Chapter 41

Entropy, Randomness, and Information

By Sariel Har-Peled, April 26, $2022^{(1)}$
"If only once - only once - no matter where, no matter before what audience - I could better the record of the great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished something for my country. But I am not getting any younger, and although I am still at the peak of my powers there are moments - why deny it? - when I begin to doubt - and there is a time limit on all of us."

Romain Gary, The talent scout

41.1. The entropy function

Definition 41.1.1. The entropy in bits of a discrete random variable X is given by

$$
\mathbb{H}(X)=-\sum_{x} \mathbb{P}[X=x] \lg \mathbb{P}[X=x],
$$

where $\lg x$ is the logarithm base 2 of x. Equivalently, $\mathbb{H}(X)=\mathbb{E}\left[\lg \frac{1}{\mathbb{P}[X]}\right]$.
The binary entropy function $\mathbb{H}(p)$ for a random binary variable that is 1 with probability p, is

$$
\mathbb{H}(p)=-p \lg p-(1-p) \lg (1-p) .
$$

We define $\mathbb{H}(0)=\mathbb{H}(1)=0$.

Figure 41.1: The binary entropy function.
The function $\mathbb{H}(p)$ is a concave symmetric around $1 / 2$ on the interval $[0,1]$ and achieves its maximum at $1 / 2$. For a concrete example, consider $\mathbb{H}(3 / 4) \approx 0.8113$ and $\mathbb{H}(7 / 8) \approx 0.5436$. Namely, a coin that has

[^0]$3 / 4$ probably to be heads have higher amount of "randomness" in it than a coin that has probability 7/8 for heads.

Writing $\lg n=(\ln n) / \ln 2$, we have that

$$
\begin{aligned}
\mathbb{H}(p) & =\frac{1}{\ln 2}(-p \ln p-(1-p) \ln (1-p)) \\
\text { and } \quad \mathbb{H}^{\prime}(p) & =\frac{1}{\ln 2}\left(-\ln p-\frac{p}{p}-(-1) \ln (1-p)-\frac{1-p}{1-p}(-1)\right)=\lg \frac{1-p}{p} .
\end{aligned}
$$

Deploying our amazing ability to compute derivative of simple functions once more, we get that

$$
\mathbb{H}^{\prime \prime}(p)=\frac{1}{\ln 2} \frac{p}{1-p}\left(\frac{p(-1)-(1-p)}{p^{2}}\right)=-\frac{1}{p(1-p) \ln 2} .
$$

Since $\ln 2 \approx 0.693$, we have that $\mathbb{H}^{\prime \prime}(p) \leq 0$, for all $p \in(0,1)$, and the $\mathbb{H}(\cdot)$ is concave in this range. Also, $\mathbb{H}^{\prime}(1 / 2)=0$, which implies that $\mathbb{H}(1 / 2)=1$ is a maximum of the binary entropy. Namely, a balanced coin has the largest amount of randomness in it.

Example 41.1.2. A random variable X that has probability $1 / n$ to be i, for $i=1, \ldots, n$, has entropy $\mathbb{H}(X)=-\sum_{i=1}^{n} \frac{1}{n} \lg \frac{1}{n}=\lg n$.

Note, that the entropy is oblivious to the exact values that the random variable can have, and it is sensitive only to the probability distribution. Thus, a random variables that accepts $-1,+1$ with equal probability has the same entropy (i.e., 1) as a fair coin.

Lemma 41.1.3. Let X and Y be two independent random variables, and let Z be the random variable (X, T). Then $\mathbb{H}(Z)=\mathbb{H}(X)+\mathbb{H}(Y)$.

Proof: In the following, summation are over all possible values that the variables can have. By the independence of X and Y we have

$$
\begin{aligned}
\mathbb{H}(Z)= & \sum_{x, y} \mathbb{P}[(X, Y)=(x, y)] \lg \frac{1}{\mathbb{P}[(X, Y)=(x, y)]} \\
= & \sum_{x, y} \mathbb{P}[X=x] \mathbb{P}[Y=y] \lg \frac{1}{\mathbb{P}[X=x] \mathbb{P}[Y=y]} \\
= & \sum_{x} \sum_{y} \mathbb{P}[X=x] \mathbb{P}[Y=y] \lg \frac{1}{\mathbb{P}[X=x]} \\
& +\sum_{y} \sum_{x} \mathbb{P}[X=x] \mathbb{P}[Y=y] \lg \frac{1}{\mathbb{P}[Y=y]} \\
= & \sum_{x} \mathbb{P}[X=x] \lg \frac{1}{\mathbb{P}[X=x]}+\sum_{y} \mathbb{P}[Y=y] \lg \frac{1}{\mathbb{P}[Y=y]}=\mathbb{H}(X)+\mathbb{H}(Y) .
\end{aligned}
$$

Lemma 41.1.4. Suppose that $n q$ is integer in the range $[0, n]$. Then $\frac{2^{n \mathbb{H}(q)}}{n+1} \leq\binom{ n}{n q} \leq 2^{n \mathbb{H}(q)}$.

Proof: This trivially holds if $q=0$ or $q=1$, so assume $0<q<1$. We know that

$$
\begin{aligned}
&\binom{n}{n q} q^{n q}(1-q)^{n-n q} \leq(q+(1-q))^{n}=1 \\
& \Longrightarrow \quad\binom{n}{n q} \leq q^{-n q}(1-q)^{-n(1-q)}=2^{n(-q \lg q-(1-q) \lg (1-q))}=2^{n \mathbb{H}(q)} .
\end{aligned}
$$

As for the other direction, let

$$
\mu(k)=\binom{n}{k} q^{k}(1-q)^{n-k}
$$

The claim is that $\mu(n q)$ is the largest term in $\sum_{k=0}^{n} \mu(k)=1$, where $\mu(k)=\binom{n}{k} q^{k}(1-q)^{n-k}$. Indeed,

$$
\Delta_{k}=\mu(k)-\mu(k+1)=\binom{n}{k} q^{k}(1-q)^{n-k}\left(1-\frac{n-k}{k+1} \frac{q}{1-q}\right),
$$

and the sign of this quantity is the sign of $(k+1)(1-q)-(n-k) q=k+1-k q-q-n q+k q=1+k-q-n q$. Namely, $\Delta_{k} \geq 0$ when $k \geq n q+q-1$, and $\Delta_{k}<0$ otherwise. Namely, $\mu(k)<\mu(k+1)$, for $k<n q$, and $\mu(k) \geq \mu(k+1)$ for $k \geq n q$. Namely, $\mu(n q)$ is the largest term in $\sum_{k=0}^{n} \mu(k)=1$, and as such it is larger than the average. We have $\mu(n q)=\binom{n}{n q} q^{n q}(1-q)^{n-n q} \geq \frac{1}{n+1}$, which implies

$$
\binom{n}{n q} \geq \frac{1}{n+1} q^{-n q}(1-q)^{-(n-n q)}=\frac{1}{n+1} 2^{n \mathbb{H}(q)}
$$

Lemma 41.1.4 can be extended to handle non-integer values of q. This is straightforward, and we omit the easy details.

Corollary 41.1.5. We have:

$$
\begin{array}{ll}
\text { (i) } q \in[0,1 / 2] \Rightarrow\binom{n}{\lfloor n q\rfloor} \leq 2^{n \mathbb{H}(q)} . & \text { (iii) } q \in[1 / 2,1] \Rightarrow \frac{2^{n \mathbb{H}(q)}}{n+1} \leq\binom{ n}{\lfloor n q\rfloor} . \\
\text { (ii) } q \in[1 / 2,1] \Rightarrow\binom{n}{\lceil n q\rceil} \leq 2^{n \mathbb{H}(q)} . & \text { (iv) } q \in[0,1 / 2] \Rightarrow \frac{2^{n \mathbb{H}(q)}}{n+1} \leq\binom{ n}{\lceil n q\rceil} .
\end{array}
$$

The bounds of Lemma 41.1.4 and Corollary 41.1.5 are loose but sufficient for our purposes. As a sanity check, consider the case when we generate a sequence of n bits using a coin with probability q for head, then by the Chernoff inequality, we will get roughly $n q$ heads in this sequence. As such, the generated sequence Y belongs to $\binom{n}{n q} \approx 2^{n \mathbb{H}(q)}$ possible sequences that have similar probability. As such, $\mathbb{H}(Y) \approx \lg \binom{n}{n q}=n \mathbb{H}(q)$, by Example 41.1.2, this also readily follows from Lemma 41.1.3.

41.2. Extracting randomness

The problem. We are given a random variable X that is chosen uniformly at random from $\llbracket 0: m-1 \rrbracket=$ $\{0, \ldots, m-1\}$. Our purpose is built an algorithm that given X output a binary string, such that the bits in the binary string can be interpreted as the coin flips of a fair balanced coin. That is, the probability of the i th bit of the output (if it exists) to be 0 (or 1) is exactly half, and the different bits of the output are independent.

(A)

(B)

(C)

Figure 41.2: (A) $m=15$. (B) The block decomposition. (C) If $X=10$, then the extraction output is 2 in base 2, using 2 bits - that is 10 .

Idea. We break the $\llbracket 0: m-1 \rrbracket$ into consecutive blocks that are powers of two. Given the value of X, we find which block contains it, and we output a binary representation of the location of X in the block containing it, where if a block is length 2^{k}, then we output k bits.

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a random variable.

Definition 41.2.1. An extraction function Ext takes as input the value of a random variable X and outputs a sequence of bits y, such that $\mathbb{P}[\operatorname{Ext}(X)=y| | y \mid=k]=1 / 2^{k}$. whenever $\mathbb{P}[|y|=k] \geq 0$, where $|y|$ denotes the length of y.

As a concrete (easy) example, consider X to be a uniform random integer variable out of $0, \ldots, 7$. All that $\operatorname{Ext}(x)$ has to do in this case, is just to compute the binary representation of x.

The definition of the extraction function has two subtleties:
(A) It requires that all extracted sequences of the same length (say k), have the same probability to be output (i.e., $1 / 2^{k}$).
(B) If the extraction function can output a sequence of length k, then it needs to be able to output all 2^{k} such binary sequences.
Thus, for X a uniform random integer variable in the range $0, \ldots, 11$, the function $\operatorname{Ext}(x)$ can output the binary representation for x if $0 \leq x \leq 7$. However, what do we do if x is between 8 and 11? The idea is to output the binary representation of $x-8$ as a two bit number. Clearly, Definition 41.2.1 holds for this extraction function, since $\mathbb{P}[\operatorname{Ext}(X)=00| | \operatorname{Ext}(X) \mid=2]=1 / 4$. as required. This scheme can be of course extracted for any range.

Tedium 41.2.2. For $x \leq y$ positive integers, and any positive integer Δ, we have that

$$
\frac{x}{y} \leq \frac{x+\Delta}{y+\Delta} \Longleftrightarrow x(y+\Delta) \leq y(x+\Delta) \Longleftrightarrow x \Delta \leq y \Delta \Longleftrightarrow x \leq y .
$$

Theorem 41.2.3. Suppose that the value of a random variable X is chosen uniformly at random from the integers $\{0, \ldots, m-1\}$. Then there is an extraction function for X that outputs on average (i.e., in expectation) at least $\lfloor\lg m\rfloor-1=\lfloor\mathbb{H}(X)\rfloor-1$ independent and unbiased bits.

Proof: We represent m as a sum of unique powers of 2 , namely $m=\sum_{i} a_{i} 2^{i}$, where $a_{i} \in\{0,1\}$. Thus, we decomposed $\{0, \ldots, m-1\}$ into a disjoint union of blocks that have sizes which are distinct powers of 2. If a number falls inside such a block, we output its relative location in the block, using binary representation of the appropriate length (i.e., k if the block is of size 2^{k}). It is not difficult to verify that this function fulfills the conditions of Definition 41.2.1, and it is thus an extraction function.

Now, observe that the claim holds if m is a power of two, by Example 41.1 .2 (i.e., if $m=2^{k}$, then $\mathbb{H}(X)=k)$. Thus, if m is not a power of 2 , then in the decomposition if there is a block of size 2^{k}, and the X falls inside this block, then the entropy is k.

The remainder of the proof is by induction - assume the claim holds if the range used by the random variable is strictly smaller than m. In particular, let $K=2^{k}$ be the largest power of 2 that is smaller than m, and let $U=2^{u}$ be the largest power of two such that $U \leq m-K \leq 2 U$.

If the random number $X \in \llbracket 0: K-1 \rrbracket$, then the scheme outputs k bits. Otherwise, we can think about the extraction function as being recursive and extracting randomness from a random variable $X^{\prime}=X-K$ that is uniformly distributed in $\llbracket 0: m-K \rrbracket$.

By Tedium 41.2.2, we have that

$$
\frac{m-K}{m} \leq \frac{m-K+(2 U+K-m)}{m+(2 U+K-m)}=\frac{2 U}{2 U+K}
$$

Let Y be the random variable which is the number of random bits extracted. We have that

$$
\begin{aligned}
\mathbb{E}[Y] & \geq \frac{K}{m} k+\frac{m-K}{m}(\lfloor\lg (m-K)\rfloor-1)=k-\frac{m-K}{m} k+\frac{m-K}{m}(u-1)=k+\frac{m-K}{m}(\overbrace{u-k-1}^{<0}) \\
& \geq k-\frac{2 U}{2 U+K}(u-k-1)=k-\frac{2 U}{2 U+K}(1+k-u) .
\end{aligned}
$$

If $u=k-1$, then $\mathbb{H}(X) \geq k-\frac{1}{2} \cdot 2=k-1$, as required. If $u=k-2$ then $\mathbb{H}(X) \geq k-\frac{1}{3} \cdot 3=k-1$. Finally, if $u<k-2$ then

$$
\mathbb{E}[Y] \geq k-\frac{2 U}{2 U+K}(1+k-u) \geq k-\frac{2 U}{K}(1+k-u)=k-\frac{k-u+1}{2^{(k-u+1)-2}} \geq k-1,
$$

since $k-u+1 \geq 4$ and $i / 2^{i-2} \leq 1$ for $i \geq 4$.
Theorem 41.2.4. Consider a coin that comes up heads with probability $p>1 / 2$. For any constant $\delta>0$ and for n sufficiently large:
(A) One can extract, from an input of a sequence of n flips, an output sequence of $(1-\delta) n \mathbb{H}(p)$ (unbiased) independent random bits.
(B) One can not extract more than $n \mathbb{H}(p)$ bits from such a sequence.

Proof: There are $\binom{n}{j}$ input sequences with exactly j heads, and each has probability $p^{j}(1-p)^{n-j}$. We map this sequence to the corresponding number in the set $\left\{0, \ldots,\binom{n}{j}-1\right\}$. Note, that this, conditional distribution on j, is uniform on this set, and we can apply the extraction algorithm of Theorem 41.2.3. Let Z be the random variables which is the number of heads in the input, and let B be the number of random bits extracted. We have

$$
\mathbb{E}[B]=\sum_{k=0}^{n} \mathbb{P}[Z=k] \mathbb{E}[B \mid Z=k],
$$

and by Theorem 41.2.3, we have $\mathbb{E}[B \mid Z=k] \geq\left\lfloor\lg \binom{n}{k}\right\rfloor-1$. Let $\varepsilon<p-1 / 2$ be a constant to be determined shortly. For $n(p-\varepsilon) \leq k \leq n(p+\varepsilon)$, we have

$$
\binom{n}{k} \geq\binom{ n}{\lfloor n(p+\varepsilon)\rfloor} \geq \frac{2^{n \mathbb{H}(p+\varepsilon)}}{n+1}
$$

by Corollary 41.1 .5 (iii). We have

$$
\begin{aligned}
\mathbb{E}[B] & \geq \sum_{k=\lfloor n(p-\varepsilon)\rfloor}^{\lceil n(p-\varepsilon)\rceil} \mathbb{P}[Z=k] \mathbb{E}[B \mid Z=k] \geq \sum_{k=\lfloor n(p-\varepsilon)\rfloor}^{\lceil n(p-\varepsilon)\rceil} \mathbb{P}[Z=k]\left(\left\lfloor\lg \binom{n}{k}\right\rfloor-1\right) \\
& \geq \sum_{k=\lfloor n(p-\varepsilon)\rfloor}^{\lceil n(p-\varepsilon)\rceil} \mathbb{P}[Z=k]\left(\lg \frac{2^{n \mathbb{H}(p+\varepsilon)}}{n+1}-2\right) \\
& =(n \mathbb{H}(p+\varepsilon)-\lg (n+1)) \mathbb{P}[|Z-n p| \leq \varepsilon n] \\
& \geq(n \mathbb{H}(p+\varepsilon)-\lg (n+1))\left(1-2 \exp \left(-\frac{n \varepsilon^{2}}{4 p}\right)\right),
\end{aligned}
$$

since $\mu=\mathbb{E}[Z]=n p$ and $\mathbb{P}\left[|Z-n p| \geq \frac{\varepsilon}{p} p n\right] \leq 2 \exp \left(-\frac{n p}{4}\left(\frac{\varepsilon}{p}\right)^{2}\right)=2 \exp \left(-\frac{n \varepsilon^{2}}{4 p}\right)$, by the Chernoff inequality. In particular, fix $\varepsilon>0$, such that $\mathbb{H}(p+\varepsilon)>(1-\delta / 4) \mathbb{H}(p)$, and since p is fixed $n \mathbb{H}(p)=\Omega(n)$, in particular, for n sufficiently large, we have $-\lg (n+1) \geq-\frac{\delta}{10} n \mathbb{H}(p)$. Also, for n sufficiently large, we have $2 \exp \left(-\frac{n \varepsilon^{2}}{4 p}\right) \leq \frac{\delta}{10}$. Putting it together, we have that for n large enough, we have

$$
\mathbb{E}[B] \geq\left(1-\frac{\delta}{4}-\frac{\delta}{10}\right) n \mathbb{H}(p)\left(1-\frac{\delta}{10}\right) \geq(1-\delta) n \mathbb{H}(p)
$$

as claimed.
As for the upper bound, observe that if an input sequence x has probability q, then the output sequence $y=\operatorname{Ext}(x)$ has probability to be generated which is at least q. Now, all sequences of length $|y|$ have equal probability to be generated. Thus, we have the following (trivial) inequality $2^{|\operatorname{Ext}(x)|} q \leq$ $2^{|\operatorname{Ext}(x)|} \mathbb{P}[y=\operatorname{Ext}(X)] \leq 1$, implying that $|\operatorname{Ext}(x)| \leq \lg (1 / q)$. Thus,

$$
\mathbb{E}[B]=\sum_{x} \mathbb{P}[X=x]|\operatorname{Ext}(x)| \leq \sum_{x} \mathbb{P}[X=x] \lg \frac{1}{\mathbb{P}[X=x]}=\mathbb{H}(X)
$$

41.3. Bibliographical Notes

The presentation here follows [MU05, Sec. 9.1-Sec 9.3].

References

[MU05] M. Mitzenmacher and U. Upfal. Probability and computing - randomized algorithms and probabilistic analysis. Cambridge, 2005.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

