
Chapter 43

Entropy III - Shannon’s Theorem
By Sariel Har-Peled, April 26, 2022① The memory of my father is wrapped up in

white paper, like sandwiches taken for a day at
work.

beginequation*-0.2cm] Just as a magician takes
towers and rabbits
out of his hat, he drew love from his small body,

beginequation*-0.2cm] and the rivers of his
hands
overflowed with good deeds.

– Yehuda Amichai, My Father.,

43.1. Coding: Shannon’s Theorem
We are interested in the problem sending messages over a noisy channel. We will assume that the
channel noise is “nicely” behaved.

Definition 43.1.1. The input to a binary symmetric channel with parameter 𝑝 is a sequence of bits
𝑥1, 𝑥2, . . . , and the output is a sequence of bits 𝑦1, 𝑦2, . . . , such that P[𝑥𝑖 = 𝑦𝑖] = 1− 𝑝 independently for
each 𝑖.

Translation: Every bit transmitted have the same probability to be flipped by the channel. The
question is how much information can we send on the channel with this level of noise. Naturally, a
channel would have some capacity constraints (say, at most 4,000 bits per second can be sent on the
channel), and the question is how to send the largest amount of information, so that the receiver can
recover the original information sent.

Now, its important to realize that noise handling is unavoidable in the real world. Furthermore,
there are tradeoffs between channel capacity and noise levels (i.e., we might be able to send considerably
more bits on the channel but the probability of flipping (i.e., 𝑝) might be much larger). In designing a
communication protocol over this channel, we need to figure out where is the optimal choice as far as
the amount of information sent.

Definition 43.1.2. A (𝑘, 𝑛) encoding function Enc : {0, 1}𝑘 → {0, 1}𝑛 takes as input a sequence of 𝑘
bits and outputs a sequence of 𝑛 bits. A (𝑘, 𝑛) decoding function Dec : {0, 1}𝑛 → {0, 1}𝑘 takes as
input a sequence of 𝑛 bits and outputs a sequence of 𝑘 bits.

Thus, the sender would use the encoding function to send its message, and the decoder would use
the received string (with the noise in it), to recover the sent message. Thus, the sender starts with a
message with 𝑘 bits, it blow it up to 𝑛 bits, using the encoding function, to get some robustness to noise,
it send it over the (noisy) channel to the receiver. The receiver, takes the given (noisy) message with 𝑛
bits, and use the decoding function to recover the original 𝑘 bits of the message.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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Naturally, we would like 𝑘 to be as large as possible (for a fixed 𝑛), so that we can send as much
information as possible on the channel. Naturally, there might be some failure probability; that is, the
receiver might be unable to recover the original string, or recover an incorrect string.

The following celebrated result of Shannon② in 1948 states exactly how much information can be
sent on such a channel.

Theorem 43.1.3 (Shannon’s theorem). For a binary symmetric channel with parameter 𝑝 < 1/2
and for any constants 𝛿, 𝛾 > 0, where 𝑛 is sufficiently large, the following holds:

(i) For an 𝑘 ≤ 𝑛 (1 − H(𝑝) − 𝛿) there exists (𝑘, 𝑛) encoding and decoding functions such that the
probability the receiver fails to obtain the correct message is at most 𝛾 for every possible 𝑘-bit
input messages.

(ii) There are no (𝑘, 𝑛) encoding and decoding functions with 𝑘 ≥ 𝑛(1−H(𝑝)+𝛿) such that the probability
of decoding correctly is at least 𝛾 for a 𝑘-bit input message chosen uniformly at random.

43.2. Proof of Shannon’s theorem
The proof is not hard, but requires some care, and we will break it into parts.

43.2.1. How to encode and decode efficiently

43.2.1.1. The scheme

Our scheme would be simple. Pick 𝑘 ≤ 𝑛(1 − H(𝑝) − 𝛿). For any number 𝑖 = 0, . . . , 𝐾 = 2𝑘+1 − 1,
randomly generate a binary string 𝑌𝑖 made out of 𝑛 bits, each one chosen independently and uniformly.
Let 𝑌0, . . . , 𝑌𝐾 denote these codewords.

For each of these codewords we will compute the probability that if we send this codeword, the
receiver would fail. Let 𝑋0, . . . , 𝑋𝐾 , where 𝐾 = 2𝑘 − 1, be the 𝐾 codewords with the lowest probability of
failure. We assign these words to the 2𝑘 messages we need to encode in an arbitrary fashion. Specifically,
for 𝑖 = 0, . . . , 2𝑘 − 1, we encode 𝑖 as the string 𝑋𝑖.

The decoding of a message 𝑤 is done by going over all the codewords, and finding all the codewords
that are in (Hamming) distance in the range [𝑝(1− 𝜀)𝑛, 𝑝(1+ 𝜀)𝑛] from 𝑤. If there is only a single word
𝑋𝑖 with this property, we return 𝑖 as the decoded word. Otherwise, if there are no such word or there is
more than one word then the decoder stops and report an error.

43.2.1.2. The proof

②Claude Elwood Shannon (April 30, 1916 - February 24, 2001), an American electrical engineer and mathematician,
has been called “the father of information theory”.
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Intuition. Each code 𝑌𝑖 corresponds to a region that looks like a ring. The
“ring” for 𝑌𝑖 is all the strings in Hamming distance between (1 − 𝜀)𝑟 and
(1 + 𝜀)𝑟 from 𝑌𝑖, where 𝑟 = 𝑝𝑛. Clearly, if we transmit a string 𝑌𝑖, and the
receiver gets a string inside the ring of 𝑌𝑖, it is natural to try to recover the
received string to the original code corresponding to 𝑌𝑖. Naturally, there are
two possible bad events here:
(A) The received string is outside the ring of 𝑌𝑖.
(B) The received string is contained in several rings of different 𝑌s, and it is not clear which one should

the receiver decode the string to. These bad regions are depicted as the darker regions in the figure
on the right.

Let 𝑆𝑖 = S(𝑌𝑖) be all the binary strings (of length 𝑛) such that if the receiver gets this word, it would
decipher it to be the original string assigned to 𝑌𝑖 (here are still using the extended set of codewords
𝑌0, . . . , 𝑌𝐾). Note, that if we remove some codewords from consideration, the set S(𝑌𝑖) just increases
in size (i.e., the bad region in the ring of 𝑌𝑖 that is covered multiple times shrinks). Let 𝑊𝑖 be the
probability that 𝑌𝑖 was sent, but it was not deciphered correctly. Formally, let 𝑟 denote the received
word. We have that

𝑊𝑖 =
∑︁
𝑟∉𝑆𝑖

P[𝑟 was received when 𝑌𝑖 was sent] . (43.1)

To bound this quantity, let Δ(𝑥, 𝑦) denote the Hamming distance between the binary strings 𝑥 and 𝑦.
Clearly, if 𝑥 was sent the probability that 𝑦 was received is

𝑤(𝑥, 𝑦) = 𝑝Δ(𝑥,𝑦) (1 − 𝑝)𝑛−Δ(𝑥,𝑦) .

As such, we have
P[𝑟 received when 𝑌𝑖 was sent] = 𝑤(𝑌𝑖, 𝑟).

Definition 43.2.1. Let 𝑆𝑖,𝑟 be an indicator variable which is 1 if 𝑟 ∉ 𝑆𝑖. It is one if the receiver gets 𝑟, and
does not decode it to 𝑌𝑖 (either because of failure, or because 𝑟 is too close/far from 𝑌𝑖).

We have that failure probability when sending 𝑟 is

𝑊𝑖 =
∑︁
𝑟∉𝑆𝑖

P[𝑟 received when 𝑌𝑖 was sent] =
∑︁
𝑟∉𝑆𝑖

𝑤(𝑌𝑖, 𝑟) =
∑︁
𝑟

𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟). (43.2)

The value of 𝑊𝑖 is a random variable over the choice of 𝑌0, . . . , 𝑌𝐾 . As such, its natural to ask what
is the expected value of 𝑊𝑖.

Consider the ring

ring(𝑟) =
{
𝑥 ∈ {0, 1}𝑛

�� (1 − 𝜀)𝑛𝑝 ≤ Δ(𝑥, 𝑟) ≤ (1 + 𝜀)𝑛𝑝
}
,

where 𝜀 > 0 is a small enough constant. Observe that 𝑥 ∈ ring(𝑦) if and only if 𝑦 ∈ ring(𝑥). Suppose,
that the code word 𝑌𝑖 was sent, and 𝑟 was received. The decoder returns the original code associated
with 𝑌𝑖, if 𝑌𝑖 is the only codeword that falls inside ring(𝑟).

Lemma 43.2.2. Given that 𝑌𝑖 was sent, and 𝑟 was received and furthermore 𝑟 ∈ ring(𝑌𝑖), then the
probability of the decoder failing, is

𝜏 = P
[
𝑟 ∉ 𝑆𝑖

�� 𝑟 ∈ ring(𝑌𝑖)
]
≤ 𝛾

8 ,

where 𝛾 is the parameter of Theorem 43.1.3.
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Proof: The decoder fails here, only if ring(𝑟) contains some other codeword 𝑌 𝑗 ( 𝑗 ≠ 𝑖) in it. As such,

𝜏 = P
[
𝑟 ∉ 𝑆𝑖

�� 𝑟 ∈ ring(𝑌𝑖)
]
≤ P

[
𝑌 𝑗 ∈ ring(𝑟), for any 𝑗 ≠ 𝑖

]
≤
∑︁
𝑗≠𝑖

P
[
𝑌 𝑗 ∈ ring(𝑟)

]
.

Now, we remind the reader that the 𝑌 𝑗s are generated by picking each bit randomly and independently,
with probability 1/2. As such, we have

P
[
𝑌 𝑗 ∈ ring(𝑟)

]
=

| ring(𝑟) |
|{0, 1}𝑛 | =

(1+𝜀)𝑛𝑝∑︁
𝑚=(1−𝜀)𝑛𝑝

( 𝑛
𝑚

)
2𝑛 ≤ 𝑛

2𝑛

(
𝑛

⌊(1 + 𝜀)𝑛𝑝⌋

)
,

since (1+𝜀)𝑝 < 1/2 (for 𝜀 sufficiently small), and as such the last binomial coefficient in this summation
is the largest. By Corollary 43.3.2 (i), we have

P
[
𝑌 𝑗 ∈ ring(𝑟)

]
≤ 𝑛

2𝑛

(
𝑛

⌊(1 + 𝜀)𝑛𝑝⌋

)
≤ 𝑛

2𝑛 2𝑛H( (1+𝜀)𝑝) = 𝑛2𝑛(H( (1+𝜀)𝑝)−1) .

As such, we have

𝜏 = P
[
𝑟 ∉ 𝑆𝑖

�� 𝑟 ∈ ring(𝑌𝑖)
]
≤
∑︁
𝑗≠𝑖

P
[
𝑌 𝑗 ∈ ring(𝑟)

]
≤ 𝐾 P

[
𝑌1 ∈ ring(𝑟)

]
≤ 2𝑘+1𝑛2𝑛(H( (1+𝜀)𝑝)−1)

≤ 𝑛2𝑛 (1−H(𝑝)−𝛿) + 1+ 𝑛 (H( (1+𝜀)𝑝)−1) ≤ 𝑛2𝑛 (H( (1+𝜀)𝑝)−H(𝑝)−𝛿)+1

since 𝑘 ≤ 𝑛(1 − H(𝑝) − 𝛿). Now, we choose 𝜀 to be a small enough constant, so that the quantity
H((1 + 𝜀)𝑝) − H(𝑝) − 𝛿 is equal to some (absolute) negative (constant), say −𝛽, where 𝛽 > 0. Then,
𝜏 ≤ 𝑛2−𝛽𝑛+1, and choosing 𝑛 large enough, we can make 𝜏 smaller than 𝛾/8, as desired. As such, we just
proved that

𝜏 = P
[
𝑟 ∉ 𝑆𝑖

�� 𝑟 ∈ ring(𝑌𝑖)
]
≤ 𝛾

8 . ■

Lemma 43.2.3. Consider the situation where 𝑌𝑖 is sent, and the received string is 𝑟. We have that

P
[
𝑟 ∉ ring(𝑌𝑖)

]
=

∑︁
𝑟 ∉ ring(𝑌𝑖)

𝑤(𝑌𝑖, 𝑟) ≤
𝛾

8 ,

where 𝛾 is the parameter of Theorem 43.1.3.

Proof: This quantity, is the probability of sending 𝑌𝑖 when every bit is flipped with probability 𝑝, and
receiving a string 𝑟 such that more than 𝑝𝑛 + 𝜀𝑝𝑛 bits where flipped (or less than 𝑝𝑛 − 𝜀𝑝𝑛). But
this quantity can be bounded using the Chernoff inequality. Indeed, let 𝑍 = Δ(𝑌𝑖, 𝑟), and observe that
E[𝑍] = 𝑝𝑛, and it is the sum of 𝑛 independent indicator variables. As such∑︁

𝑟 ∉ ring(𝑌𝑖)
𝑤(𝑌𝑖, 𝑟) = P

[
|𝑍 − E[𝑍] | > 𝜀𝑝𝑛

]
≤ 2 exp

(
−𝜀

2

4 𝑝𝑛
)
<
𝛾

4 ,

since 𝜀 is a constant, and for 𝑛 sufficiently large. ■

We remind the reader that 𝑆𝑖,𝑟 is an indicator variable that is one if receiving 𝑟 (when sending 𝑌𝑖) is
“bad”, see Definition 43.2.1. Importantly, this indicator variable also depends on all the other codewords
– as they might cause some regions in the ring of 𝑌𝑖 to be covered multiple times.
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Lemma 43.2.4. We have that 𝑓 (𝑌𝑖) =
∑
𝑟 ∉ ring(𝑌𝑖) E

[
𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟)

]
≤ 𝛾/8 (the expectation is over all the

choices of the 𝑌s excluding 𝑌𝑖).

Proof: Observe that 𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟) ≤ 𝑤(𝑌𝑖, 𝑟) and for fixed 𝑌𝑖 and 𝑟 we have that E[𝑤(𝑌𝑖, 𝑟)] = 𝑤(𝑌𝑖, 𝑟). As
such, we have that

𝑓 (𝑌𝑖) =
∑︁

𝑟 ∉ ring(𝑌𝑖)
E
[
𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟)

]
≤

∑︁
𝑟 ∉ ring(𝑌𝑖)

E[𝑤(𝑌𝑖, 𝑟)] =
∑︁

𝑟 ∉ ring(𝑌𝑖)
𝑤(𝑌𝑖, 𝑟) ≤

𝛾

8 ,

by Lemma 43.2.3. ■

Lemma 43.2.5. We have that 𝑔(𝑌𝑖) =
∑︁

𝑟 ∈ ring(𝑌𝑖)
E
[
𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟)

]
≤ 𝛾/8 (the expectation is over all the

choices of the 𝑌s excluding 𝑌𝑖).

Proof: We have that 𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟) ≤ 𝑆𝑖,𝑟 , as 0 ≤ 𝑤(𝑌𝑖, 𝑟) ≤ 1. As such, we have that

𝑔(𝑌𝑖) =
∑︁

𝑟 ∈ ring(𝑌𝑖)
E
[
𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟)

]
≤

∑︁
𝑟 ∈ ring(𝑌𝑖)

E
[
𝑆𝑖,𝑟

]
=

∑︁
𝑟 ∈ ring(𝑌𝑖)

P[𝑟 ∉ 𝑆𝑖]

=
∑︁
𝑟

P[𝑟 ∉ 𝑆𝑖 ∩ (𝑟 ∈ ring(𝑌𝑖))]

=
∑︁
𝑟

P
[
𝑟 ∉ 𝑆𝑖

�� 𝑟 ∈ ring(𝑌𝑖)
]
P[𝑟 ∈ ring(𝑌𝑖)]

≤
∑︁
𝑟

𝛾

8 P[𝑟 ∈ ring(𝑌𝑖)] ≤
𝛾

8 ,

by Lemma 43.2.2. ■

Lemma 43.2.6. For any 𝑖, we have 𝜇 = E[𝑊𝑖] ≤ 𝛾/4, where 𝛾 is the parameter of Theorem 43.1.3,
where 𝑊𝑖 is the probability of failure to recover 𝑌𝑖 if it was sent, see Eq. (43.1).

Proof: We have by Eq. (43.2) that 𝑊𝑖 =
∑
𝑟 𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟). For a fixed value of 𝑌𝑖, we have by linearity of

expectation, that

E[𝑊𝑖 | 𝑌𝑖] = E
[∑︁
𝑟

𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟)
��� 𝑌𝑖] = ∑︁

𝑟

E
[
𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟)

��𝑌𝑖 ]
=

∑︁
𝑟 ∈ ring(𝑌𝑖)

E
[
𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟)

��𝑌𝑖 ] + ∑︁
𝑟 ∉ ring(𝑌𝑖)

E
[
𝑆𝑖,𝑟𝑤(𝑌𝑖, 𝑟)

��𝑌𝑖 ] = 𝑔(𝑌𝑖) + 𝑓 (𝑌𝑖) ≤
𝛾

8 + 𝛾8 =
𝛾

4 ,

by Lemma 43.2.4 and Lemma 43.2.5. Now E[𝑊𝑖] = E
[
E[𝑊𝑖 | 𝑌𝑖]

]
≤ E[𝛾/4] ≤ 𝛾/4. ■

In the following, we need the following trivial (but surprisingly deep) observation.

Observation 43.2.7. For a random variable 𝑋, if E[𝑋] ≤ 𝜓, then there exists an event in the probability
space, that assigns 𝑋 a value ≤ 𝜓.

Lemma 43.2.8. For the codewords 𝑋0, . . . , 𝑋𝐾 , the probability of failure in recovering them when send-
ing them over the noisy channel is at most 𝛾.
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Proof: We just proved that when using 𝑌0, . . . , 𝑌𝐾 , the expected probability of failure when sending 𝑌𝑖,
is E[𝑊𝑖] ≤ 𝛾/4, where 𝐾 = 2𝑘+1 − 1. As such, the expected total probability of failure is

E
[ 𝐾∑︁
𝑖=0
𝑊𝑖

]
=

𝐾∑︁
𝑖=0
E
[
𝑊𝑖

]
≤ 𝛾

4 2𝑘+1 ≤ 𝛾2𝑘 ,

by Lemma 43.2.6. As such, by Observation 43.2.7, there exist a choice of 𝑌𝑖s, such that

𝐾∑︁
𝑖=0
𝑊𝑖 ≤ 2𝑘𝛾.

Now, we use a similar argument used in proving Markov’s inequality. Indeed, the 𝑊𝑖 are always positive,
and it can not be that 2𝑘 of them have value larger than 𝛾, because in the summation, we will get that

𝐾∑︁
𝑖=0
𝑊𝑖 > 2𝑘𝛾.

Which is a contradiction. As such, there are 2𝑘 codewords with failure probability smaller than 𝛾. We
set the 2𝑘 codewords 𝑋0, . . . , 𝑋𝐾 to be these words, where 𝐾 = 2𝑘 − 1. Since we picked only a subset of
the codewords for our code, the probability of failure for each codeword shrinks, and is at most 𝛾. ■

Lemma 43.2.8 concludes the proof of the constructive part of Shannon’s theorem.

43.2.2. Lower bound on the message size
We omit the proof of this part. It follows similar argumentation showing that for every ring associated
with a codewords it must be that most of it is covered only by this ring (otherwise, there is no hope for
recovery). Then an easy packing argument implies the claim.

43.3. From previous lectures

Lemma 43.3.1. Suppose that 𝑛𝑞 is integer in the range [0, 𝑛]. Then 2𝑛H(𝑞)
𝑛 + 1 ≤

(
𝑛

𝑛𝑞

)
≤ 2𝑛H(𝑞).

Lemma 43.3.1 can be extended to handle non-integer values of 𝑞. This is straightforward, and we
omit the easy details.

Corollary 43.3.2. We have:
(i) 𝑞 ∈ [0, 1/2] ⇒

( 𝑛
⌊𝑛𝑞⌋

)
≤ 2𝑛H(𝑞). (ii) 𝑞 ∈ [1/2, 1]

( 𝑛
⌈𝑛𝑞⌉

)
≤ 2𝑛H(𝑞).

beginequation*0.1cm] (iii) 𝑞 ∈ [1/2, 1] ⇒ 2𝑛H(𝑞)
𝑛+1 ≤

( 𝑛
⌊𝑛𝑞⌋

)
. (iv) 𝑞 ∈ [0, 1/2] ⇒ 2𝑛H(𝑞)

𝑛+1 ≤
( 𝑛
⌈𝑛𝑞⌉

)
.

Theorem 43.3.3. Suppose that the value of a random variable 𝑋 is chosen uniformly at random from
the integers {0, . . . , 𝑚 − 1}. Then there is an extraction function for 𝑋 that outputs on average at least
⌊lg𝑚⌋ − 1 = ⌊H(𝑋)⌋ − 1 independent and unbiased bits.

43.4. Bibliographical Notes
The presentation here follows [MU05, Sec. 9.1-Sec 9.3].
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