Chapter 46

Expanders II

By Sariel Har-Peled, April 26, 2022¹

Be that as it may, it is to night school that I owe what education I possess; I am the first to own that it doesn't amount to much, though there is something rather grandiose about the gaps in it.

Gunter Grass, The tin drum

46.1. Bi-tension

Our construction of good expanders, would use the idea of composing graphs together. To this end, in our analysis, we will need the notion of bi-tension. Let $\widetilde{\mathsf{E}}(\mathsf{G})$ be the set of *directed* edges of G ; that is, every edge $xy \in E(\mathsf{G})$ appears twice as $(x \to y)$ and $(y \to x)$ in $\widetilde{\mathsf{E}}$.

Definition 46.1.1. For a graph G, let $\gamma_2(G)$ denote the *bi-tension* of G; that is, the smallest constant, such that for any two function $f, g: V(G) \to \mathbb{R}$, we have that

$$\mathbb{E}_{x,y\in V}\left[|f(x) - g(y)|^2\right] \le \gamma_2(\mathsf{G}) \mathbb{E}_{(x\to y)\in\widetilde{\mathsf{E}}}\left[|f(x) - g(y)|^2\right].$$
(46.1)

The proof of the following lemma is similar to the proof of Lemma 46.3.1. The proof is provided for the sake of completeness, but there is little new in it.

Lemma 46.1.2. Let G = (V, E) be a connected *d*-regular graph with *n* vertices. Then $\gamma_2(G) = \frac{1}{1 - \hat{\lambda}}$, where $\hat{\lambda} = \hat{\lambda}(G)$, where $\hat{\lambda}(G) = \max(\hat{\lambda}_2, -\hat{\lambda}_n)$, where $\hat{\lambda}_i$ is the *i*th largest eigenvalue of the random walk matrix associated with G.

Proof: We can assume that $\mathbb{E}[f(x)] = 0$. As such, we have that

$$\mathbb{E}_{x,y\in V}\left[|f(x) - g(y)|^2\right] = \mathbb{E}_{x,y\in V}\left[(f(x))^2\right] - 2\mathbb{E}_{x,y\in V}\left[f(x)g(y)\right] + \mathbb{E}_{y\in V}\left[(g(y))^2\right] = \mathbb{E}_{x,y\in V}\left[(f(x))^2\right] + \mathbb{E}_{y\in V}\left[(g(y))^2\right].$$
(46.2)

Let Q be the matrix associated with the random walk on G (each entry is either zero or 1/d), we have

$$\rho = \mathop{\mathbb{E}}_{(x \to y) \in \widetilde{\mathsf{E}}} \left[|f(x) - g(y)|^2 \right] = \frac{1}{nd} \sum_{(x \to y) \in \widetilde{\mathsf{E}}} (f(x) - g(y))^2 = \frac{1}{n} \sum_{x, y \in V} \mathsf{Q}_{xy} (f(x) - g(y))^2$$
$$= \frac{1}{n} \sum_{x \in V} \left((f(x))^2 + (g(x))^2 \right) - \frac{2}{n} \sum_{x, y \in V} \mathsf{Q}_{xy} f(x) g(y).$$

[®]This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Let $\mathcal{B}(\mathsf{Q}) = \langle v_1, \ldots, v_n \rangle$ be the orthonormal eigenvector basis defined by Q (see Definition 46.3.3), with eigenvalues $\widehat{\lambda}_1 \geq \widehat{\lambda}_2 \geq \cdots \geq \widehat{\lambda}_n$, respectively. Write $f = \sum_{i=1}^n \alpha_i v_i$ and $g = \sum_{i=1}^n \beta_i v_i$. Since $\mathbb{E}[f(x)] = 0$, we have that $\alpha_1 = 0$. Now, $\mathsf{Q}_{xy} = \mathsf{Q}_{yx}$, and we have

$$\begin{split} \sum_{x,y\in V} \mathsf{Q}_{xy} f(x) g(y) &= \sum_{x,y\in V} \mathsf{Q}_{yx} \left(\sum_{i} \alpha_{i} v_{i}(x) \right) \left(\sum_{j} \beta_{j} v_{j}(y) \right) = \sum_{i,j} \alpha_{i} \beta_{j} \sum_{y\in V} v_{j}(y) \sum_{x\in V} \mathsf{Q}_{yx} v_{i}(x) \\ &= \sum_{i,j} \alpha_{i} \beta_{j} \sum_{y\in V} v_{j}(y) \left(\widehat{\lambda}_{i} v_{i}(y) \right) = \sum_{i,j} \alpha_{i} \beta_{j} \widehat{\lambda}_{i} \left\langle v_{j}, v_{i} \right\rangle = \sum_{i=2}^{n} \alpha_{i} \beta_{i} \widehat{\lambda}_{i} \sum_{y\in V} (v_{i}(y))^{2} \\ &\leq \widehat{\lambda} \sum_{i=2}^{n} \frac{\alpha_{i}^{2} + \beta_{i}^{2}}{2} \sum_{y\in V} (v_{i}(y))^{2} \leq \frac{\widehat{\lambda}}{2} \sum_{i=1}^{n} \sum_{y\in V} \left((\alpha_{i} v_{i}(y))^{2} + (\beta_{i} v_{i}(y))^{2} \right) \\ &= \frac{\widehat{\lambda}}{2} \sum_{y\in V} \left((f(y))^{2} + (g(y))^{2} \right) \end{split}$$

As such,

$$\begin{split} \mathbb{E}_{(x \to y) \in \widetilde{\mathsf{E}}} \left[|f(x) - g(y)|^2 \right] &= \frac{1}{nd} \sum_{(x \to y) \in \widetilde{\mathsf{E}}} |f(x) - g(y)|^2 = \frac{1}{n} \sum_{y \in V} \left((f(y))^2 + (g(y))^2 \right) - \frac{1}{n} \sum_{x, y \in V} \frac{2f(x)g(y)}{d} \\ &= \frac{1}{n} \sum_{y \in V} \left((f(y))^2 + (g(y))^2 \right) - \frac{2}{n} \sum_{x, y \in V} \mathsf{Q}_{xy} f(x)g(y) \\ &\geq \left(\frac{1}{n} - \frac{2}{n} \cdot \frac{\widehat{\lambda}}{2} \right) \sum_{y \in V} \left((f(y))^2 + (g(y))^2 \right) = \left(1 - \widehat{\lambda} \right) \left(\sum_{y \in V} \left[(f(y))^2 \right] + \sum_{y \in V} \left[(g(y))^2 \right] \right) \\ &= \left(1 - \widehat{\lambda} \right) \sum_{x, y \in V} \left[|f(x) - g(y)|^2 \right], \end{split}$$

by Eq. (46.2). This implies that $\gamma_2(\mathsf{G}) \leq 1/(1-\widehat{\lambda})$. Again, by trying either $f = g = v_2$ or $f = v_n$ and $g = -v_n$, we get that the inequality above holds with equality, which implies $\gamma_2(\mathsf{G}) \geq 1/(1-\widehat{\lambda})$. Together, the claim now follows.

46.2. Explicit construction

For a set $U \subseteq V$ of vertices, its *characteristic vector*, denoted by $x = \chi_U$, is the *n* dimensional vector, where $x_i = 1$ if and only if $i \in U$.

The following is an easy consequence of Lemma 46.3.2.

Lemma 46.2.1. For a *d*-regular graph G the vector $\mathbf{1}^n = (1, 1, ..., 1)$ is the only eigenvector with eigenvalue *d* (of the adjacency matrix M(G), if and only if *G* is connected. Furthermore, we have $|\lambda_i| \leq d$, for all *i*.

Our main interest would be in the second largest eigenvalue of M. Formally, let

$$\lambda_2(\mathsf{G}) = \max_{x \perp 1^n, x \neq 0} \left| \frac{\langle x\mathsf{M}, x \rangle}{\langle x, x \rangle} \right|.$$

We state the following result but do not prove it since we do not need it for our nafarious purposes (however, we did prove the left side of the inequality).

Theorem 46.2.2. Let G be a δ -expander with adjacency matrix M and let $\lambda_2 = \lambda_2(G)$ be the secondlargest eigenvalue of M. Then

$$\frac{1}{2}\left(1-\frac{\lambda_2}{d}\right) \le \delta \le \sqrt{2\left(1-\frac{\lambda_2}{d}\right)}.$$

What the above theorem says, is that the expansion of a $[n, d, \delta]$ -expander is a function of how far is its second eigenvalue (i.e., λ_2) from its first eigenvalue (i.e., d). This is usually referred to as the *spectral gap*.

We will start by explicitly constructing an expander that has "many" edges, and then we will show to reduce its degree till it become a constant degree expander.

46.2.1. Explicit construction of a small expander

46.2.1.1. A quicky reminder of fields

A *field* is a set \mathbb{F} together with two operations, called addition and multiplication, and denoted by + and \cdot , respectively, such that the following axioms hold:

- (i) Closure: $\forall x, y \in \mathbb{F}$, we have $x + y \in \mathbb{F}$ and $x \cdot y \in \mathbb{F}$.
- (ii) Associativity: $\forall x, y, z \in \mathbb{F}$, we have x + (y + z) = (x + y) + z and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- (iii) Commutativity: $\forall x, y \in \mathbb{F}$, we have x + y = y + x and $x \cdot y = y \cdot x$.
- (iv) Identity: There exists two distinct special elements $0, 1 \in \mathbb{F}$. We have that $\forall x \in \mathbb{F}$ it holds x + 0 = a and $x \cdot 1 = x$.
- (v) Inverse: There exists two distinct special elements $0, 1 \in \mathbb{F}$, and we have that $\forall x \in \mathbb{F}$ there exists an element $-x \in \mathbb{F}$, such that x + (-x) = 0.

Similarly, $\forall x \in \mathbb{F}, x \neq 0$, there exists an element $y = x^{-1} = 1/x \in \mathbb{F}$ such that $x \cdot y = 1$. (vi) Distributivity: $\forall x, y, z \in \mathbb{F}$ we have $x \cdot (y + z) = x \cdot y + x \cdot z$.

Let $q = 2^t$, and r > 0 be an integer. Consider the finite field \mathbb{F}_q . It is the field of polynomials of degree at most t - 1, where the coefficients are over \mathbb{Z}_2 (i.e., all calculations are done modulus 2). Formally, consider the polynomial

$$p(x) = x^t + x + 1.$$

It it irreducible over $\mathbb{F}_2 = \{0, 1\}$ (i.e., $p(0) = p(1) \neq 0$). We can now do polynomial arithmetic over polynomials (with coefficients from \mathbb{F}_2), where we do the calculations modulus p(x). Note, that any irreducible polynomial of degree *n* yields the same field up to isomorphism. Intuitively, we are introducing the *n* distinct roots of p(x) into \mathbb{F} by creating an extension field of \mathbb{F} with those roots.

An element of $\mathbb{F}_q = \mathbb{F}_{2^t}$ can be interpreted as a binary string $b = b_0 b_1 \dots b_{t-1}$ of length t, where the corresponding polynomial is

$$\operatorname{poly}(b) = \sum_{i=0}^{t-1} b_i x^i.$$

The nice property of \mathbb{F}_q is that addition can be interpreted as a **xor** operation. That is, for any $x, y \in \mathbb{F}_q$, we have that x + y + y = x and x - y - y = x. The key properties of \mathbb{F}_q we need is that multiplications and addition can be computed in it in polynomial time in t, and it is a field (i.e., each non-zero element has a unique inverse).

46.2.1.1.1. Computing multiplication in \mathbb{F}_q . Consider two elements $\alpha, \beta \in \mathbb{F}_q$. Multiply the two polynomials poly(α) by poly(β), let poly(γ) be the resulting polynomial (of degree at most 2t - 2), and compute the remainder poly(β) when dividing it by the irreducible polynomial p(x). For this remainder polynomial, normalize the coefficients by computing their modules base 2. The resulting polynomial is the product of α and β .

For more details on this field, see any standard text on abstract algebra.

46.2.1.2. The construction

Let $q = 2^t$, and r > 0 be an integer. Consider the linear space $\mathbb{G} = \mathbb{F}_q^r$. Here, a member $\alpha = (\alpha_0, \ldots, \alpha_r) \in \mathbb{G}$ can be thought of as being a string (of length r + 1) over \mathbb{F}_q , or alternatively, as a binary string of length n = t(r + 1).

For $\alpha = (\alpha_0, \ldots, \alpha_r) \in \mathbb{G}$, and $x, y \in \mathbb{F}_q$, define the operator

$$\rho(\alpha, x, y) = \alpha + y \cdot (1, x, x^2, \dots, x^r) = (\alpha_0 + y, \alpha_1 + yx, \alpha_2 + yx^2, \dots, \alpha_r + yx^r) \in \mathbb{G}.$$

Since addition over \mathbb{F}_q is equivalent to a xor operation we have that

$$\rho(\rho(\alpha, x, y), x, y) = (\alpha_0 + y + y, \alpha_1 + yx + yx, \alpha_2 + yx^2 + yx^2, \dots, \alpha_r + yx^r + yx^r)$$

= $(\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_r) = \alpha.$

Furthermore, if $(x, y) \neq (x', y')$ then $\rho(\alpha, x, y) \neq \rho(\alpha, x', y')$.

We now define a graph $LD(q, r) = (\mathbb{G}, E)$, where

$$E = \left\{ \alpha \beta \middle| \begin{array}{c} \alpha \in \mathbb{G}, x, y \in \mathbb{F}_q \\ \beta = \rho(\alpha, x, y) \end{array} \right\}$$

Note, that this graph is well defined, as $\rho(\beta, x, y) = \alpha$. The degree of a vertex of LD(q, r) is $|\mathbb{F}_q|^2 = q^2$, and LD(q, r) has $N = |\mathbb{G}| = q^{r+1} = 2^{t(r+1)} = 2^n$ vertices.

Theorem 46.2.3. For any t > 0, r > 0 and $q = 2^t$, where r < q, we have that LD(q, r) is a graph with q^{r+1} vertices. Furthermore, $\lambda_1(LD(q, r)) = q^2$, and $\lambda_i(LD(q, r)) \le rq$, for i = 2, ..., n. In particular, if $r \le q/2$, then LD(q, r) is a $\left[q^{r+1}, q^2, \frac{1}{4}\right]$ -expander.

Proof: Let M be the $N \times N$ adjacency matrix of LD(q, r). Let $L : \mathbb{F}_q \to \{0, 1\}$ be a linear map which is onto. It is easy to verify that $|L^{-1}(0)| = |L^{-1}(1)|^{\textcircled{2}}$

We are interested in the eigenvalues of the matrix M. To this end, we consider vectors in \mathbb{R}^N . The *i*th row an *i*th column of M is associated with a unique element $b_i \in \mathbb{G}$. As such, for a vector $v \in \mathbb{R}^N$, we denote by $v[b_i]$ the *i*th coordinate of v. In particular, for $\alpha = (\alpha_0, \ldots, \alpha_r) \in \mathbb{G}$, let $v_\alpha \in \mathbb{R}^N$ denote the vector, where its $\beta = (\beta_0, \ldots, \beta_r) \in \mathbb{G}$ coordinate is

$$v_{\alpha}[\beta] = (-1)^{L\left(\sum_{i=0}^{r} \alpha_{i} \beta_{i}\right)}$$

Let $V = \{ v_{\alpha} \mid \alpha \in \mathbb{G} \}$. For $\alpha \neq \alpha' \in V$, observe that

$$\langle v_{\alpha}, v_{\alpha'} \rangle = \sum_{\beta \in \mathbb{G}} (-1)^{L\left(\sum_{i=0}^{r} \alpha_{i} \beta_{i}\right)} \cdot (-1)^{L\left(\sum_{i=0}^{r} \alpha_{i}' \beta_{i}\right)} = \sum_{\beta \in \mathbb{G}} (-1)^{L\left(\sum_{i=0}^{r} \left(\alpha_{i} + \alpha_{i}'\right) \beta_{i}\right)} = \sum_{\beta \in \mathbb{G}} v_{\alpha + \alpha'}[\beta] \,.$$

⁽²⁾Indeed, if $Z = L^{-1}(0)$, and L(x) = 1, then L(y) = 1, for all $y \in U = \{x + z \mid z \in Z\}$. Now, its clear that |Z| = |U|.

So, consider $\psi = \alpha + \alpha' \neq 0$. Assume, for the simplicity of exposition that all the coordinates of ψ are non-zero. We have, by the linearity of L that

$$\langle v_{\alpha}, v_{\alpha'} \rangle = \sum_{\beta \in \mathbb{G}} (-1)^{L\left(\sum_{i=0}^{r} \alpha_{i} \beta_{i}\right)} = \sum_{\beta_{0} \in \mathbb{F}_{q}, \dots, \beta_{r-1} \in \mathbb{F}_{q}} (-1)^{L\left(\psi_{0} \beta_{0} + \dots + \psi_{r-1} \beta_{r-1}\right)} \sum_{\beta_{r} \in \mathbb{F}_{q}} (-1)^{L\left(\psi_{r} \beta_{r}\right)} \sum_{\beta_{r} \in \mathbb{F}_{q}} (-1)^{L\left(\psi_{r} \beta_$$

However, since $\psi_r \neq 0$, the quantity $\{\psi_r \beta_r \mid \beta_r \in \mathbb{F}_q\} = \mathbb{F}_q$. Thus, the summation $\sum_{\beta_r \in \mathbb{F}_q} (-1)^{L(\psi_r \beta_r)}$ gets $|L^{-1}(0)|$ terms that are 1, and $|L^{-1}(0)|$ terms that are -1. As such, this summation is zero, implying that $\langle v_{\alpha}, v_{\alpha'} \rangle = 0$. Namely, the vectors of V are orthogonal.

Observe, that for $\alpha, \beta, \psi \in \mathbb{G}$, we have $v_{\alpha}[\beta + \psi] = v_{\alpha}[\beta] v_{\alpha}[\psi]$. For $\alpha \in \mathbb{G}$, consider the vector $\mathsf{M}v_{\alpha}$. We have, for $\beta \in \mathbb{G}$, that

$$(\mathsf{M}v_{\alpha})[\beta] = \sum_{\psi \in \mathbb{G}} \mathsf{M}_{\beta\psi} \cdot v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, x, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{\alpha}[\psi] = \sum_{\substack{x, y \in \mathbb{F}_{q} \\ \psi = \rho(\beta, y)}} v_{$$

Thus, setting $\lambda(\alpha) = \sum_{x,y \in \mathbb{F}_q} v_{\alpha}[y(1,x,\ldots,x^r)] \in \mathbb{R}$, we have that $\mathsf{M}v_{\alpha} = \lambda(\alpha) \cdot v_{\alpha}$. Namely, v_{α} is an eigenvector, with eigenvalue $\lambda(\alpha)$.

Let $p_{\alpha}(x) = \sum_{i=0}^{r} \alpha_{i} x^{i}$, and let

$$\lambda(\alpha) = \sum_{\substack{x,y \in \mathbb{F}_q \\ p_{\alpha}(x)=0}} v_{\alpha}[y(1,x,\dots,x^r)] \in \mathbb{R} = \sum_{\substack{x,y \in \mathbb{F}_q \\ x,y \in \mathbb{F}_q \\ p_{\alpha}(x)=0}} (-1)^{L(y \ p_{\alpha}(x))} + \sum_{\substack{x,y \in \mathbb{F}_q \\ p_{\alpha}(x)\neq 0}} (-1)^{L(y \ p_{\alpha}(x))}.$$

If $p_{\alpha}(x) = 0$ then $(-1)^{L(y p_{\alpha}(x))} = 1$, for all y. As such, each such x contributes q to $\lambda(\alpha)$.

If $p_{\alpha}(x) \neq 0$ then $y \ p_{\alpha}(x)$ takes all the values of \mathbb{F}_q , and as such, $L(y \ p_{\alpha}(x))$ is 0 for half of these values, and 1 for the other half. Implying that these kind terms contribute 0 to $\lambda(\alpha)$. But $p_{\alpha}(x)$ is a polynomial of degree r, and as such there could be at most r values of x for which the first term is taken. As such, if $\alpha \neq 0$ then $\lambda(\alpha) \leq rq$. If $\alpha = 0$ then $\lambda(\alpha) = q^2$, which implies the theorem.

This construction provides an expander with constant degree only if the number of vertices is a constant. Indeed, if we want an expander with constant degree, we have to take q to be as small as possible. We get the relation $n = q^{r+1} \le q^q$, since $r \le r$, which implies that $q = \Omega(\log n/\log \log n)$. Now, the expander of Theorem 46.2.3 is q^2 -regular, which means that it is not going to provide us with a constant degree expander.

However, we are going to use it as our building block in a construction that would start with this expander and would inflate it up to the desired size.

46.3. From previous lectures

Lemma 46.3.1. Let G = (V, E) be a given connected *d*-regular graph with *n* vertices. Then $\gamma(G) = \frac{1}{1-\widehat{\lambda_2}}$, where $\widehat{\lambda_2} = \lambda_2/d$ is the second largest eigenvalue of Q.

Lemma 46.3.2. Let G be an undirected graph, and let Δ denote the maximum degree in G. Then, $|\widehat{\lambda_1}(G)| = |\widehat{\lambda_1}(M)| = \Delta$ if and only one connected component of G is Δ -regular. The multiplicity of Δ as an eigenvector is the number of Δ -regular connected components. Furthermore, we have $|\widehat{\lambda_i}(G)| \leq \Delta$, for all *i*.

Definition 46.3.3. Given a random walk matrix Q associated with a *d*-regular graph, let $\mathcal{B}(Q) = \langle v_1, \ldots, v_n \rangle$ denote the *orthonormal eigenvector basis* defined by Q. That is, v_1, \ldots, v_n is an orthonormal basis for \mathbb{R}^n , where all these vectors are eigenvectors of Q and $v_1 = \frac{1^n}{\sqrt{n}}$. Furthermore, let $\widehat{\lambda}_i$ denote the *i*th eigenvalue of Q, associated with the eigenvector v_i , such that $\widehat{\lambda}_1 \geq \widehat{\lambda}_2 \geq \cdots \geq \widehat{\lambda}_n$.