
Chapter 46

Expanders II
By Sariel Har-Peled, April 26, 2022① Be that as it may, it is to night school that I owe

what education I possess; I am the first to own
that it doesn’t amount to much, though there is
something rather grandiose about the gaps in it.

Gunter Grass, The tin drum

46.1. Bi-tension
Our construction of good expanders, would use the idea of composing graphs together. To this end, in
our analysis, we will need the notion of bi-tension. Let Ẽ(G) be the set of directed edges of G; that is,
every edge 𝑥𝑦 ∈ 𝐸 (G) appears twice as (𝑥 → 𝑦) and (𝑦 → 𝑥) in Ẽ.

Definition 46.1.1. For a graph G, let 𝛾2(G) denote the bi-tension of G; that is, the smallest constant,
such that for any two function 𝑓 , 𝑔 : 𝑉 (G) → R, we have that

E
𝑥,𝑦∈𝑉

[
| 𝑓 (𝑥) − 𝑔(𝑦) |2

]
≤ 𝛾2(G) E

(𝑥→𝑦)∈Ẽ

[
| 𝑓 (𝑥) − 𝑔(𝑦) |2

]
. (46.1)

The proof of the following lemma is similar to the proof of Lemma 46.3.1. The proof is provided for
the sake of completeness, but there is little new in it.

Lemma 46.1.2. Let G = (𝑉, 𝐸) be a connected 𝑑-regular graph with 𝑛 vertices. Then 𝛾2(G) =
1

1 − 𝜆
,

where 𝜆 = 𝜆(G), where 𝜆(G) = max
(
𝜆2,−𝜆𝑛

)
, where 𝜆𝑖 is the 𝑖th largest eigenvalue of the random walk

matrix associated with G.

Proof: We can assume that E[ 𝑓 (𝑥)] = 0. As such, we have that

E
𝑥,𝑦∈𝑉

[
| 𝑓 (𝑥) − 𝑔(𝑦) |2

]
= E

𝑥,𝑦∈𝑉

[
( 𝑓 (𝑥))2] − 2 E

𝑥,𝑦∈𝑉
[ 𝑓 (𝑥)𝑔(𝑦)] + E

𝑦∈𝑉

[
(𝑔(𝑦))2] = E

𝑥,𝑦∈𝑉

[
( 𝑓 (𝑥))2] + E

𝑦∈𝑉

[
(𝑔(𝑦))2] .

(46.2)

Let Q be the matrix associated with the random walk on G (each entry is either zero or 1/𝑑), we
have

𝜌 = E
(𝑥→𝑦)∈Ẽ

[
| 𝑓 (𝑥) − 𝑔(𝑦) |2

]
=

1
𝑛𝑑

∑︁
(𝑥→𝑦)∈Ẽ

( 𝑓 (𝑥) − 𝑔(𝑦))2 =
1
𝑛

∑︁
𝑥,𝑦∈𝑉

Q𝑥𝑦 ( 𝑓 (𝑥) − 𝑔(𝑦))2

=
1
𝑛

∑︁
𝑥∈𝑉

(
( 𝑓 (𝑥))2 + (𝑔(𝑥))2

)
− 2
𝑛

∑︁
𝑥,𝑦∈𝑉

Q𝑥𝑦 𝑓 (𝑥)𝑔(𝑦).

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


Let B(Q) = ⟨𝑣1, . . . , 𝑣𝑛⟩ be the orthonormal eigenvector basis defined by Q (see Definition 46.3.3), with
eigenvalues 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛, respectively. Write 𝑓 =

∑𝑛
𝑖=1 𝛼𝑖𝑣𝑖 and 𝑔 =

∑𝑛
𝑖=1 𝛽𝑖𝑣𝑖. Since E[ 𝑓 (𝑥)] = 0,

we have that 𝛼1 = 0. Now, Q𝑥𝑦 = Q𝑦𝑥, and we have∑︁
𝑥,𝑦∈𝑉

Q𝑥𝑦 𝑓 (𝑥)𝑔(𝑦) =
∑︁
𝑥,𝑦∈𝑉

Q𝑦𝑥

(∑︁
𝑖

𝛼𝑖𝑣𝑖 (𝑥)
) (∑︁

𝑗

𝛽 𝑗𝑣 𝑗 (𝑦)
)
=

∑︁
𝑖, 𝑗

𝛼𝑖𝛽 𝑗

∑︁
𝑦∈𝑉

𝑣 𝑗 (𝑦)
∑︁
𝑥∈𝑉

Q𝑦𝑥𝑣𝑖 (𝑥)

=
∑︁
𝑖, 𝑗

𝛼𝑖𝛽 𝑗

∑︁
𝑦∈𝑉

𝑣 𝑗 (𝑦)
(
𝜆𝑖𝑣𝑖 (𝑦)

)
=

∑︁
𝑖, 𝑗

𝛼𝑖𝛽 𝑗𝜆𝑖
〈
𝑣 𝑗 , 𝑣𝑖

〉
=

𝑛∑︁
𝑖=2

𝛼𝑖𝛽𝑖𝜆𝑖

∑︁
𝑦∈𝑉

(𝑣𝑖 (𝑦))2

≤ 𝜆

𝑛∑︁
𝑖=2

𝛼2
𝑖
+ 𝛽2

𝑖

2
∑︁
𝑦∈𝑉

(𝑣𝑖 (𝑦))2 ≤ 𝜆

2

𝑛∑︁
𝑖=1

∑︁
𝑦∈𝑉

(
(𝛼𝑖𝑣𝑖 (𝑦))2 + (𝛽𝑖𝑣𝑖 (𝑦))2

)
=
𝜆

2
∑︁
𝑦∈𝑉

(
( 𝑓 (𝑦))2 + (𝑔(𝑦))2

)
As such,

E
(𝑥→𝑦)∈Ẽ

[
| 𝑓 (𝑥) − 𝑔(𝑦) |2

]
=

1
𝑛𝑑

∑︁
(𝑥→𝑦)∈Ẽ

| 𝑓 (𝑥) − 𝑔(𝑦) |2 =
1
𝑛

∑︁
𝑦∈𝑉

(
( 𝑓 (𝑦))2 + (𝑔(𝑦))2

)
− 1
𝑛

∑︁
𝑥,𝑦∈𝑉

2 𝑓 (𝑥)𝑔(𝑦)
𝑑

=
1
𝑛

∑︁
𝑦∈𝑉

(
( 𝑓 (𝑦))2 + (𝑔(𝑦))2

)
− 2
𝑛

∑︁
𝑥,𝑦∈𝑉

Q𝑥𝑦 𝑓 (𝑥)𝑔(𝑦)

≥
(
1
𝑛
− 2
𝑛
· 𝜆2

) ∑︁
𝑦∈𝑉

(
( 𝑓 (𝑦))2 + (𝑔(𝑦))2

)
=

(
1 − 𝜆

) (
E
𝑦∈𝑉

[
( 𝑓 (𝑦))2] + E

𝑦∈𝑉

[
(𝑔(𝑦))2] )

=

(
1 − 𝜆

)
E

𝑥,𝑦∈𝑉

[
| 𝑓 (𝑥) − 𝑔(𝑦) |2

]
,

by Eq. (46.2). This implies that 𝛾2(G) ≤ 1/
(
1 − 𝜆

)
. Again, by trying either 𝑓 = 𝑔 = 𝑣2 or 𝑓 = 𝑣𝑛

and 𝑔 = −𝑣𝑛, we get that the inequality above holds with equality, which implies 𝛾2(G) ≥ 1/
(
1 − 𝜆

)
.

Together, the claim now follows. ■

46.2. Explicit construction
For a set 𝑈 ⊆ 𝑉 of vertices, its characteristic vector , denoted by 𝑥 = 𝜒𝑈 , is the 𝑛 dimensional vector,
where 𝑥𝑖 = 1 if and only if 𝑖 ∈ 𝑈.

The following is an easy consequence of Lemma 46.3.2.

Lemma 46.2.1. For a 𝑑-regular graph G the vector 1𝑛 = (1, 1, . . . , 1) is the only eigenvector with
eigenvalue 𝑑 (of the adjacency matrix M(G), if and only if G is connected. Furthermore, we have
|𝜆𝑖 | ≤ 𝑑, for all 𝑖.

Our main interest would be in the second largest eigenvalue of M. Formally, let

𝜆2(G) = max
𝑥⊥1𝑛,𝑥≠0

���� ⟨𝑥M, 𝑥⟩
⟨𝑥, 𝑥⟩

���� .
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We state the following result but do not prove it since we do not need it for our nafarious purposes
(however, we did prove the left side of the inequality).

Theorem 46.2.2. Let G be a 𝛿-expander with adjacency matrix M and let 𝜆2 = 𝜆2(G) be the second-
largest eigenvalue of M. Then

1
2

(
1 − 𝜆2

𝑑

)
≤ 𝛿 ≤

√︄
2
(
1 − 𝜆2

𝑑

)
.

What the above theorem says, is that the expansion of a [𝑛, 𝑑, 𝛿]-expander is a function of how far
is its second eigenvalue (i.e., 𝜆2) from its first eigenvalue (i.e., 𝑑). This is usually referred to as the
spectral gap.

We will start by explicitly constructing an expander that has “many” edges, and then we will show
to reduce its degree till it become a constant degree expander.

46.2.1. Explicit construction of a small expander

46.2.1.1. A quicky reminder of fields

A field is a set F together with two operations, called addition and multiplication, and denoted by +
and ·, respectively, such that the following axioms hold:

(i) Closure: ∀𝑥, 𝑦 ∈ F, we have 𝑥 + 𝑦 ∈ F and 𝑥 · 𝑦 ∈ F.
(ii) Associativity: ∀𝑥, 𝑦, 𝑧 ∈ F, we have 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 and (𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · 𝑧).
(iii) Commutativity: ∀𝑥, 𝑦 ∈ F, we have 𝑥 + 𝑦 = 𝑦 + 𝑥 and 𝑥 · 𝑦 = 𝑦 · 𝑥.
(iv) Identity: There exists two distinct special elements 0, 1 ∈ F. We have that ∀𝑥 ∈ F it holds 𝑥 +0 = 𝑎

and 𝑥 · 1 = 𝑥.
(v) Inverse: There exists two distinct special elements 0, 1 ∈ F, and we have that ∀𝑥 ∈ F there exists

an element −𝑥 ∈ F, such that 𝑥 + (−𝑥) = 0.
Similarly, ∀𝑥 ∈ F, 𝑥 ≠ 0, there exists an element 𝑦 = 𝑥−1 = 1/𝑥 ∈ F such that 𝑥 · 𝑦 = 1.

(vi) Distributivity: ∀𝑥, 𝑦, 𝑧 ∈ F we have 𝑥 · (𝑦 + 𝑧) = 𝑥 · 𝑦 + 𝑥 · 𝑧.
Let 𝑞 = 2𝑡 , and 𝑟 > 0 be an integer. Consider the finite field F𝑞. It is the field of polynomials

of degree at most 𝑡 − 1, where the coefficients are over Z2 (i.e., all calculations are done modulus 2).
Formally, consider the polynomial

𝑝(𝑥) = 𝑥𝑡 + 𝑥 + 1.

It it irreducible over F2 = {0, 1} (i.e., 𝑝(0) = 𝑝(1) ≠ 0). We can now do polynomial arithmetic over
polynomials (with coefficients from F2), where we do the calculations modulus 𝑝(𝑥). Note, that any
irreducible polynomial of degree 𝑛 yields the same field up to isomorphism. Intuitively, we are introducing
the 𝑛 distinct roots of 𝑝(𝑥) into F by creating an extension field of F with those roots.

An element of F𝑞 = F2𝑡 can be interpreted as a binary string 𝑏 = 𝑏0𝑏1 . . . , 𝑏𝑡−1 of length 𝑡, where the
corresponding polynomial is

poly(𝑏) =
𝑡−1∑︁
𝑖=0

𝑏𝑖𝑥
𝑖 .

The nice property of F𝑞 is that addition can be interpreted as a xor operation. That is, for any 𝑥, 𝑦 ∈ F𝑞,
we have that 𝑥 + 𝑦 + 𝑦 = 𝑥 and 𝑥 − 𝑦 − 𝑦 = 𝑥. The key properties of F𝑞 we need is that multiplications
and addition can be computed in it in polynomial time in 𝑡, and it is a field (i.e., each non-zero element
has a unique inverse).
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46.2.1.1.1. Computing multiplication in F𝑞. Consider two elements 𝛼, 𝛽 ∈ F𝑞. Multiply the two
polynomials poly(𝛼) by poly(𝛽), let poly(𝛾) be the resulting polynomial (of degree at most 2𝑡 − 2), and
compute the remainder poly(𝛽) when dividing it by the irreducible polynomial 𝑝(𝑥). For this remainder
polynomial, normalize the coefficients by computing their modules base 2. The resulting polynomial is
the product of 𝛼 and 𝛽.

For more details on this field, see any standard text on abstract algebra.

46.2.1.2. The construction

Let 𝑞 = 2𝑡 , and 𝑟 > 0 be an integer. Consider the linear space G = F 𝑟𝑞 . Here, a member 𝛼 = (𝛼0, . . . , 𝛼𝑟) ∈
G can be thought of as being a string (of length 𝑟 + 1) over F𝑞, or alternatively, as a binary string of
length 𝑛 = 𝑡 (𝑟 + 1).

For 𝛼 = (𝛼0, . . . , 𝛼𝑟) ∈ G, and 𝑥, 𝑦 ∈ F𝑞, define the operator

𝜌(𝛼, 𝑥, 𝑦) = 𝛼 + 𝑦 ·
(
1, 𝑥, 𝑥2, . . . , 𝑥𝑟

)
=

(
𝛼0 + 𝑦, 𝛼1 + 𝑦𝑥, 𝛼2 + 𝑦𝑥2, . . . , 𝛼𝑟 + 𝑦𝑥𝑟

)
∈ G.

Since addition over F𝑞 is equivalent to a xor operation we have that

𝜌(𝜌(𝛼, 𝑥, 𝑦), 𝑥, 𝑦) =
(
𝛼0 + 𝑦 + 𝑦, 𝛼1 + 𝑦𝑥 + 𝑦𝑥, 𝛼2 + 𝑦𝑥2 + 𝑦𝑥2, . . . , 𝛼𝑟 + 𝑦𝑥𝑟 + 𝑦𝑥𝑟

)
= (𝛼0, 𝛼1, 𝛼2, . . . , 𝛼𝑟) = 𝛼.

Furthermore, if (𝑥, 𝑦) ≠ (𝑥′, 𝑦′) then 𝜌(𝛼, 𝑥, 𝑦) ≠ 𝜌(𝛼, 𝑥′, 𝑦′).
We now define a graph LD(𝑞, 𝑟) = (G, 𝐸), where

𝐸 =

{
𝛼𝛽

���� 𝛼 ∈ G, 𝑥, 𝑦 ∈ F𝑞
𝛽 = 𝜌(𝛼, 𝑥, 𝑦)

}
Note, that this graph is well defined, as 𝜌(𝛽, 𝑥, 𝑦) = 𝛼. The degree of a vertex of LD(𝑞, 𝑟) is

��F𝑞 ��2 = 𝑞2,
and LD(𝑞, 𝑟) has 𝑁 = |G| = 𝑞𝑟+1 = 2𝑡 (𝑟+1) = 2𝑛 vertices.

Theorem 46.2.3. For any 𝑡 > 0, 𝑟 > 0 and 𝑞 = 2𝑡, where 𝑟 < 𝑞, we have that LD(𝑞, 𝑟) is a graph with
𝑞𝑟+1 vertices. Furthermore, 𝜆1(LD(𝑞, 𝑟)) = 𝑞2, and 𝜆𝑖 (LD(𝑞, 𝑟)) ≤ 𝑟𝑞, for 𝑖 = 2, . . . , 𝑛.

In particular, if 𝑟 ≤ 𝑞/2, then LD(𝑞, 𝑟) is a
[
𝑞𝑟+1, 𝑞2, 1

4
]
-expander.

Proof: Let M be the 𝑁 × 𝑁 adjacency matrix of LD(𝑞, 𝑟). Let 𝐿 : F𝑞 → {0, 1} be a linear map which is
onto. It is easy to verify that

��𝐿−1(0)
�� = ��𝐿−1(1)

��②
We are interested in the eigenvalues of the matrix M. To this end, we consider vectors in R𝑁 . The

𝑖th row an 𝑖th column of M is associated with a unique element 𝑏𝑖 ∈ G. As such, for a vector 𝑣 ∈ R𝑁 ,
we denote by 𝑣 [𝑏𝑖] the 𝑖th coordinate of 𝑣. In particular, for 𝛼 = (𝛼0, . . . , 𝛼𝑟) ∈ G, let 𝑣𝛼 ∈ R𝑁 denote
the vector, where its 𝛽 = (𝛽0, . . . , 𝛽𝑟) ∈ G coordinate is

𝑣𝛼 [𝛽] = (−1)𝐿(
∑𝑟

𝑖=0 𝛼𝑖 𝛽𝑖) .

Let 𝑉 =
{
𝑣𝛼

��𝛼 ∈ G
}
. For 𝛼 ≠ 𝛼′ ∈ 𝑉 , observe that

⟨𝑣𝛼, 𝑣𝛼′⟩ =
∑︁
𝛽∈G

(−1)𝐿(
∑𝑟

𝑖=0 𝛼𝑖 𝛽𝑖) · (−1)𝐿(
∑𝑟

𝑖=0 𝛼
′
𝑖
𝛽𝑖) =

∑︁
𝛽∈G

(−1)𝐿(
∑𝑟

𝑖=0(𝛼𝑖+𝛼′
𝑖) 𝛽𝑖) =

∑︁
𝛽∈G

𝑣𝛼+𝛼′ [𝛽] .

②Indeed, if 𝑍 = 𝐿−1 (0), and 𝐿 (𝑥) = 1, then 𝐿 (𝑦) = 1, for all 𝑦 ∈ 𝑈 =
{
𝑥 + 𝑧

�� 𝑧 ∈ 𝑍
}
. Now, its clear that |𝑍 | = |𝑈 |.
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So, consider 𝜓 = 𝛼 + 𝛼′ ≠ 0. Assume, for the simplicity of exposition that all the coordinates of 𝜓 are
non-zero. We have, by the linearity of 𝐿 that

⟨𝑣𝛼, 𝑣𝛼′⟩ =
∑︁
𝛽∈G

(−1)𝐿(
∑𝑟

𝑖=0 𝛼𝑖 𝛽𝑖) =
∑︁

𝛽0∈F𝑞 ,...,𝛽𝑟−1∈F𝑞
(−1)𝐿 (𝜓0 𝛽0+···+𝜓𝑟−1 𝛽𝑟−1)

∑︁
𝛽𝑟∈F𝑞

(−1)𝐿 (𝜓𝑟 𝛽𝑟 ) .

However, since 𝜓𝑟 ≠ 0, the quantity
{
𝜓𝑟𝛽𝑟

�� 𝛽𝑟 ∈ F𝑞 } = F𝑞. Thus, the summation
∑

𝛽𝑟∈F𝑞 (−1)𝐿 (𝜓𝑟 𝛽𝑟 ) gets��𝐿−1(0)
�� terms that are 1, and

��𝐿−1(0)
�� terms that are −1. As such, this summation is zero, implying

that ⟨𝑣𝛼, 𝑣𝛼′⟩ = 0. Namely, the vectors of 𝑉 are orthogonal.
Observe, that for 𝛼, 𝛽, 𝜓 ∈ G, we have 𝑣𝛼 [𝛽 + 𝜓] = 𝑣𝛼 [𝛽] 𝑣𝛼 [𝜓]. For 𝛼 ∈ G, consider the vector M𝑣𝛼.

We have, for 𝛽 ∈ G, that

(M𝑣𝛼) [𝛽] =
∑︁
𝜓∈G

M𝛽𝜓 · 𝑣𝛼 [𝜓] =
∑︁

𝑥,𝑦 ∈ F𝑞
𝜓=𝜌(𝛽,𝑥,𝑦)

𝑣𝛼 [𝜓] =
∑︁

𝑥,𝑦 ∈ F𝑞
𝑣𝛼 [𝛽 + 𝑦(1, 𝑥, . . . , 𝑥𝑟)]

=
©­«

∑︁
𝑥,𝑦 ∈ F𝑞

𝑣𝛼 [𝑦(1, 𝑥, . . . , 𝑥𝑟)]ª®¬ · 𝑣𝛼 [𝛽] .
Thus, setting 𝜆(𝛼) = ∑

𝑥,𝑦 ∈ F𝑞 𝑣𝛼 [𝑦(1, 𝑥, . . . , 𝑥𝑟)] ∈ R, we have that M𝑣𝛼 = 𝜆(𝛼) · 𝑣𝛼. Namely, 𝑣𝛼 is an
eigenvector, with eigenvalue 𝜆(𝛼).

Let 𝑝𝛼 (𝑥) =
∑𝑟

𝑖=0 𝛼𝑖𝑥
𝑖, and let

𝜆(𝛼) =
∑︁

𝑥,𝑦 ∈ F𝑞
𝑣𝛼 [𝑦(1, 𝑥, . . . , 𝑥𝑟)] ∈ R =

∑︁
𝑥,𝑦∈F𝑞

(−1)𝐿 (𝑦𝑝𝛼 (𝑥))

=
∑︁

𝑥,𝑦∈F𝑞
𝑝𝛼 (𝑥)=0

(−1)𝐿 (𝑦 𝑝𝛼 (𝑥)) +
∑︁

𝑥,𝑦∈F𝑞
𝑝𝛼 (𝑥)≠0

(−1)𝐿 (𝑦 𝑝𝛼 (𝑥)) .

If 𝑝𝛼 (𝑥) = 0 then (−1)𝐿 (𝑦 𝑝𝛼 (𝑥)) = 1, for all 𝑦. As such, each such 𝑥 contributes 𝑞 to 𝜆(𝛼).
If 𝑝𝛼 (𝑥) ≠ 0 then 𝑦 𝑝𝛼 (𝑥) takes all the values of F𝑞, and as such, 𝐿 (𝑦 𝑝𝛼 (𝑥)) is 0 for half of these

values, and 1 for the other half. Implying that these kind terms contribute 0 to 𝜆(𝛼). But 𝑝𝛼 (𝑥) is a
polynomial of degree 𝑟, and as such there could be at most 𝑟 values of 𝑥 for which the first term is taken.
As such, if 𝛼 ≠ 0 then 𝜆(𝛼) ≤ 𝑟𝑞. If 𝛼 = 0 then 𝜆(𝛼) = 𝑞2, which implies the theorem. ■

This construction provides an expander with constant degree only if the number of vertices is a
constant. Indeed, if we want an expander with constant degree, we have to take 𝑞 to be as small as
possible. We get the relation 𝑛 = 𝑞𝑟+1 ≤ 𝑞𝑞, since 𝑟 ≤ 𝑟, which implies that 𝑞 = Ω(log 𝑛/log log 𝑛). Now,
the expander of Theorem 46.2.3 is 𝑞2-regular, which means that it is not going to provide us with a
constant degree expander.

However, we are going to use it as our building block in a construction that would start with this
expander and would inflate it up to the desired size.

46.3. From previous lectures

Lemma 46.3.1. Let G = (𝑉, 𝐸) be a given connected 𝑑-regular graph with 𝑛 vertices. Then 𝛾(G) = 1
1−𝜆2

,
where 𝜆2 = 𝜆2/𝑑 is the second largest eigenvalue of Q.
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Lemma 46.3.2. Let G be an undirected graph, and let Δ denote the maximum degree in G. Then,���𝜆1(G)
��� = ���𝜆1(M)

��� = Δ if and only one connected component of G is Δ-regular. The multiplicity of Δ as

an eigenvector is the number of Δ-regular connected components. Furthermore, we have
���𝜆𝑖 (G)��� ≤ Δ, for

all 𝑖.

Definition 46.3.3. Given a random walk matrix Q associated with a 𝑑-regular graph, let B(Q) = ⟨𝑣1, . . . , 𝑣𝑛⟩
denote the orthonormal eigenvector basis defined by Q. That is, 𝑣1, . . . , 𝑣𝑛 is an orthonormal basis
for R𝑛, where all these vectors are eigenvectors of Q and 𝑣1 = 1𝑛/

√
𝑛. Furthermore, let 𝜆𝑖 denote the 𝑖th

eigenvalue of Q, associated with the eigenvector 𝑣𝑖, such that 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛.
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