
Chapter 42

Entropy II
By Sariel Har-Peled, April 26, 2022①

The memory of my father is wrapped up in white paper, like sandwiches taken for a day at work. Just as a magician
takes towers and rabbits out of his hat, he drew love from his small body, and the rivers of his hands overflowed
with good deeds.

Yehuda Amichai, My Father

42.1. Huffman coding
A binary code assigns a string of 0s and 1s to each character in the alphabet. A code assigns for each
symbol in the input a codeword over some other alphabet. Such a coding is necessary, for example, for
transmitting messages over a wire, were you can send only 0 or 1 on the wire (i.e., for example, consider
the good old telegraph and Morse code). The receiver gets a binary stream of bits and needs to decode
the message sent. A prefix code, is a code where one can decipher the message, a character by character,
by reading a prefix of the input binary string, matching it to a code word (i.e., string), and continuing
to decipher the rest of the stream. Such a code is a prefix code.

A binary code (or a prefix code) is prefix-free if no code is a prefix of any other. ASCII and
Unicode’s UTF-8 are both prefix-free binary codes. Morse code is a binary code (and also a prefix
code), but it is not prefix-free; for example, the code for S (· · ·) includes the code for E (·) as a prefix.
(Hopefully the receiver knows that when it gets · · · that it is extremely unlikely that this should be
interpreted as EEE, but rather S.

a

b c

d
0

0

0

1

1

1Any prefix-free binary code can be visualized as a binary tree with the encoded
characters stored at the leaves. The code word for any symbol is given by the
path from the root to the corresponding leaf; 0 for left, 1 for right. The length
of a codeword for a symbol is the depth of the corresponding leaf. Such trees are
usually referred to as prefix trees or code trees.

The beauty of prefix trees (and thus of prefix odes) is that decoding is easy.
As a concrete example, consider the tree on the right. Given a string ’010100’,
we can traverse down the tree from the root, going left if get a ’0’ and right if we get ’1’. Whenever
we get to a leaf, we output the character output in the leaf, and we jump back to the root for the next
character we are about to read. For the example ’010100’, after reading ’010’ our traversal in the tree
leads us to the leaf marked with ’b’, we jump back to the root and read the next input digit, which is
’1’, and this leads us to the leaf marked with ’d’, which we output, and jump back to the root. Finally,
’00’ leads us to the leaf marked by ’a’, which the algorithm output. Thus, the binary string ’010100’
encodes the string “bda”.

Suppose we want to encode messages in an 𝑛-character alphabet so that the encoded message is
as short as possible. Specifically, given an array frequency counts 𝑓 [1 . . . 𝑛], we want to compute a
prefix-free binary code that minimizes the total encoded length of the message. That is we would like

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

to compute a tree 𝑇 that minimizes

cost(𝑇) =
𝑛∑︁
𝑖=1

𝑓 [𝑖] ∗ len(code(𝑖)), (42.1)

where code(𝑖) is the binary string encoding the 𝑖th character and len(𝑠) is the length (in bits) of the
binary string 𝑠.

A nice property of this problem is that given two trees for some parts of the alphabet, we can easily
put them together into a larger tree by just creating a new node and hanging the trees from this common
node. For example, putting two characters together, we have the following.

M U ⇒

•

M

...

U

...

Similarly, we can put together two subtrees.

A

.

... .

...

B

.

... .

... ⇒

•

A

.

... .

...

... B

.

... .

...

...

42.1.1. The algorithm to build Hoffman’s code
This suggests a simple algorithm that takes the two least frequent characters in the current frequency
table, merge them into a tree, and put the merged tree back into the table (instead of the two old
trees). The algorithm stops when there is a single tree. The intuition is that infrequent characters
would participate in a large number of merges, and as such would be low in the tree – they would be
assigned a long code word.

This algorithm is due to David Huffman, who developed it in 1952. Shockingly, this code is the best
one can do. Namely, the resulting code is asymptotically gives the best possible compression of the data
(of course, one can do better compression in practice using additional properties of the data and careful
hacking). This Huffman coding is used widely and is the basic building block used by numerous other
compression algorithms.

42.1.2. Analysis
Lemma 42.1.1. Let 𝑇 be an optimal code tree. Then 𝑇 is a full binary tree (i.e., every node of 𝑇 has
either 0 or 2 children). In particular, if the height of 𝑇 is 𝑑, then there are leafs nodes of height 𝑑 that
are sibling.

Proof: If there is an internal node in 𝑇 that has one child, we can remove this node from 𝑇 , by connecting
its only child directly with its parent. The resulting code tree is clearly a better compressor, in the sense
of Eq. (42.1).

As for the second claim, consider a leaf 𝑢 with maximum depth 𝑑 in 𝑇 , and consider it parent
𝑣 = p(𝑢). The node 𝑣 has two children, and they are both leafs (otherwise 𝑢 would not be the deepest
node in the tree), as claimed. ■

2

Lemma 42.1.2. Let 𝑥 and 𝑦 be the two least frequent characters (breaking ties between equally frequent
characters arbitrarily). There is an optimal code tree in which 𝑥 and 𝑦 are siblings.

Proof: More precisely, there is an optimal code in which 𝑥 and 𝑦 are siblings and have the largest depth
of any leaf. Indeed, let 𝑇 be an optimal code tree with depth 𝑑. The tree 𝑇 has at least two leaves at
depth 𝑑 that are siblings, by Lemma 42.1.1.

Now, suppose those two leaves are not 𝑥 and 𝑦, but some other characters 𝛼 and 𝛽. Let U be the
code tree obtained by swapping 𝑥 and 𝛼. The depth of 𝑥 increases by some amount Δ, and the depth of
𝛼 decreases by the same amount. Thus,

cost(U) = cost(𝑇) − (𝑓 [𝛼] − 𝑓 [𝑥])Δ.

By assumption, 𝑥 is one of the two least frequent characters, but 𝛼 is not, which implies that 𝑓 [𝛼] > 𝑓 [𝑥].
Thus, swapping 𝑥 and 𝛼 does not increase the total cost of the code. Since 𝑇 was an optimal code
tree, swapping 𝑥 and 𝛼 does not decrease the cost, either. Thus, U is also an optimal code tree (and
incidentally, 𝑓 [𝛼] actually equals 𝑓 [𝑥]). Similarly, swapping 𝑦 and 𝑏 must give yet another optimal
code tree. In this final optimal code tree, 𝑥 and 𝑦 as maximum-depth siblings, as required. ■

Theorem 42.1.3. Huffman codes are optimal prefix-free binary codes.

Proof: If the message has only one or two different characters, the theorem is trivial. Otherwise, let
𝑓 [1 . . . 𝑛] be the original input frequencies, where without loss of generality, 𝑓 [1] and 𝑓 [2] are the two
smallest. To keep things simple, let 𝑓 [𝑛 + 1] = 𝑓 [1] + 𝑓 [2]. By the previous lemma, we know that some
optimal code for 𝑓 [1..𝑛] has characters 1 and 2 as siblings. Let Topt be this optimal tree, and consider
the tree formed by it by removing 1 and 2 as it leaves. We remain with a tree T′

opt that has as leafs
the characters 3, . . . , 𝑛 and a “special” character 𝑛 + 1 (which is the parent of 1 and 2 in Topt) that has
frequency 𝑓 [𝑛 + 1]. Now, since 𝑓 [𝑛 + 1] = 𝑓 [1] + 𝑓 [2], we have

cost
(
Topt

)
=

𝑛∑︁
𝑖=1

𝑓 [𝑖]depthTopt (𝑖)

=

𝑛+1∑︁
𝑖=3

𝑓 [𝑖]depthTopt (𝑖) + 𝑓 [1]depthTopt (1) + 𝑓 [2]depthTopt (2) − 𝑓 [𝑛 + 1]depthTopt (𝑛 + 1)

= cost
(
T′

opt

)
+ (𝑓 [1] + 𝑓 [2])depth

(
Topt

)
− (𝑓 [1] + 𝑓 [2])

(
depth

(
Topt

)
− 1

)
= cost

(
T′

opt

)
+ 𝑓 [1] + 𝑓 [2] . (42.2)

This implies that minimizing the cost of Topt is equivalent to minimizing the cost of T′
opt. In particular,

T′
opt must be an optimal coding tree for 𝑓 [3 . . . 𝑛+1]. Now, consider the Huffman tree U𝐻 constructed for
𝑓 [3, . . . , 𝑛+1] and the overall Huffman tree 𝑇𝐻 constructed for 𝑓 [1, . . . , 𝑛]. By the way the construction
algorithm works, we have that U𝐻 is formed by removing the leafs of 1 and 2 from 𝑇 . Now, by induction,
we know that the Huffman tree generated for 𝑓 [3, . . . , 𝑛 + 1] is optimal; namely, cost

(
T′

opt

)
= cost(U𝐻).

As such, arguing as above, we have

cost(𝑇𝐻) = cost(U𝐻) + 𝑓 [1] + 𝑓 [2] = cost
(
T′

opt

)
+ 𝑓 [1] + 𝑓 [2] = cost

(
Topt

)
,

by Eq. (42.2). Namely, the Huffman tree has the same cost as the optimal tree. ■

3

42.1.3. A formula for the average size of a code word
Assume that our input is made out of 𝑛 characters, where the 𝑖th character is 𝑝𝑖 fraction of the input
(one can think about 𝑝𝑖 as the probability of seeing the 𝑖th character, if we were to pick a random
character from the input).

Now, we can use these probabilities instead of frequencies to build a Huffman tree. The natural
question is what is the length of the codewords assigned to characters as a function of their probabilities?

In general this question does not have a trivial answer, but there is a simple elegant answer, if all
the probabilities are power of 2.

Lemma 42.1.4. Let 1, . . . , 𝑛 be 𝑛 symbols, such that the probability for the 𝑖th symbol is 𝑝𝑖, and fur-
thermore, there is an integer 𝑙𝑖 ≥ 0, such that 𝑝𝑖 = 1/2𝑙𝑖 . Then, in the Huffman coding for this input,
the code for 𝑖 is of length 𝑙𝑖.

Proof: The proof is by easy induction of the Huffman algorithm. Indeed, for 𝑛 = 2 the claim trivially
holds since there are only two characters with probability 1/2. Otherwise, let 𝑖 and 𝑗 be the two
characters with lowest probability. It must hold that 𝑝𝑖 = 𝑝 𝑗 (otherwise,

∑
𝑘 𝑝𝑘 can not be equal to one).

As such, Huffman’s merges this two letters, into a single “character” that have probability 2𝑝𝑖, which
would have encoding of length 𝑙𝑖 − 1, by induction (on the remaining 𝑛− 1 symbols). Now, the resulting
tree encodes 𝑖 and 𝑗 by code words of length (𝑙𝑖 − 1) + 1 = 𝑙𝑖, as claimed. ■

In particular, we have that 𝑙𝑖 = lg 1/𝑝𝑖. This implies that the average length of a code word is∑︁
𝑖

𝑝𝑖 lg
1
𝑝𝑖
.

If we consider 𝑋 to be a random variable that takes a value 𝑖 with probability 𝑝𝑖, then this formula is

H(𝑋) =
∑︁
𝑖

P[𝑋 = 𝑖] lg 1
P[𝑋 = 𝑖] ,

which is the entropy of 𝑋.

Theorem 42.1.5. Consider an input sequence 𝑆 of 𝑚 characters, where the characters are taken from
an alphabet set Σ of size 𝑛. In particular, let 𝑓𝑖 be the number of times the 𝑖th character of Σ appears in
𝑆, for 𝑖 = 1, . . . , 𝑛. Consider the compression of this string using Huffman’s code. Then, the total length
of the compressed string (ignoring the space needed to store the code itself) is ≤ 𝑚 (H(𝑋) + 1), where 𝑋

is a random variable that returns 𝑖 with probability 𝑝𝑖 = 𝑓𝑖/𝑚.

Proof: The trick is to replace 𝑝𝑖, which might not be a power of 2, by 𝑞𝑖 = 2⌊lg 𝑝𝑖⌋ . We have that
𝑞𝑖 ≤ 𝑝𝑖 ≤ 2𝑞𝑖, and 𝑞𝑖 is a power of 2, for all 𝑖. The leftover of this coding is Δ = 1 − ∑

𝑖 𝑞𝑖. We write
Δ as a sum of powers of 2 (since the frequencies are fractions of the form 𝑖/𝑚 [since the input string is
of length 𝑚] – this requires at most 𝜏 = 𝑂 (log𝑚) numbers): Δ =

∑𝑛+𝜏
𝑗=𝑛+1 𝑞 𝑗 . We now create a Huffman

code 𝑇 for the frequencies 𝑞1, . . . , 𝑞𝑛, 𝑞𝑛+1, . . . , 𝑞𝑛+𝜏. The output length to encode the input string using
this code, by Lemma 42.1.4, is

𝐿 = 𝑚

𝑛∑︁
𝑖=1

𝑝𝑖 lg
1
𝑞𝑖

≤ 𝑚

𝑛∑︁
𝑖=1

𝑝𝑖

(
1 + lg 1

𝑝𝑖

)
≤ 𝑚 + 𝑚

𝑛∑︁
𝑖=1

𝑝𝑖 lg
1
𝑝𝑖

= 𝑚 + 𝑚H(𝑋).

4

One can now restrict 𝑇 to be a prefix tree only for the first 𝑛 symbols. Indeed, delete the 𝜏 “fake”
leafs/symbols, and repeatedly remove internal nodes that have only a single child. In the end of this
process, we get a valid prefix tree for the first 𝑛 symbols, and encoding the input string using this tree
would require at most 𝐿 bits, since process only shortened the code words. Finally, let V be the resulting
tree.

Now, consider the Huffman tree code for the 𝑛 input symbols using the original frequencies 𝑝1, . . . 𝑝𝑛.
The resulting tree U is a better encoder for the input string than V, by Theorem 42.1.3. As such, the
compressed string, would have at most 𝐿 bits – thus establishing the claim. ■

42.2. Compression
In this section, we consider the problem of how to compress a binary string. We map each binary string,
into a new string (which is hopefully shorter). In general, by using a simple counting argument, one can
show that no such mapping can achieve real compression (when the inputs are adversarial). However,
the hope is that there is an underling distribution on the inputs, such that some strings are considerably
more common than others.

Definition 42.2.1. A compression function Compress takes as input a sequence of 𝑛 coin flips, given as
an element of {𝐻,𝑇}𝑛, and outputs a sequence of bits such that each input sequence of 𝑛 flips yields a
distinct output sequence.

The following is easy to verify.

Lemma 42.2.2. If a sequence 𝑆1 is more likely than 𝑆2 then the compression function that minimizes
the expected number of bits in the output assigns a bit sequence to 𝑆2 which is at least as long as 𝑆1.

Note, that this is weak. Usually, we would like the function to output a prefix code, like the Huffman
code.

Theorem 42.2.3. Consider a coin that comes up heads with probability 𝑝 > 1/2. For any constant
𝛿 > 0, when 𝑛 is sufficiently large, the following holds.

(i) There exists a compression function Compress such that the expected number of bits output by
Compress on an input sequence of 𝑛 independent coin flips (each flip gets heads with probability
𝑝) is at most (1 + 𝛿)𝑛H(𝑝); and

(ii) The expected number of bits output by any compression function on an input sequence of 𝑛 inde-
pendent coin flips is at least (1 − 𝛿)𝑛H(𝑝).

Proof: Let 𝜀 > 0 be a constant such that 𝑝−𝜀 > 1/2. The first bit output by the compression procedure
is ’1’ if the output string is just a copy of the input (using 𝑛 + 1 bits overall in the output), and ’0’ if it
is compressed. We compress only if the number of ones in the input sequence, denoted by 𝑋 is larger
than (𝑝 − 𝜀)𝑛. By the Chernoff inequality, we know that P[𝑋 < (𝑝 − 𝜀)𝑛] ≤ exp

(
−𝑛𝜀2/2𝑝

)
.

If there are more than (𝑝 − 𝜀)𝑛 ones in the input, and since 𝑝 − 𝜀 > 1/2, we have that
𝑛∑︁

𝑗=⌈𝑛(𝑝−𝜀)⌉

(
𝑛

𝑗

)
≤

𝑛∑︁
𝑗=⌈𝑛(𝑝−𝜀)⌉

(
𝑛

⌈𝑛(𝑝 − 𝜀)⌉

)
≤ 𝑛

22𝑛H(𝑝−𝜀) ,

by Corollary 42.3.1. As such, we can assign each such input sequence a number in the range 0 . . . 𝑛22𝑛H(𝑝−𝜀),
and this requires (with the flag bit) 1 + ⌊lg 𝑛 + 𝑛H(𝑝 − 𝜀)⌋ random bits.

5

Thus, the expected number of bits output is bounded by

(𝑛 + 1) exp
(
−𝑛𝜀2/2𝑝

)
+ (1 + ⌊lg 𝑛 + 𝑛H(𝑝 − 𝜀)⌋) ≤ (1 + 𝛿)𝑛H(𝑝),

by carefully setting 𝜀 and 𝑛 being sufficiently large. Establishing the upper bound.
As for the lower bound, observe that at least one of the sequences having exactly 𝜏 = ⌊(𝑝 + 𝜀)𝑛⌋

heads, must be compressed into a sequence having

lg
(

𝑛

⌊(𝑝 + 𝜀)𝑛⌋

)
− 1 ≥ lg 2𝑛H(𝑝+𝜀)

𝑛 + 1 − 1 = 𝑛H(𝑝 − 𝜀) − lg(𝑛 + 1) − 1 = 𝜇,

by Corollary 42.3.1. Now, any input string with less than 𝜏 heads has lower probability to be generated.
Indeed, for a specific strings with 𝛼 < 𝜏 ones the probability to generate them is 𝑝𝛼 (1 − 𝑝)𝑛−𝛼 and
𝑝𝜏 (1 − 𝑝)𝑛−𝜏, respectively. Now, observe that

𝑝𝛼 (1 − 𝑝)𝑛−𝛼 = 𝑝𝜏 (1 − 𝑝)𝑛−𝜏 · (1 − 𝑝)𝜏−𝛼
𝑝𝜏−𝛼

= 𝑝𝜏 (1 − 𝑝)𝑛−𝜏
(
1 − 𝑝

𝑝

)𝜏−𝛼
< 𝑝𝜏 (1 − 𝑝)𝑛−𝜏,

as 1 − 𝑝 < 1/2 < 𝑝 implies that (1 − 𝑝)/𝑝 < 1.
As such, Lemma 42.2.2 implies that all the input strings with less than 𝜏 ones, must be compressed

into strings of length at least 𝜇, by an optimal compresser. Now, the Chenroff inequality implies that
P[𝑋 ≤ 𝜏] ≥ 1 − exp

(
−𝑛𝜀2/12𝑝

)
. Implying that an optimal compresser outputs on average at least(

1 − exp
(
−𝑛𝜀2/12𝑝

))
𝜇. Again, by carefully choosing 𝜀 and 𝑛 sufficiently large, we have that the average

output length of an optimal compressor is at least (1 − 𝛿)𝑛H(𝑝). ■

42.3. From previous lecture

Corollary 42.3.1. We have:
(i) 𝑞 ∈ [0, 1/2] ⇒

(𝑛
⌊𝑛𝑞⌋

)
≤ 2𝑛H(𝑞). (ii) 𝑞 ∈ [1/2, 1]

(𝑛
⌈𝑛𝑞⌉

)
≤ 2𝑛H(𝑞).

beginequation*0.1cm] (iii) 𝑞 ∈ [1/2, 1] ⇒ 2𝑛H(𝑞)
𝑛+1 ≤

(𝑛
⌊𝑛𝑞⌋

)
. (iv) 𝑞 ∈ [0, 1/2] ⇒ 2𝑛H(𝑞)

𝑛+1 ≤
(𝑛
⌈𝑛𝑞⌉

)
.

42.4. Bibliographical Notes
The presentation here follows [MU05, Sec. 9.1-Sec 9.3].

References
[MU05] M. Mitzenmacher and U. Upfal. Probability and computing – randomized algorithms and prob-

abilistic analysis. Cambridge, 2005.

6

	Entropy II
	Huffman coding
	The algorithm to build Hoffman's code
	Analysis
	A formula for the average size of a code word

	Compression
	From previous lecture
	Bibliographical Notes

