuitively, we are losing because the ex-
pansion of the resulting graph had deteriorated too
much. To overcome this problem, we will perform
local shortcuts to shorten the paths in the resulting
graph (and thus improve its expansion properties). A
zig-zag-zig path in the replacement product graph
K, is a three edge path 𝑒1𝑒2𝑒3, where 𝑒1 and 𝑒3 are
short edges, and the middle edge 𝑒2 is a long edge.
That is, if 𝑒1 = (𝑖, 𝑢) (𝑖, 𝑣), 𝑒2 = (𝑖, 𝑣) ( 𝑗 , 𝑣′), and
𝑒3 = ( 𝑗 , 𝑣′) ( 𝑗 , 𝑢′), then 𝑒1, 𝑒2, 𝑒3 ∈ 𝐸 (K), 𝑖 𝑗 ∈ 𝐸 (G),
𝑢𝑣 ∈ 𝐸 (H) and 𝑣′𝑢′ ∈ 𝐸 (H). Intuitively, you can
think about 𝑒1 as a small “zig” step in H, 𝑒2 is a long “zag” step in G, and finally 𝑒3 is a “zig” step in H.

Another way of representing a zig-zag-zig path 𝑣1𝑣2𝑣3𝑣4 starting at the vertex 𝑣1 = (𝑖, 𝑣) ∈ 𝑉 (F), is
to parameterize it by two integers ℓ, ℓ′ ∈ J𝑑K, where

𝑣1 = (𝑖, 𝑣), 𝑣2 = (𝑖, 𝑣H [ℓ]) 𝑣3 = (𝑖G [𝑣H [ℓ]] , 𝑣H [ℓ]) 𝑣4 = (𝑖G [𝑣H [ℓ]] , (𝑣H [ℓ])H [ℓ′]).

Let 𝑍 be the set of all (unordered) pairs of vertices of K connected by such a zig-zag-zig path. Note,
that every vertex (𝑖, 𝑣) of K has 𝑑2 paths having (𝑖, 𝑣) as an end point. Consider the graph F = (𝑉 (K), 𝑍).
The graph F has 𝑛𝐷 vertices, and it is 𝑑2 regular. Furthermore, since we shortcut all these zig-zag-zig
paths in K, the graph F is a much better expander (intuitively) than K. We will refer to the graph F as
the zig-zag product of G and H.

Definition 47.1.1. The zig-zag product of (𝑛, 𝐷)-graph G and a (𝐷, 𝑑)-graph H, is the (𝑛𝐷, 𝑑2) graph
F = G z⃝H, where the set of vertices is J𝑛K × J𝐷K and for any 𝑣 ∈ J𝑛K, 𝑖 ∈ J𝐷K, and ℓ, ℓ′ ∈ J𝑑K we have in
F the edge connecting the vertex (𝑖, 𝑣) with the vertex (𝑖G [𝑣H [ℓ]] , (𝑣H [ℓ])H [ℓ′]).

Remark 47.1.2. We need the resulting zig-zag graph to have consistent labeling. For the sake of simplicity
of exposition, we are just going to assume this property.

We next bound the tension of the zig-zag product graph.

Theorem 47.1.3. We have 𝛾(G z⃝H) ≤ 𝛾2(G) (𝛾2(H))2. and 𝛾2(G z⃝H) ≤ 𝛾2(G) (𝛾2(H))2.
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Proof: Let G =
(
J𝑛K, 𝐸

)
be a (𝑛, 𝐷)-graph and H =

(
J𝐷K, 𝐸′) be a (𝐷, 𝑑)-graph. Fix any function

𝑓 : J𝑛K × J𝐷K → R, and observe that

𝜓 = E
𝑢,𝑣∈J𝑛K
𝑘,ℓ∈J𝐷K

[
| 𝑓 (𝑢, 𝑘) − 𝑓 (𝑣, ℓ) |2

]
= E

𝑘,ℓ∈J𝐷K

[
E

𝑢,𝑣∈J𝑛K

[
| 𝑓 (𝑢, 𝑘) − 𝑓 (𝑣, ℓ) |2

] ]

≤ E
𝑘,ℓ∈J𝐷K

[
𝛾2(G) E

𝑢𝑣∈𝐸 (G)

[
| 𝑓 (𝑢, 𝑘) − 𝑓 (𝑣, ℓ) |2

] ]
= 𝛾2(G) E

𝑘,ℓ∈J𝐷K

 E𝑢∈J𝑛K
𝑝∈J𝐷K

[
| 𝑓 (𝑢, 𝑘) − 𝑓 (𝑢[𝑝] , ℓ) |2

]︸                                               ︷︷                                               ︸
=Δ1

.

Now,

Δ1 = E
𝑢∈J𝑛K
ℓ∈J𝐷K

[
E

𝑘,𝑝∈J𝐷K

[
| 𝑓 (𝑢, 𝑘) − 𝑓 (𝑢[𝑝] , ℓ) |2

] ]
≤ E

𝑢∈J𝑛K
ℓ∈J𝐷K

[
𝛾2(H) E

𝑘 𝑝∈𝐸 (H)

[
| 𝑓 (𝑢, 𝑘) − 𝑓 (𝑢[𝑝] , ℓ) |2

] ]

= 𝛾2(H) E
𝑢∈J𝑛K
ℓ∈J𝐷K

 E𝑝∈J𝐷K
𝑗∈J𝑑K

[
| 𝑓 (𝑢, 𝑝[ 𝑗]) − 𝑓 (𝑢[𝑝] , ℓ) |2

]︸                                                  ︷︷                                                  ︸
=Δ2

.

Now,

Δ2 = E
𝑗∈J𝑑K
ℓ∈J𝐷K

 E𝑢∈J𝑛K
𝑝∈J𝐷K

[
| 𝑓 (𝑢, 𝑝[ 𝑗]) − 𝑓 (𝑢[𝑝] , ℓ) |2

] = E
𝑗∈J𝑑K
ℓ∈J𝐷K

 E𝑣∈J𝑛K
𝑝∈J𝐷K

[
| 𝑓 (𝑣 [𝑝] , 𝑝[ 𝑗]) − 𝑓 (𝑣, ℓ) |2

]
= E

𝑗∈J𝑑K
𝑣∈J𝑛K

 E𝑝∈J𝐷K
ℓ∈J𝐷K

[
| 𝑓 (𝑣 [𝑝] , 𝑝[ 𝑗]) − 𝑓 (𝑣, ℓ) |2

]
= 𝛾2(H) E

𝑗∈J𝑑K
𝑣∈J𝑛K

[
E

𝑝ℓ∈𝐸 (H)

[
| 𝑓 (𝑣 [𝑝] , 𝑝[ 𝑗]) − 𝑓 (𝑣, ℓ) |2

] ]
︸                                                    ︷︷                                                    ︸

=Δ3

.

Now, we have

Δ3 = E
𝑗∈J𝑑K
𝑣∈J𝑛K

 E𝑝∈J𝐷K
𝑖∈J𝑑K

[
| 𝑓 (𝑣 [𝑝] , 𝑝[ 𝑗]) − 𝑓 (𝑣, 𝑝[𝑖]) |2

] = E
(𝑢,𝑘) (ℓ,𝑣)∈𝐸 (G z⃝H)

[| 𝑓 (𝑢, 𝑘) − 𝑓 (ℓ, 𝑣) |] ,

as (𝑣 [𝑝] , 𝑝[ 𝑗]) is adjacent to (𝑣 [𝑝] , 𝑝) (a short edge), which is in turn adjacent to (𝑣, 𝑝) (a long edge),
which is adjacent to (𝑣, 𝑝[𝑖]) (a short edge). Namely, (𝑣 [𝑝] , 𝑝[ 𝑗]) and (𝑣, 𝑝[𝑖]) form the endpoints
of a zig-zag path in the replacement product of G and H. That is, these two endpoints are connected
by an edge in the zig-zag product graph. Furthermore, it is easy to verify that each zig-zag edge
get accounted for in this representation exactly once, implying the above inequality. Thus, we have
𝜓 ≤ 𝛾2(G) (𝛾2(H))2Δ3, which implies the claim.

The second claim follows by similar argumentation. ■
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47.1.3. Squaring
The last component in our construction, is squaringsquaring!graph a graph. Given a (𝑛, 𝑑)-graph G,
consider the multigraph G2 formed by connecting any vertices connected in G by a path of length 2.
Clearly, if M is the adjacency matrix of G, then the adjacency matrix of G2 is the matrix M2. Note, that(
M2)

𝑖 𝑗
is the number of distinct paths of length 2 in G from 𝑖 to 𝑗 . Note, that the new graph might have

self loops, which does not effect our analysis, so we keep them in.
Lemma 47.1.4. Let G be a (𝑛, 𝑑)-graph. The graph G2 is a (𝑛, 𝑑2)-graph. Furthermore 𝛾2

(
G2) =

(𝛾2 (G))2
2𝛾2 (G)−1 .

Proof: The graph G2 has eigenvalues
(
𝜆1(G)

)2
, . . . ,

(
𝜆1(G)

)2
for its matrix Q2. As such, we have that

𝜆
(
G2) = max

(
𝜆2

(
G2) ,−𝜆𝑛 (G2) ) .

Now, 𝜆1
(
G2) = 1. Now, if 𝜆2(G) ≥

���𝜆𝑛 (G)��� < 1 then 𝜆
(
G2) = 𝜆2

(
G2) = (

𝜆2(G)
)2

=

(
𝜆(G)

)2
.

If 𝜆2(G) <
���𝜆𝑛 (G)��� then 𝜆

(
G2) = 𝜆2

(
G2) = (

𝜆𝑛 (G)
)2

=

(
𝜆(G)

)2
..

Thus, in either case 𝜆
(
G2) =

(
𝜆(G)

)2
. Now, By Lemma 47.4.1 𝛾2(G) = 1

1−𝜆(G)
, which implies that

𝜆(G) = 1 − 1/𝛾2(G), and thus

𝛾2
(
G2) = 1

1 − 𝜆(G2)
=

1

1 −
(
𝜆(G)

)2 =
1

1 −
(
1 − 1

𝛾2 (G)

)2 =
𝛾2(G)

2 − 1
𝛾2 (G)

=
(𝛾2(G))2

2𝛾2(G) − 1 . ■

47.1.4. The construction
So, let build an expander using Theorem 47.4.3, with parameters 𝑟 = 7 𝑞 = 24 = 32. Let 𝑑 = 𝑞2 = 256.
The resulting graph H has 𝑁 = 𝑞𝑟+1 = 𝑑4 vertices, and it is 𝑑 = 𝑞2 regular. Furthermore, 𝜆𝑖 ≤ 𝑟/𝑞 = 7/32,
for all 𝑖 ≥ 2. As such, we have

𝛾(H) = 𝛾2(H) =
1

1 − 7/32 =
32
25 .

Let G0 be any graph that its square is the complete graph over 𝑛0 = 𝑁 + 1 vertices. Observe that G2
0 is

𝑑4-regular. Set G𝑖 =
(
G2
𝑖−1 z⃝H

)
, Clearly, the graph G𝑖 has

𝑛𝑖 = 𝑛𝑖−1𝑁

vertices. The graph G2
𝑖−1 z⃝H is 𝑑2 regular. As far as the bi-tension, let 𝛼𝑖 = 𝛾2(G𝑖). We have that

𝛼𝑖 =
𝛼2
𝑖−1

2𝛼𝑖−1 − 1 (𝛾2(H))2 =
𝛼2
𝑖−1

2𝛼𝑖−1 − 1

(
32
25

)2
≤ 1.64

𝛼2
𝑖−1

2𝛼𝑖−1 − 1 .

It is now easy to verify, that 𝛼𝑖 can not be bigger than 5.
Theorem 47.1.5. For any 𝑖 ≥ 0, one can compute deterministically a graph 𝐺𝑖 with 𝑛𝑖 = (𝑑4 + 1)𝑑4𝑖

vertices, which is 𝑑2 regular, where 𝑑 = 256. The graph 𝐺𝑖 is a (1/10)-expander.

Proof: The construction is described above. As for the expansion, since the bi-tension bounds the
tension of a graph, we have that 𝛾(G𝑖) ≤ 𝛾2(G𝑖) ≤ 5. Now, by Lemma 47.4.2, we have that G𝑖 is a
𝛿-expander, where 𝛿 ≥ 1/(2𝛾(G𝑖)) ≥ 1/10. ■
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47.2. Bibliographical notes

A good survey on expanders is the monograph by Hoory et al. [HLW06]. The small expander construc-
tion is from the paper by Alon et al. [ASS08] (but its originally from the work by Along and Roichman
[AR94]). The work by Alon et al. [ASS08] contains a construction of an expander that is constant de-
gree, which is of similar complexity to the one we presented here. Instead, we used the zig-zag expander
construction from the influential work of Reingold et al. [RVW02]. Our analysis however, is from an
upcoming paper by Mendel and Naor [MN08]. This analysis is arguably reasonably simple (as simplicity
is in the eye of the beholder, we will avoid claim that its the simplest), and (even better) provide a good
intuition and a systematic approach to analyzing the expansion.

We took a creative freedom in naming notations, and the name tension and bi-tension are the author’s
own invention.

47.3. Exercises

Exercise 47.3.1 (Expanders made easy.). By considering a random bipartite three-regular graph on
2𝑛 vertices obtained by picking three random permutations between the two sides of the bipartite graph,
prove that there is a 𝑐 > 0 such that for every 𝑛 there exits a (2𝑛, 3, 𝑐)-expander. (What is the value of
𝑐 in your construction?)

Exercise 47.3.2 (Is your consistency in vain?). In the construction, we assumed that the graphs we
are dealing with when building expanders have consistent labeling. This can be enforced by working
with bipartite graphs, which implies modifying the construction slightly.
(A) Prove that a 𝑑-regular bipartite graph always has a consistent labeling (hint: consider matchings

in this graph).
(B) Prove that if G is bipartite so is the graph G3 (the cubed graph).
(C) Let G be a (𝑛, 𝐷)-graph and let H be a (𝐷, 𝑑)-graph. Prove that if G is bipartite then GG z⃝H is

bipartite.
(D) Describe in detail a construction of an expander that is: (i) bipartite, and (ii) has consistent

labeling at every stage of the construction (prove this property if necessary). For the 𝑖th graph
in your series, what is its vertex degree, how many vertices it has, and what is the quality of
expansion it provides?

Exercise 47.3.3 (Tension and bi-tension.). [30 points]
Disprove (i.e., give a counter example) that there exists a universal constant 𝑐, such that for any

connected graph G, we have that 𝛾(G) ≤ 𝛾2(G) ≤ 𝑐𝛾(G).
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47.4. From previous lectures

Lemma 47.4.1. Let G = (𝑉, 𝐸) be a connected 𝑑-regular graph with 𝑛 vertices. Then 𝛾2(G) =
1

1 − 𝜆
,

where 𝜆 = 𝜆(G), where 𝜆(G) = max
(
𝜆2,−𝜆𝑛

)
, where 𝜆𝑖 is the 𝑖th largest eigenvalue of the random walk

matrix associated with G.

Lemma 47.4.2. Let G = (𝑉, 𝐸) be a given connected 𝑑-regular graph with 𝑛 vertices. Then, G is a
𝛿-expander, where 𝛿 ≥ 1

2𝛾(G) and 𝛾(G) is the tension of G.

Theorem 47.4.3. For any 𝑡 > 0, 𝑟 > 0 and 𝑞 = 2𝑡, where 𝑟 < 𝑞, we have that LD(𝑞, 𝑟) is a graph with
𝑞𝑟+1 vertices. Furthermore, 𝜆1(LD(𝑞, 𝑟)) = 𝑞2, and 𝜆𝑖 (LD(𝑞, 𝑟)) ≤ 𝑟𝑞, for 𝑖 = 2, . . . , 𝑛.

In particular, if 𝑟 ≤ 𝑞/2, then LD(𝑞, 𝑟) is a
[
𝑞𝑟+1, 𝑞2, 1

4
]
-expander.
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