
Chapter 41

Entropy, Randomness, and Information
By Sariel Har-Peled, April 26, 2022①

“If only once - only once - no matter where, no matter before what audience - I could better the record of the
great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished
something for my country. But I am not getting any younger, and although I am still at the peak of my powers
there are moments - why deny it? - when I begin to doubt - and there is a time limit on all of us.”

Romain Gary, The talent scout

41.1. The entropy function
Definition 41.1.1. The entropy in bits of a discrete random variable 𝑋 is given by

H(𝑋) = −
∑︁
𝑥

P[𝑋 = 𝑥] lg P[𝑋 = 𝑥],

where lg 𝑥 is the logarithm base 2 of 𝑥. Equivalently, H(𝑋) = E
[
lg 1
P[𝑋]

]
.

The binary entropy function H(𝑝) for a random binary variable that is 1 with probability 𝑝, is

H(𝑝) = −𝑝 lg 𝑝 − (1 − 𝑝) lg(1 − 𝑝).

We define H(0) = H(1) = 0.

H(p) = −p lg p− (1− p) lg(1− p)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 41.1: The binary entropy function.

The function H(𝑝) is a concave symmetric around 1/2 on the interval [0, 1] and achieves its maximum
at 1/2. For a concrete example, consider H(3/4) ≈ 0.8113 and H(7/8) ≈ 0.5436. Namely, a coin that has

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

3/4 probably to be heads have higher amount of “randomness” in it than a coin that has probability
7/8 for heads.

Writing lg 𝑛 = (ln 𝑛)/ln 2, we have that

H(𝑝) = 1
ln 2

(
−𝑝 ln 𝑝 − (1 − 𝑝) ln(1 − 𝑝)

)
and H′(𝑝) = 1

ln 2

(
− ln 𝑝 − 𝑝

𝑝
− (−1) ln(1 − 𝑝) − 1 − 𝑝

1 − 𝑝 (−1)
)
= lg 1 − 𝑝

𝑝
.

Deploying our amazing ability to compute derivative of simple functions once more, we get that

H′′(𝑝) = 1
ln 2

𝑝

1 − 𝑝

(
𝑝(−1) − (1 − 𝑝)

𝑝2

)
= − 1

𝑝(1 − 𝑝) ln 2 .

Since ln 2 ≈ 0.693, we have that H′′(𝑝) ≤ 0, for all 𝑝 ∈ (0, 1), and the H(·) is concave in this range. Also,
H′(1/2) = 0, which implies that H(1/2) = 1 is a maximum of the binary entropy. Namely, a balanced
coin has the largest amount of randomness in it.

Example 41.1.2. A random variable 𝑋 that has probability 1/𝑛 to be 𝑖, for 𝑖 = 1, . . . , 𝑛, has entropy
H(𝑋) = −∑𝑛

𝑖=1
1
𝑛

lg 1
𝑛
= lg 𝑛.

Note, that the entropy is oblivious to the exact values that the random variable can have, and it is
sensitive only to the probability distribution. Thus, a random variables that accepts −1, +1 with equal
probability has the same entropy (i.e., 1) as a fair coin.

Lemma 41.1.3. Let 𝑋 and 𝑌 be two independent random variables, and let 𝑍 be the random variable
(𝑋,𝑇). Then H(𝑍) = H(𝑋) + H(𝑌).

Proof: In the following, summation are over all possible values that the variables can have. By the
independence of 𝑋 and 𝑌 we have

H(𝑍) =
∑︁
𝑥,𝑦

P[(𝑋,𝑌) = (𝑥, 𝑦)] lg 1
P[(𝑋,𝑌) = (𝑥, 𝑦)]

=
∑︁
𝑥,𝑦

P[𝑋 = 𝑥] P[𝑌 = 𝑦] lg 1
P[𝑋 = 𝑥] P[𝑌 = 𝑦]

=
∑︁
𝑥

∑︁
𝑦

P[𝑋 = 𝑥] P[𝑌 = 𝑦] lg 1
P[𝑋 = 𝑥]

+
∑︁
𝑦

∑︁
𝑥

P[𝑋 = 𝑥] P[𝑌 = 𝑦] lg 1
P[𝑌 = 𝑦]

=
∑︁
𝑥

P[𝑋 = 𝑥] lg 1
P[𝑋 = 𝑥] +

∑︁
𝑦

P[𝑌 = 𝑦] lg 1
P[𝑌 = 𝑦] = H(𝑋) + H(𝑌). ■

Lemma 41.1.4. Suppose that 𝑛𝑞 is integer in the range [0, 𝑛]. Then 2𝑛H(𝑞)
𝑛 + 1 ≤

(
𝑛

𝑛𝑞

)
≤ 2𝑛H(𝑞).

2

Proof: This trivially holds if 𝑞 = 0 or 𝑞 = 1, so assume 0 < 𝑞 < 1. We know that(
𝑛

𝑛𝑞

)
𝑞𝑛𝑞 (1 − 𝑞)𝑛−𝑛𝑞 ≤ (𝑞 + (1 − 𝑞))𝑛 = 1

=⇒
(
𝑛

𝑛𝑞

)
≤ 𝑞−𝑛𝑞 (1 − 𝑞)−𝑛(1−𝑞) = 2𝑛 (−𝑞 lg 𝑞−(1−𝑞) lg(1−𝑞)) = 2𝑛H(𝑞) .

As for the other direction, let

𝜇(𝑘) =
(
𝑛

𝑘

)
𝑞𝑘 (1 − 𝑞)𝑛−𝑘 .

The claim is that 𝜇(𝑛𝑞) is the largest term in
∑𝑛
𝑘=0 𝜇(𝑘) = 1, where 𝜇(𝑘) =

(𝑛
𝑘

)
𝑞𝑘 (1 − 𝑞)𝑛−𝑘 . Indeed,

Δ𝑘 = 𝜇(𝑘) − 𝜇(𝑘 + 1) =
(
𝑛

𝑘

)
𝑞𝑘 (1 − 𝑞)𝑛−𝑘

(
1 − 𝑛 − 𝑘

𝑘 + 1
𝑞

1 − 𝑞

)
,

and the sign of this quantity is the sign of (𝑘 +1) (1−𝑞) − (𝑛− 𝑘)𝑞 = 𝑘 +1− 𝑘𝑞−𝑞−𝑛𝑞+ 𝑘𝑞 = 1+ 𝑘−𝑞−𝑛𝑞.
Namely, Δ𝑘 ≥ 0 when 𝑘 ≥ 𝑛𝑞 + 𝑞 − 1, and Δ𝑘 < 0 otherwise. Namely, 𝜇(𝑘) < 𝜇(𝑘 + 1), for 𝑘 < 𝑛𝑞, and
𝜇(𝑘) ≥ 𝜇(𝑘 + 1) for 𝑘 ≥ 𝑛𝑞. Namely, 𝜇(𝑛𝑞) is the largest term in

∑𝑛
𝑘=0 𝜇(𝑘) = 1, and as such it is larger

than the average. We have 𝜇(𝑛𝑞) =
(𝑛
𝑛𝑞

)
𝑞𝑛𝑞 (1 − 𝑞)𝑛−𝑛𝑞 ≥ 1

𝑛+1 , which implies(
𝑛

𝑛𝑞

)
≥ 1
𝑛 + 1𝑞

−𝑛𝑞 (1 − 𝑞)−(𝑛−𝑛𝑞) = 1
𝑛 + 12𝑛H(𝑞) . ■

Lemma 41.1.4 can be extended to handle non-integer values of 𝑞. This is straightforward, and we
omit the easy details.

Corollary 41.1.5. We have:

(i) 𝑞 ∈ [0, 1/2] ⇒
(
𝑛

⌊𝑛𝑞⌋

)
≤ 2𝑛H(𝑞).

(ii) 𝑞 ∈ [1/2, 1] ⇒
(
𝑛

⌈𝑛𝑞⌉

)
≤ 2𝑛H(𝑞).

(iii) 𝑞 ∈ [1/2, 1] ⇒ 2𝑛H(𝑞)
𝑛 + 1 ≤

(
𝑛

⌊𝑛𝑞⌋

)
.

(iv) 𝑞 ∈ [0, 1/2] ⇒ 2𝑛H(𝑞)
𝑛 + 1 ≤

(
𝑛

⌈𝑛𝑞⌉

)
.

The bounds of Lemma 41.1.4 and Corollary 41.1.5 are loose but sufficient for our purposes. As a
sanity check, consider the case when we generate a sequence of 𝑛 bits using a coin with probability 𝑞
for head, then by the Chernoff inequality, we will get roughly 𝑛𝑞 heads in this sequence. As such, the
generated sequence 𝑌 belongs to

(𝑛
𝑛𝑞

)
≈ 2𝑛H(𝑞) possible sequences that have similar probability. As such,

H(𝑌) ≈ lg
(𝑛
𝑛𝑞

)
= 𝑛H(𝑞), by Example 41.1.2, this also readily follows from Lemma 41.1.3.

41.2. Extracting randomness
The problem. We are given a random variable 𝑋 that is chosen uniformly at random from J0 : 𝑚 − 1K =
{0, . . . , 𝑚 − 1}. Our purpose is built an algorithm that given 𝑋 output a binary string, such that the bits
in the binary string can be interpreted as the coin flips of a fair balanced coin. That is, the probability
of the 𝑖th bit of the output (if it exists) to be 0 (or 1) is exactly half, and the different bits of the output
are independent.

3

1 2 3 4 5 60 7 8 9 10
11

12
13

14 1 2 3 4 5 60 7 8 9 10
11

12
13

14 1 2 3 4 5 60 7 8 9 10
11

12
13

14

0 1 2 3

(A) (B) (C)

Figure 41.2: (A) 𝑚 = 15. (B) The block decomposition. (C) If 𝑋 = 10, then the extraction output is 2
in base 2, using 2 bits – that is 10.

Idea. We break the J0 : 𝑚 − 1K into consecutive blocks that are powers of two. Given the value of 𝑋,
we find which block contains it, and we output a binary representation of the location of 𝑋 in the block
containing it, where if a block is length 2𝑘 , then we output 𝑘 bits.

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a
random variable.

Definition 41.2.1. An extraction function Ext takes as input the value of a random variable 𝑋 and
outputs a sequence of bits 𝑦, such that P

[
Ext(𝑋) = 𝑦

�� |𝑦 | = 𝑘] = 1/2𝑘 . whenever P
[
|𝑦 | = 𝑘

]
≥ 0, where

|𝑦 | denotes the length of 𝑦.

As a concrete (easy) example, consider 𝑋 to be a uniform random integer variable out of 0, . . . , 7.
All that Ext(𝑥) has to do in this case, is just to compute the binary representation of 𝑥.

The definition of the extraction function has two subtleties:
(A) It requires that all extracted sequences of the same length (say 𝑘), have the same probability to

be output (i.e., 1/2𝑘).
(B) If the extraction function can output a sequence of length 𝑘, then it needs to be able to output

all 2𝑘 such binary sequences.
Thus, for 𝑋 a uniform random integer variable in the range 0, . . . , 11, the function Ext(𝑥) can output

the binary representation for 𝑥 if 0 ≤ 𝑥 ≤ 7. However, what do we do if 𝑥 is between 8 and 11? The idea
is to output the binary representation of 𝑥 − 8 as a two bit number. Clearly, Definition 41.2.1 holds for
this extraction function, since P

[
Ext(𝑋) = 00

�� |Ext(𝑋) | = 2
]
= 1/4. as required. This scheme can be of

course extracted for any range.

Tedium 41.2.2. For 𝑥 ≤ 𝑦 positive integers, and any positive integer Δ, we have that

𝑥

𝑦
≤ 𝑥 + Δ

𝑦 + Δ
⇐⇒ 𝑥(𝑦 + Δ) ≤ 𝑦(𝑥 + Δ) ⇐⇒ 𝑥Δ ≤ 𝑦Δ ⇐⇒ 𝑥 ≤ 𝑦.

Theorem 41.2.3. Suppose that the value of a random variable 𝑋 is chosen uniformly at random from
the integers {0, . . . , 𝑚 − 1}. Then there is an extraction function for 𝑋 that outputs on average (i.e., in
expectation) at least ⌊lg𝑚⌋ − 1 = ⌊H(𝑋)⌋ − 1 independent and unbiased bits.

Proof: We represent 𝑚 as a sum of unique powers of 2, namely 𝑚 =
∑
𝑖 𝑎𝑖2𝑖, where 𝑎𝑖 ∈ {0, 1}. Thus,

we decomposed {0, . . . , 𝑚 − 1} into a disjoint union of blocks that have sizes which are distinct powers
of 2. If a number falls inside such a block, we output its relative location in the block, using binary
representation of the appropriate length (i.e., 𝑘 if the block is of size 2𝑘). It is not difficult to verify that
this function fulfills the conditions of Definition 41.2.1, and it is thus an extraction function.

Now, observe that the claim holds if 𝑚 is a power of two, by Example 41.1.2 (i.e., if 𝑚 = 2𝑘 , then
H(𝑋) = 𝑘). Thus, if 𝑚 is not a power of 2, then in the decomposition if there is a block of size 2𝑘 , and
the 𝑋 falls inside this block, then the entropy is 𝑘.

4

The remainder of the proof is by induction – assume the claim holds if the range used by the random
variable is strictly smaller than 𝑚. In particular, let 𝐾 = 2𝑘 be the largest power of 2 that is smaller
than 𝑚, and let 𝑈 = 2𝑢 be the largest power of two such that 𝑈 ≤ 𝑚 − 𝐾 ≤ 2𝑈.

If the random number 𝑋 ∈ J0 : 𝐾 − 1K, then the scheme outputs 𝑘 bits. Otherwise, we can think
about the extraction function as being recursive and extracting randomness from a random variable
𝑋′ = 𝑋 − 𝐾 that is uniformly distributed in J0 : 𝑚 − 𝐾K.

By Tedium 41.2.2, we have that

𝑚 − 𝐾
𝑚

≤ 𝑚 − 𝐾 + (2𝑈 + 𝐾 − 𝑚)
𝑚 + (2𝑈 + 𝐾 − 𝑚) =

2𝑈
2𝑈 + 𝐾

Let 𝑌 be the random variable which is the number of random bits extracted. We have that

E[𝑌] ≥
𝐾

𝑚
𝑘 + 𝑚 − 𝐾

𝑚
(⌊lg(𝑚 − 𝐾)⌋ − 1) = 𝑘 − 𝑚 − 𝐾

𝑚
𝑘 + 𝑚 − 𝐾

𝑚
(𝑢 − 1) = 𝑘 + 𝑚 − 𝐾

𝑚
(

<0︷ ︸︸ ︷
𝑢 − 𝑘 − 1)

≥ 𝑘 − 2𝑈
2𝑈 + 𝐾 (𝑢 − 𝑘 − 1) = 𝑘 − 2𝑈

2𝑈 + 𝐾 (1 + 𝑘 − 𝑢).

If 𝑢 = 𝑘 − 1, then H(𝑋) ≥ 𝑘 − 1
2 · 2 = 𝑘 − 1, as required. If 𝑢 = 𝑘 − 2 then H(𝑋) ≥ 𝑘 − 1

3 · 3 = 𝑘 − 1. Finally,
if 𝑢 < 𝑘 − 2 then

E[𝑌] ≥ 𝑘 − 2𝑈
2𝑈 + 𝐾 (1 + 𝑘 − 𝑢) ≥ 𝑘 − 2𝑈

𝐾
(1 + 𝑘 − 𝑢) = 𝑘 − 𝑘 − 𝑢 + 1

2(𝑘−𝑢+1)−2 ≥ 𝑘 − 1,

since 𝑘 − 𝑢 + 1 ≥ 4 and 𝑖/2𝑖−2 ≤ 1 for 𝑖 ≥ 4. ■

Theorem 41.2.4. Consider a coin that comes up heads with probability 𝑝 > 1/2. For any constant
𝛿 > 0 and for 𝑛 sufficiently large:
(A) One can extract, from an input of a sequence of 𝑛 flips, an output sequence of (1 − 𝛿)𝑛H(𝑝)

(unbiased) independent random bits.
(B) One can not extract more than 𝑛H(𝑝) bits from such a sequence.

Proof: There are
(𝑛
𝑗

)
input sequences with exactly 𝑗 heads, and each has probability 𝑝 𝑗 (1 − 𝑝)𝑛− 𝑗 . We

map this sequence to the corresponding number in the set
{
0, . . . ,

(𝑛
𝑗

)
− 1

}
. Note, that this, conditional

distribution on 𝑗 , is uniform on this set, and we can apply the extraction algorithm of Theorem 41.2.3.
Let 𝑍 be the random variables which is the number of heads in the input, and let 𝐵 be the number of
random bits extracted. We have

E[𝐵] =
𝑛∑︁
𝑘=0
P[𝑍 = 𝑘] E

[
𝐵
�� 𝑍 = 𝑘

]
,

and by Theorem 41.2.3, we have E
[
𝐵
�� 𝑍 = 𝑘

]
≥

⌊
lg

(
𝑛

𝑘

)⌋
− 1. Let 𝜀 < 𝑝 − 1/2 be a constant to be

determined shortly. For 𝑛(𝑝 − 𝜀) ≤ 𝑘 ≤ 𝑛(𝑝 + 𝜀), we have(
𝑛

𝑘

)
≥

(
𝑛

⌊𝑛(𝑝 + 𝜀)⌋

)
≥ 2𝑛H(𝑝+𝜀)

𝑛 + 1 ,

5

by Corollary 41.1.5 (iii). We have

E[𝐵] ≥
⌈𝑛(𝑝−𝜀)⌉∑︁
𝑘=⌊𝑛(𝑝−𝜀)⌋

P[𝑍 = 𝑘] E
[
𝐵
�� 𝑍 = 𝑘

]
≥

⌈𝑛(𝑝−𝜀)⌉∑︁
𝑘=⌊𝑛(𝑝−𝜀)⌋

P[𝑍 = 𝑘]
(⌊

lg
(
𝑛

𝑘

)⌋
− 1

)
≥

⌈𝑛(𝑝−𝜀)⌉∑︁
𝑘=⌊𝑛(𝑝−𝜀)⌋

P[𝑍 = 𝑘]
(
lg 2𝑛H(𝑝+𝜀)

𝑛 + 1 − 2
)

= (𝑛H(𝑝 + 𝜀) − lg(𝑛 + 1)) P[|𝑍 − 𝑛𝑝 | ≤ 𝜀𝑛]

≥ (𝑛H(𝑝 + 𝜀) − lg(𝑛 + 1))
(
1 − 2 exp

(
−𝑛𝜀

2

4𝑝

))
,

since 𝜇 = E[𝑍] = 𝑛𝑝 and P
[
|𝑍 − 𝑛𝑝 | ≥ 𝜀

𝑝
𝑝𝑛

]
≤ 2 exp

(
−𝑛𝑝

4

(
𝜀
𝑝

)2
)
= 2 exp

(
−𝑛𝜀2

4𝑝

)
, by the Chernoff inequal-

ity. In particular, fix 𝜀 > 0, such that H(𝑝 + 𝜀) > (1 − 𝛿/4)H(𝑝), and since 𝑝 is fixed 𝑛H(𝑝) = Ω(𝑛),
in particular, for 𝑛 sufficiently large, we have − lg(𝑛 + 1) ≥ − 𝛿

10𝑛H(𝑝). Also, for 𝑛 sufficiently large, we
have 2 exp

(
−𝑛𝜀2

4𝑝

)
≤ 𝛿

10 . Putting it together, we have that for 𝑛 large enough, we have

E[𝐵] ≥
(
1 − 𝛿

4 − 𝛿

10

)
𝑛H(𝑝)

(
1 − 𝛿

10

)
≥ (1 − 𝛿)𝑛H(𝑝),

as claimed.
As for the upper bound, observe that if an input sequence 𝑥 has probability 𝑞, then the output

sequence 𝑦 = Ext(𝑥) has probability to be generated which is at least 𝑞. Now, all sequences of length
|𝑦 | have equal probability to be generated. Thus, we have the following (trivial) inequality 2|Ext(𝑥) |𝑞 ≤
2|Ext(𝑥) | P[𝑦 = Ext(𝑋)] ≤ 1, implying that |Ext(𝑥) | ≤ lg(1/𝑞). Thus,

E[𝐵] =
∑︁
𝑥

P[𝑋 = 𝑥] |Ext(𝑥) | ≤
∑︁
𝑥

P[𝑋 = 𝑥] lg 1
P[𝑋 = 𝑥] = H(𝑋). ■

41.3. Bibliographical Notes
The presentation here follows [MU05, Sec. 9.1-Sec 9.3].

References
[MU05] M. Mitzenmacher and U. Upfal. Probability and computing – randomized algorithms and prob-

abilistic analysis. Cambridge, 2005.

6

	Entropy, Randomness, and Information
	The entropy function
	Extracting randomness
	Bibliographical Notes

