
Chapter 40

Finite Metric Spaces and Partitions
By Sariel Har-Peled, April 26, 2022①

40.1. Finite Metric Spaces
Definition 40.1.1. A metric space is a pair (X, d) where X is a set and d : X×X → [0,∞) is a metric,
satisfying the following axioms:

(i) d(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦,
(ii) d(𝑥, 𝑦) = d(𝑦, 𝑥), and
(iii) d(𝑥, 𝑦) + d(𝑦, 𝑧) ≥ d(𝑥, 𝑧) (triangle inequality).

The plane, R2, with the regular Euclidean distance is a metric space.
Of special interest is the finite case, where X is an 𝑛-point set. Then, the function d can be specified

by
(𝑛
2
)

real numbers. Alternatively, one can think about (X, d) as a weighted complete graph, where
positive weights are specified on the edges, and these weights comply with the triangle inequality.

Finite metric spaces rise naturally from (sparse) graphs. Indeed, let G = (X, E) be an undirected
weighted graph defined over X, and let dG(𝑥, 𝑦) be the length of the shortest path between 𝑥 and 𝑦 in
G. It is easy to verify that (X, d𝐺) is a finite metric space. As such if the graph G is sparse, it provides
a compact representation to the finite space (X, d𝐺).

Definition 40.1.2. Let (X, 𝑑) be an 𝑛-point metric space. We denote the open ball of radius 𝑟 about
𝑥 ∈ X, by b(𝑥, 𝑟) = {𝑦 ∈ X | d(𝑥, 𝑦) < 𝑟}.

Underling our discussion of metric spaces are algorithmic applications. The hardness of various
computational problems depends heavily on the structure of the finite metric space. Thus, given a finite
metric space, and a computational task, it is natural to try to map the given metric space into a new
metric where the task at hand becomes easy.

Example 40.1.3. Computing the diameter of a point set is not trivial in two dimensions (if one wants
near linear running time), but is easy in one dimension. Thus, if we could map points in two dimensions
into points in one dimension, such that the diameter is preserved, then computing the diameter becomes
easy. This approach yields an efficient approximation algorithm, see Exercise 40.7.3 below.

Of course, this mapping from one metric space to another, is going to introduce error. Naturally,
one would like to minimize the error introduced by such a mapping.

Definition 40.1.4. Let (X, dX) and (Y, dY) be two metric spaces. A mapping 𝑓 : X → Y is an embedding,
and it is 𝐶-Lipschitz if d𝑌

(
𝑓 (𝑥), 𝑓 (𝑦)

)
≤ 𝐶 ·dX(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X. The mapping 𝑓 is 𝐾-bi-Lipschitz

if there exists a 𝐶 > 0 such that

𝐶𝐾−1 · dX(𝑥, 𝑦) ≤ d𝑌
(
𝑓 (𝑥), 𝑓 (𝑦)

)
≤ 𝐶 · dX(𝑥, 𝑦),
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for all 𝑥, 𝑦 ∈ X.
The least 𝐾 for which 𝑓 is 𝐾-bi-Lipschitz is the distortion of 𝑓 , and is denoted dist( 𝑓 ). The least

distortion with which X may be embedded in Y is denoted 𝑐
Y
(X).

Informally, if 𝑓 : X → Y has distortion 𝐾, then the distances in X and 𝑓 (X) ⊆ Y are the same up to
a factor of 𝐾 (one might need to scale up the distances by some constant 𝐶).

There are several powerful results about low distortion embeddings that would be presented:
(I) Probabilistic trees. Every finite metric can be randomly embedded into a tree such that the

“expected” distortion for a specific pair of points is 𝑂 (log 𝑛).
(II) Bourgain embedding. Any 𝑛-point metric space can be embedded into (finite dimensional)

euclidean metric space with 𝑂 (log 𝑛) distortion.
(III) Johnson-Lindenstrauss lemma. Any 𝑛-point set in Euclidean space with the regular Euclidean

distance can be embedded into R𝑘 with distortion (1 + Y), where 𝑘 = 𝑂 (Y−2 log 𝑛).

40.2. Examples

What is distortion? When considering a mapping 𝑓 : X → R𝑑 of a metric space (X, d) to R𝑑, it
would useful to observe that since R𝑑 can be scaled, we can consider 𝑓 to be an expansion (i.e., no
distances shrink). Furthermore, we can assume that there is at least one pair of points 𝑥, 𝑦 ∈ X, such
that d(𝑥, 𝑦) = ∥𝑥 − 𝑦∥. As such, we have dist( 𝑓 ) = max𝑥,𝑦 ∥𝑥−𝑦∥

d(𝑥,𝑦) .

Why is distortion necessary? Consider the a graph G = (V, E) with one vertex 𝑠

connected to three other vertices 𝑎, 𝑏, 𝑐, where the weights on the edges are all one (i.e., G
is the star graph with three leafs). We claim that G can not be embedded into Euclidean
space with distortion ≤

√
2. Indeed, consider the associated metric space (V, d𝐺) and an

(expansive) embedding 𝑓 : V → R𝑑.

a
s

c

b

Consider the triangle formed by △ = 𝑎′𝑏′𝑐′, where 𝑎′ = 𝑓 (𝑎), 𝑏′ = 𝑓 (𝑏) and 𝑐′ = 𝑓 (𝑐). Next, consider
the following quantity max(∥𝑎′ − 𝑠′∥ , ∥𝑏′ − 𝑠′∥ , ∥𝑐′ − 𝑠′∥) which lower bounds the distortion of 𝑓 . This
quantity is minimized when 𝑟 = ∥𝑎′ − 𝑠′∥ = ∥𝑏′ − 𝑠′∥ = ∥𝑐′ − 𝑠′∥. Namely, 𝑠′ is the center of the smallest
enclosing circle of △. However, 𝑟 is minimized when all the edges of △ are of equal length, and are of
length d𝐺 (𝑎, 𝑏) = 2. It follows that dist( 𝑓 ) ≥ 𝑟 ≥ 2/

√
3.

2

1a′ b′

c′This quantity is minimized when 𝑟 = ∥𝑎′ − 𝑠′∥ = ∥𝑏′ − 𝑠′∥ = ∥𝑐′ − 𝑠′∥. Namely, 𝑠′
is the center of the smallest enclosing circle of △. However, 𝑟 is minimized when all
the edges of △ are of equal length and are of length dG(𝑎, 𝑏) = 2. Observe that the
height of the equilateral triangle with sidelength 2 is ℎ =

√
3, and the radius of its

inscribing circle is 𝑟 = (2/3)ℎ = 2/
√

3; see the figure on the right. As such, it follows
that dist( 𝑓 ) ≥ 𝑟 = 2/

√
3.

Note that the above argument is independent of the target dimension 𝑑. A packing argument shows
that embedding the star graph with 𝑛 leaves into R𝑑 requires distortion Ω

(
𝑛1/𝑑

)
; see Exercise ??. It

is known that Ω(log 𝑛) distortion is necessary in the worst case when embedding a graph into Eu-
clidean space (this is shown using expanders). A proof of distortion Ω(log 𝑛/log log 𝑛) is sketched in the
bibliographical notes.
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40.2.1. Hierarchical Tree Metrics
The following metric is quite useful in practice, and nicely demonstrate why algorithmically finite metric
spaces are useful.

Definition 40.2.1. Hierarchically well-separated tree (HST) is a metric space defined on the leaves
of a rooted tree 𝑇 . To each vertex 𝑢 ∈ 𝑇 there is associated a label Δ𝑢 ≥ 0 such that Δ𝑢 = 0 if and only
if 𝑢 is a leaf of 𝑇 . The labels are such that if a vertex 𝑢 is a child of a vertex 𝑣 then Δ𝑢 ≤ Δ𝑣. The
distance between two leaves 𝑥, 𝑦 ∈ 𝑇 is defined as Δlca(𝑥,𝑦), where lca(𝑥, 𝑦) is the least common ancestor
of 𝑥 and 𝑦 in 𝑇 .

A HST 𝑇 is a 𝑘-HST if for a vertex 𝑣 ∈ 𝑇 , we have that Δ𝑣 ≤ Δp(𝑣)/𝑘, where p(𝑣) is the parent of
𝑣 in 𝑇 .

Note that a HST is a very limited metric. For example, consider the cycle 𝐺 = 𝐶𝑛 of 𝑛 vertices, with
weight one on the edges, and consider an expansive embedding 𝑓 of G into a HST HST. It is easy to
verify, that there must be two consecutive nodes of the cycle, which are mapped to two different subtrees
of the root 𝑟 of HST. Since HST is expansive, it follows that Δ𝑟 ≥ 𝑛/2. As such, dist( 𝑓 ) ≥ 𝑛/2. Namely,
HSTs fail to faithfully represent even very simple metrics.

40.2.2. Clustering
One natural problem we might want to solve on a graph (i.e., finite metric space) (X, d) is to partition it
into clusters. One such natural clustering is the 𝑘-median clustering, where we would like to choose
a set 𝐶 ⊆ X of 𝑘 centers, such that a𝐶 (X, d) =

∑
u∈X d(u, 𝐶) is minimized, where d(u, 𝐶) = min𝑐∈𝐶 d(u, 𝑐)

is the distance of u to its closest center in 𝐶.
It is known that finding the optimal 𝑘-median clustering in a (general weighted) graph is NP-

complete. As such, the best we can hope for is an approximation algorithm. However, if the structure
of the finite metric space (X, d) is simple, then the problem can be solved efficiently. For example, if the
points of X are on the real line (and the distance between 𝑎 and 𝑏 is just |𝑎 − 𝑏 |), then 𝑘-median can
be solved using dynamic programming.

Another interesting case is when the metric space (X, d) is a HST. Is not too hard to prove the
following lemma. See Exercise 40.7.1.

Lemma 40.2.2. Let (X, d) be a HST defined over 𝑛 points, and let 𝑘 > 0 be an integer. One can
compute the optimal 𝑘-median clustering of X in 𝑂 (𝑘2𝑛) time.

Thus, if we can embed a general graph G into a HST HST, with low distortion, then we could
approximate the 𝑘-median clustering on G by clustering the resulting HST, and “importing” the resulting
partition to the original space. The quality of approximation, would be bounded by the distortion of
the embedding of G into HST.

40.3. Random Partitions
Let (X, 𝑑) be a finite metric space. Given a partition 𝑃 = {𝐶1, . . . , 𝐶𝑚} of X, we refer to the sets 𝐶𝑖 as
clusters. We write PX for the set of all partitions of X. For 𝑥 ∈ X and a partition 𝑃 ∈ PX we denote
by 𝑃(𝑥) the unique cluster of 𝑃 containing 𝑥. Finally, the set of all probability distributions on PX is
denoted DX.

The following partition scheme is due to [CKR04].
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Figure 40.1: An example of the partition of a square (induced by a set of points) as described in
Section 40.3.1.

40.3.1. Constructing the partition

Consider a given metric space (X, d), where X is a set of 𝑛 points.
Let Δ = 2𝑢 be a prescribed parameter, which is the required diameter of the resulting clusters.

Choose, uniformly at random, a permutation 𝜋 of X and a random value 𝛼 ∈ [1/4, 1/2]. Let 𝑅 = 𝛼Δ,
and observe that it is uniformly distributed in the interval [Δ/4,Δ/2].

The partition is now defined as follows: A point 𝑥 ∈ X is assigned to the cluster 𝐶𝑦 of 𝑦, where 𝑦 is
the first point in the permutation in distance ≤ 𝑅 from 𝑥. Formally,

𝐶𝑦 =
{
𝑥 ∈ X

�� 𝑥 ∈ b(𝑦, 𝑅) and 𝜋(𝑦) ≤ 𝜋(𝑧) for all 𝑧 ∈ X with 𝑥 ∈ b(𝑧, 𝑅)
}
.

Let 𝑃 = {𝐶𝑦}𝑦∈X denote the resulting partition.
Here is a somewhat more intuitive explanation: Once we fix the radius of the clusters 𝑅, we start

scooping out balls of radius 𝑅 centered at the points of the random permutation 𝜋. At the 𝑖th stage, we
scoop out only the remaining mass at the ball centered at 𝑥𝑖 of radius 𝑟, where 𝑥𝑖 is the 𝑖th point in the
random permutation.
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Figure 40.2: The resulting partition.

40.3.2. Properties
The following lemma quantifies the probability of a (crystal) ball of radius 𝑡 centered at a point 𝑥 is
fully contained in one of the clusters of the partition? (Otherwise, the crystal ball is of course broken.)
Lemma 40.3.1. Let (X, 𝑑) be a finite metric space, Δ = 2𝑢 a prescribed parameter, and let 𝑃 be the
partition of X generated by the above random partition. Then the following holds:

(i) For any 𝐶 ∈ 𝑃, we have diam(𝐶) ≤ Δ.
(ii) Let 𝑥 be any point of X, and 𝑡 a parameter ≤ Δ/8. Then,

P
[
b(𝑥, 𝑡) ⊈ 𝑃(𝑥)

]
≤ 8𝑡

Δ
ln 𝑏
𝑎
,

where 𝑎 = |b(𝑥,Δ/8) |, and 𝑏 = |b(𝑥,Δ) |.
Proof: Since 𝐶𝑦 ⊆ b(𝑦, 𝑅), we have that diam(𝐶𝑦) ≤ Δ, and thus the first claim holds.

Let 𝑈 be the set of points of b(𝑥,Δ), such that 𝑤 ∈ 𝑈 iff b(𝑤, 𝑅) ∩ b(𝑥, 𝑡) ≠ ∅. Arrange the points
of 𝑈 in increasing distance from 𝑥, and let 𝑤1, . . . , 𝑤𝑏′ denote the resulting order, where 𝑏′ = |𝑈 |.
Let 𝐼𝑘 = [𝑑 (𝑥, 𝑤𝑘 ) − 𝑡, 𝑑 (𝑥, 𝑤𝑘 ) + 𝑡] and write E𝑘 for the event that 𝑤𝑘 is the first point in 𝜋 such
that b(𝑥, 𝑡) ∩ 𝐶𝑤𝑘

≠ ∅, and yet b(𝑥, 𝑡) ⊈ 𝐶𝑤𝑘
. Note that if 𝑤𝑘 ∈ b(𝑥,Δ/8), then P[E𝑘 ] = 0 since

b(𝑥, 𝑡) ⊆ b(𝑥,Δ/8) ⊆ b(𝑤𝑘 ,Δ/4) ⊆ b(𝑤𝑘 , 𝑅).
In particular, 𝑤1, . . . , 𝑤𝑎 ∈ b(𝑥,Δ/8) and as such P[E1] = · · · = P[E𝑎] = 0. Also, note that if

d(𝑥, 𝑤𝑘 ) < 𝑅−𝑡 then b(𝑤𝑘 , 𝑅) contains b(𝑥, 𝑡) and as such E𝑘 can not happen. Similarly, if d(𝑥, 𝑤𝑘 ) > 𝑅+𝑡
then b(𝑤𝑘 , 𝑅) ∩ b(𝑥, 𝑡) = ∅ and E𝑘 can not happen. As such, if E𝑘 happen then 𝑅 − 𝑡 ≤ d(𝑥, 𝑤𝑘 ) ≤ 𝑅 + 𝑡.
Namely, if E𝑘 happen then 𝑅 ∈ 𝐼𝑘 . Namely, P[E𝑘 ] = P[E𝑘 ∩ (𝑅 ∈ 𝐼𝑘 )] = P[𝑅 ∈ 𝐼𝑘 ] · P[E𝑘 | 𝑅 ∈ 𝐼𝑘 ].
Now, 𝑅 is uniformly distributed in the interval [Δ/4,Δ/2], and 𝐼𝑘 is an interval of length 2𝑡. Thus,
P[𝑅 ∈ 𝐼𝑘 ] ≤ 2𝑡/(Δ/4) = 8𝑡/Δ.

Next, to bound P[E𝑘 | 𝑅 ∈ 𝐼𝑘 ], we observe that 𝑤1, . . . , 𝑤𝑘−1 are closer to 𝑥 than 𝑤𝑘 and their distance
to b(𝑥, 𝑡) is smaller than 𝑅. Thus, if any of them appear before 𝑤𝑘 in 𝜋 then E𝑘 does not happen. Thus,
P[E𝑘 | 𝑅 ∈ 𝐼𝑘 ] is bounded by the probability that 𝑤𝑘 is the first to appear in 𝜋 out of 𝑤1, . . . , 𝑤𝑘 . But
this probability is 1/𝑘, and thus P[E𝑘 | 𝑅 ∈ 𝐼𝑘 ] ≤ 1/𝑘.

We are now ready for the kill. Indeed,

P[b(𝑥, 𝑡) ⊈ 𝑃(𝑥)] =
𝑏′∑︁
𝑘=1
P[E𝑘 ] =

𝑏′∑︁
𝑘=𝑎+1

P[E𝑘 ] =
𝑏′∑︁

𝑘=𝑎+1
P[𝑅 ∈ 𝐼𝑘 ] · P[E𝑘 | 𝑅 ∈ 𝐼𝑘 ]

≤
𝑏′∑︁

𝑘=𝑎+1

8𝑡
Δ

· 1
𝑘
≤ 8𝑡

Δ
ln 𝑏

′

𝑎
≤ 8𝑡

Δ
ln 𝑏
𝑎
,

since
∑𝑏
𝑘=𝑎+1

1
𝑘
≤

∫ 𝑏

𝑎

𝑑𝑥
𝑥
= ln 𝑏

𝑎
and 𝑏′ ≤ 𝑏. ■
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40.4. Probabilistic embedding into trees
In this section, given 𝑛-point finite metric (X, d). we would like to embed it into a HST. As mentioned
above, one can verify that for any embedding into HST, the distortion in the worst case is Ω(𝑛). Thus,
we define a randomized algorithm that embed (X, 𝑑) into a tree. Let 𝑇 be the resulting tree, and
consider two points 𝑥, 𝑦 ∈ X. Consider the random variable d𝑇 (𝑥, 𝑦). We constructed the tree 𝑇 such
that distances never shrink; i.e. d(𝑥, 𝑦) ≤ d𝑇 (𝑥, 𝑦). The probabilistic distortion of this embedding is
max𝑥,𝑦 E

[
d𝑇 (𝑥,𝑦)
d(𝑥,𝑦)

]
. Somewhat surprisingly, one can find such an embedding with logarithmic probabilistic

distortion.

Theorem 40.4.1. Given 𝑛-point metric (X, 𝑑) one can randomly embed it into a 2-HST with proba-
bilistic distortion ≤ 24 ln 𝑛.

Proof: The construction is recursive. Let diam(𝑃), and compute a random partition of X with cluster
diameter diam(𝑃)/2, using the construction of Section 40.3.1. We recursively construct a 2-HST for
each cluster, and hang the resulting clusters on the root node 𝑣, which is marked by Δ𝑣 = diam(𝑃).
Clearly, the resulting tree is a 2-HST.

For a node 𝑣 ∈ 𝑇 , let X(𝑣) be the set of points of X contained in the subtree of 𝑣.
For the analysis, assume diam(𝑃) = 1, and consider two points 𝑥, 𝑦 ∈ X. We consider a node 𝑣 ∈ 𝑇

to be in level 𝑖 if level(𝑣) = ⌈lgΔ𝑣⌉ = 𝑖. The two points 𝑥 and 𝑦 correspond to two leaves in 𝑇 , and let �̂�
be the least common ancestor of 𝑥 and 𝑦 in 𝑡. We have d𝑇 (𝑥, 𝑦) ≤ 2level(𝑣). Furthermore, note that along
a path the levels are strictly monotonically increasing.

Being more conservative, let 𝑤 be the first ancestor of 𝑥, such that b = b
(
𝑥, d(𝑥, 𝑦)

)
is not completely

contained in X(𝑢1), . . . ,X(𝑢𝑚), where 𝑢1, . . . , 𝑢𝑚 are the children of 𝑤. Clearly, level(𝑤) > level(�̂�).
Thus, d𝑇 (𝑥, 𝑦) ≤ 2level(𝑤).

Consider the path 𝜎 from the root of 𝑇 to 𝑥, and let E𝑖 be the event that b is not fully contained in
X(𝑣𝑖), where 𝑣𝑖 is the node of 𝜎 of level 𝑖 (if such a node exists). Furthermore, let 𝑌𝑖 be the indicator
variable which is 1 if E𝑖 is the first to happened out of the sequence of events E0,E−1, . . .. Clearly,
d𝑇 (𝑥, 𝑦) ≤

∑
𝑌𝑖2𝑖.

Let 𝑡 = d(𝑥, 𝑦) and 𝑗 = ⌊lg d(𝑥, 𝑦)⌋, and 𝑛𝑖 =
��b(𝑥, 2𝑖)�� for 𝑖 = 0, . . . ,−∞. We have

E[d𝑇 (𝑥, 𝑦)] ≤
0∑︁
𝑖= 𝑗

E[𝑌𝑖] 2𝑖 ≤
0∑︁
𝑖= 𝑗

2𝑖 P
[
E𝑖 ∩ E𝑖−1 ∩ E𝑖−1 · · ·E0

]
≤

0∑︁
𝑖= 𝑗

2𝑖 · 8𝑡
2𝑖 ln 𝑛𝑖

𝑛𝑖−3
,

by Lemma 40.3.1. Thus,

E[d𝑇 (𝑥, 𝑦)] ≤ 8𝑡 ln
( 0∏
𝑖= 𝑗

𝑛𝑖

𝑛𝑖−3

)
≤ 8𝑡 ln(𝑛0 · 𝑛1 · 𝑛2) ≤ 24𝑡 ln 𝑛.

It thus follows, that the expected distortion for 𝑥 and 𝑦 is ≤ 24 ln 𝑛. ■

40.4.1. Application: approximation algorithm for 𝑘-median clustering
Let (X, d) be a 𝑛-point metric space, and let 𝑘 be an integer number. We would like to compute the
optimal 𝑘-median clustering. Number, find a subset 𝐶opt ⊆ X, such that a𝐶opt (X, d) is minimized, see
Section 40.2.2. To this end, we randomly embed (X, d) into a HST HST using Theorem 40.4.1. Next,
using Lemma 40.2.2, we compute the optimal 𝑘-median clustering of HST. Let 𝐶 be the set of centers
computed. We return 𝐶 together with the partition of X it induces as the required clustering.
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Figure 40.3: Examples of the sets resulting from the partition of Figure 40.1 and taking clusters into a
set with probability 1/2.

Theorem 40.4.2. Let (X, d) be a 𝑛-point metric space. One can compute in polynomial time a 𝑘-
median clustering of X which has expected price 𝑂 (𝛼 log 𝑛), where 𝛼 is the price of the optimal 𝑘-median
clustering of (X, d).

Proof: The algorithm is described above, and the fact that its running time is polynomial can be easily
be verified. To prove the bound on the quality of the clustering, for any point 𝑝 ∈ X, let cen(𝑝) denote
the closest point in 𝐶opt to 𝑝 according to d, where 𝐶opt is the set of 𝑘-medians in the optimal clustering.
Let 𝐶 be the set of 𝑘-medians returned by the algorithm, and let HST be the HST used by the algorithm.
We have

𝛽 = a𝐶 (X, d) ≤ a𝐶 (X, dHST) ≤ a𝐶opt (X, dHST) ≤
∑︁
𝑝∈X

dHST(𝑝, 𝐶opt) ≤
∑︁
𝑝∈X

dHST(𝑝, cen(𝑝)).

Thus, in expectation we have

E[𝛽] = E
[∑︁
𝑝∈X

dHST(𝑝, cen(𝑝))
]
=

∑︁
𝑝∈X
E[dHST(𝑝, cen(𝑝))] =

∑︁
𝑝∈X

𝑂 (d(𝑝, cen(𝑝)) log 𝑛)

= 𝑂

(
(log 𝑛)

∑︁
𝑝∈X

d(𝑝, cen(𝑝))
)
= 𝑂

(
a𝐶opt (X, d) log 𝑛

)
,

by linearity of expectation and Theorem 40.4.1. ■

40.5. Embedding any metric space into Euclidean space
Lemma 40.5.1. Let (X, d) be a metric, and let 𝑌 ⊂ X. Consider the mapping 𝑓 : X → R, where
𝑓 (𝑥) = d(𝑥,𝑌 ) = min𝑦∈𝑌 d(𝑥, 𝑦). Then for any 𝑥, 𝑦 ∈ X, we have | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ d(𝑥, 𝑦). Namely 𝑓 is
nonexpansive.

Proof: Indeed, let 𝑥′ and 𝑦′ be the closet points of 𝑌 , to 𝑥 and 𝑦, respectively. Observe that

𝑓 (𝑥) = d(𝑥, 𝑥′) ≤ d(𝑥, 𝑦′) ≤ d(𝑥, 𝑦) + d(𝑦, 𝑦′) = d(𝑥, 𝑦) + 𝑓 (𝑦)

by the triangle inequality. Thus, 𝑓 (𝑥) − 𝑓 (𝑦) ≤ d(𝑥, 𝑦). By symmetry, we have 𝑓 (𝑦) − 𝑓 (𝑥) ≤ d(𝑥, 𝑦).
Thus, | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ d(𝑥, 𝑦). ■
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40.5.1. The bounded spread case
Let (X, d) be a 𝑛-point metric. The spread of X, denoted by

Φ(X) = diam(X)
min𝑥,𝑦∈X,𝑥≠𝑦 d(𝑥, 𝑦) ,

is the ratio between the diameter of X and the distance between the closest pair of points.

Theorem 40.5.2. Given a 𝑛-point metric Y = (X, 𝑑), with spread Φ, one can embed it into Euclidean
space R𝑘 with distortion 𝑂

(√
lnΦ ln 𝑛

)
, where 𝑘 = 𝑂 (lnΦ ln 𝑛).

Proof: Assume that diam(Y) = Φ (i.e., the smallest distance in Y is 1), and let 𝑟𝑖 = 2𝑖−2, for 𝑖 = 1, . . . , 𝛼,
where 𝛼 = ⌈lgΦ⌉. Let 𝑃𝑖, 𝑗 be a random partition of 𝑃 with diameter 𝑟𝑖, using Theorem 40.4.1, for
𝑖 = 1, . . . , 𝛼 and 𝑗 = 1, . . . , 𝛽, where 𝛽 = ⌈𝑐 log 𝑛⌉ and 𝑐 is a large enough constant to be determined
shortly.

For each cluster of 𝑃𝑖, 𝑗 randomly toss a coin, and let 𝑉𝑖, 𝑗 be the all the points of X that belong to
clusters in 𝑃𝑖, 𝑗 that got ’𝑇 ’ in their coin toss. For a point 𝑢 ∈ 𝑥, let

𝑓𝑖, 𝑗 (𝑥) = d(𝑥,X \𝑉𝑖, 𝑗 ) = min
𝑣∈X\𝑉𝑖, 𝑗

d(𝑥, 𝑣),

for 𝑖 = 0, . . . , 𝑚 and 𝑗 = 1, . . . , 𝛽. Let 𝐹 : X → R(𝑚+1)·𝛽 be the embedding, such that

𝐹 (𝑥) =
(
𝑓0,1(𝑥), 𝑓0,2(𝑥), . . . , 𝑓0,𝛽 (𝑥)︸                             ︷︷                             ︸

first n resolution block

, 𝑓1,1(𝑥), 𝑓1,2(𝑥), . . . , 𝑓1,𝛽 (𝑥), . . . , 𝑓𝑚,1(𝑥), 𝑓𝑚,2(𝑥), . . . , 𝑓𝛼,𝛽 (𝑥)
)
.

Next, consider two points 𝑥, 𝑦 ∈ X, with distance 𝜙 = d(𝑥, 𝑦). Let 𝑘 be an integer such that
𝑟𝑢 ≤ 𝜙/2 ≤ 𝑟𝑢+1. Clearly, in any partition of 𝑃𝑢,1, . . . , 𝑃𝑢,𝛽 the points 𝑥 and 𝑦 belong to different clusters.
Furthermore, with probability half 𝑥 ∈ 𝑉𝑢, 𝑗 and 𝑦 ∉ 𝑉𝑢, 𝑗 or 𝑥 ∉ 𝑉𝑢, 𝑗 and 𝑦 ∈ 𝑉𝑢, 𝑗 , for 1 ≤ 𝑗 ≤ 𝛽.

Let E 𝑗 denote the event that b(𝑥, 𝜌) ⊆ 𝑉𝑢, 𝑗 and 𝑦 ∉ 𝑉𝑢, 𝑗 , for 𝑗 = 1, . . . , 𝛽, where 𝜌 = 𝜙/(64 ln 𝑛). By
Lemma 40.3.1, we have

P
[
b(𝑥, 𝜌) ⊈ 𝑃𝑢, 𝑗 (𝑥)

]
≤ 8𝜌
𝑟𝑢

ln 𝑛 ≤ 𝜙

8𝑟𝑢
≤ 1/2.

Thus,

P
[
E 𝑗

]
= P

[ (
b(𝑥, 𝜌) ⊆ 𝑃𝑢, 𝑗 (𝑥)

)
∩

(
𝑥 ∈ 𝑉𝑢, 𝑗

)
∩

(
𝑦 ∉ 𝑉𝑢, 𝑗

) ]
= P

[
b(𝑥, 𝜌) ⊆ 𝑃𝑢, 𝑗 (𝑥)

]
· P

[
𝑥 ∈ 𝑉𝑢, 𝑗

]
· P

[
𝑦 ∉ 𝑉𝑢, 𝑗

]
≥ 1/8,

since those three events are independent. Notice, that if E 𝑗 happens, than 𝑓𝑢, 𝑗 (𝑥) ≥ 𝜌 and 𝑓𝑢, 𝑗 (𝑦) = 0.
Let 𝑋 𝑗 be an indicator variable which is 1 if E 𝑗 happens, for 𝑗 = 1, . . . , 𝛽. Let 𝑍 =

∑
𝑗 𝑋 𝑗 , and

we have ` = E[𝑍] = E
[∑

𝑗 𝑋 𝑗
]
≥ 𝛽/8. Thus, the probability that only 𝛽/16 of E1, . . . ,E𝛽 happens, is

P[𝑍 < (1 − 1/2) E[𝑍]]. By the Chernoff inequality, we have P[𝑍 < (1 − 1/2) E[𝑍]] ≤ exp
(
−`1/(2 · 22)

)
=

exp(−𝛽/64) ≤ 1/𝑛10, if we set 𝑐 = 640.
Thus, with high probability

∥𝐹 (𝑥) − 𝐹 (𝑦)∥ ≥

√√√ 𝛽∑︁
𝑗=1

(
𝑓𝑢, 𝑗 (𝑥) − 𝑓𝑢, 𝑗 (𝑦)

)2 ≥
√︂
𝜌2 𝛽

16 =
√︁
𝛽
𝜌

4 = 𝜙 ·
√
𝛽

256 ln 𝑛 .
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On the other hand,
�� 𝑓𝑖, 𝑗 (𝑥) − 𝑓𝑖, 𝑗 (𝑦)

�� ≤ d(𝑥, 𝑦) = 𝜙 ≤ 64𝜌 ln 𝑛. Thus,

∥𝐹 (𝑥) − 𝐹 (𝑦)∥ ≤
√︃
𝛼𝛽(64𝜌 ln 𝑛)2 ≤ 64

√︁
𝛼𝛽𝜌 ln 𝑛 =

√︁
𝛼𝛽 · 𝜙.

Thus, setting 𝐺 (𝑥) = 𝐹 (𝑥) 256 ln 𝑛√
𝛽

, we get a mapping that maps two points of distance 𝜙 from each

other to two points with distance in the range
[
𝜙, 𝜙 ·

√
𝛼𝛽 · 256 ln 𝑛√

𝛽

]
. Namely, 𝐺 (·) is an embedding with

distortion 𝑂 (
√
𝛼 ln 𝑛) = 𝑂 (

√
lnΦ ln 𝑛).

The probability that G fails on one of the pairs, is smaller than (1/𝑛10) ·
(𝑛
2
)
< 1/𝑛8. In particular,

we can check the distortion of G for all
(𝑛
2
)

pairs, and if any of them fail (i.e., the distortion is too big),
we restart the process. ■

40.5.2. The unbounded spread case
Our next task, is to extend Theorem 40.5.2 to the case of unbounded spread. Indeed, let (X, 𝑑) be a
𝑛-point metric, such that diam(X) ≤ 1/2. Again, we look on the different resolutions 𝑟1, 𝑟2, . . ., where
𝑟𝑖 = 1/2𝑖−1. For each one of those resolutions 𝑟𝑖, we can embed this resolution into 𝛽 coordinates, as
done for the bounded case. Then we concatenate the coordinates together.

There are two problems with this approach: (i) the number of resulting coordinates is infinite, and (ii)
a pair 𝑥, 𝑦, might be distorted a “lot” because it contributes to all resolutions, not only to its “relevant”
resolutions.

Both problems can be overcome with careful tinkering. Indeed, for a resolution 𝑟𝑖, we are going to
modify the metric, so that it ignores short distances (i.e., distances ≤ 𝑟𝑖/𝑛2). Formally, for each resolution
𝑟𝑖, let 𝐺𝑖 = (X, 𝐸𝑖) be the graph where two points 𝑥 and 𝑦 are connected if d(𝑥, 𝑦) ≤ 𝑟𝑖/𝑛2. Consider a
connected component 𝐶 ∈ 𝐺𝑖. For any two points 𝑥, 𝑦 ∈ 𝐶, we have d(𝑥, 𝑦) ≤ 𝑛(𝑟𝑖/𝑛2) ≤ 𝑟𝑖/𝑛. Let X𝑖
be the set of connected components of 𝐺𝑖, and define the distances between two connected components
𝐶,𝐶′ ∈ X𝑖, to be d𝑖 (𝐶,𝐶′) = d(𝐶,𝐶′) = min𝑐∈𝐶,𝑐′∈𝐶′ d(𝑐, 𝑐′).

It is easy to verify that (X𝑖, d𝑖) is a metric space (see Exercise 40.7.2). Furthermore, we can naturally
embed (X, d) into (X𝑖, d𝑖) by mapping a point 𝑥 ∈ X to its connected components in X𝑖. Essentially
(X𝑖, d𝑖) is a snapped version of the metric (X, 𝑑), with the advantage that Φ((X, d𝑖)) = 𝑂 (𝑛2). We now
embed X𝑖 into 𝛽 = 𝑂 (log 𝑛) coordinates. Next, for any point of X we embed it into those 𝛽 coordinates,
by using the embedding of its connected component in X𝑖. Let 𝐸𝑖 be the embedding for resolution
𝑟𝑖. Namely, 𝐸𝑖 (𝑥) = ( 𝑓𝑖,1(𝑥), 𝑓𝑖,2(𝑥), . . . , 𝑓𝑖,𝛽 (𝑥)), where 𝑓𝑖, 𝑗 (𝑥) = min(d𝑖 (𝑥,X \ 𝑉𝑖, 𝑗 ), 2𝑟𝑖). The resulting
embedding is 𝐹 (𝑥) = ⊕𝐸𝑖 (𝑥) = (𝐸1(𝑥), 𝐸2(𝑥), . . . , ).

Since we slightly modified the definition of 𝑓𝑖, 𝑗 (·), we have to show that 𝑓𝑖, 𝑗 (·) is nonexpansive.
Indeed, consider two points 𝑥, 𝑦 ∈ X𝑖, and observe that�� 𝑓𝑖, 𝑗 (𝑥) − 𝑓𝑖, 𝑗 (𝑦)

�� ≤ ��d𝑖 (𝑥,𝑉𝑖, 𝑗 ) − d𝑖 (𝑦,𝑉𝑖, 𝑗 )
�� ≤ d𝑖 (𝑥, 𝑦) ≤ d(𝑥, 𝑦),

as a simple case analysis② shows.
For a pair 𝑥, 𝑦 ∈ X, and let 𝜙 = d(𝑥, 𝑦). To see that 𝐹 (·) is the required embedding (up to scaling),

observe that, by the same argumentation of Theorem 40.5.2, we have that with high probability

∥𝐹 (𝑥) − 𝐹 (𝑦)∥ ≥ 𝜙 ·
√
𝛽

256 ln 𝑛 .

②Indeed, if 𝑓𝑖, 𝑗 (𝑥) < d𝑖 (𝑥,𝑉𝑖, 𝑗 ) and 𝑓𝑖, 𝑗 (𝑦) < d𝑖 (𝑥,𝑉𝑖, 𝑗 ) then 𝑓𝑖, 𝑗 (𝑥) = 2𝑟𝑖 and 𝑓𝑖, 𝑗 (𝑦) = 2𝑟𝑖, which implies the above
inequality. If 𝑓𝑖, 𝑗 (𝑥) = d𝑖 (𝑥,𝑉𝑖, 𝑗 ) and 𝑓𝑖, 𝑗 (𝑦) = d𝑖 (𝑥,𝑉𝑖, 𝑗 ) then the inequality trivially holds. The other option is handled in
a similar fashion.
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To get an upper bound on this distance, observe that for 𝑖 such that 𝑟𝑖 > 𝜙𝑛2, we have 𝐸𝑖 (𝑥) = 𝐸𝑖 (𝑦).
Thus,

∥𝐹 (𝑥) − 𝐹 (𝑦)∥2 =
∑︁
𝑖

∥𝐸𝑖 (𝑥) − 𝐸𝑖 (𝑦)∥2 =
∑︁

𝑖,𝑟𝑖<𝜙𝑛
2

∥𝐸𝑖 (𝑥) − 𝐸𝑖 (𝑦)∥2

=
∑︁

𝑖,𝜙/𝑛2<𝑟𝑖<𝜙𝑛2

∥𝐸𝑖 (𝑥) − 𝐸𝑖 (𝑦)∥2 +
∑︁

𝑖,𝑟𝑖<𝜙/𝑛2

∥𝐸𝑖 (𝑥) − 𝐸𝑖 (𝑦)∥2

= 𝛽𝜙2 lg
(
𝑛4) + ∑︁

𝑖,𝑟𝑖<𝜙/𝑛2

(2𝑟𝑖)2𝛽 ≤ 4𝛽𝜙2 lg 𝑛 + 4𝜙2𝛽

𝑛4 ≤ 5𝛽𝜙2 lg 𝑛.

Thus, ∥𝐹 (𝑥) − 𝐹 (𝑦)∥ ≤ 𝜙
√︁

5𝛽 lg 𝑛. We conclude, that with high probability, 𝐹 (·) is an embedding of X
into Euclidean space with distortion

(
𝜙
√︁

5𝛽 lg 𝑛
)
/
(
𝜙 ·

√
𝛽

256 ln 𝑛

)
= 𝑂 (log3/2 𝑛).

We still have to handle the infinite number of coordinates problem. However, the above proof shows
that we care about a resolution 𝑟𝑖 (i.e., it contributes to the estimates in the above proof) only if there
is a pair 𝑥 and 𝑦 such that 𝑟𝑖/𝑛2 ≤ d(𝑥, 𝑦) ≤ 𝑟𝑖𝑛

2. Thus, for every pair of distances there are 𝑂 (log 𝑛)
relevant resolutions. Thus, there are at most [ = 𝑂 (𝑛2𝛽 log 𝑛) = 𝑂 (𝑛2 log2 𝑛) relevant coordinates, and
we can ignore all the other coordinates. Next, consider the affine subspace ℎ that spans 𝐹 (𝑃). Clearly,
it is 𝑛 − 1 dimensional, and consider the projection 𝐺 : R[ → R𝑛−1 that projects a point to its closest
point in ℎ. Clearly, 𝐺 (𝐹 (·)) is an embedding with the same distortion for 𝑃, and the target space is of
dimension 𝑛 − 1.

Note, that all this process succeeds with high probability. If it fails, we try again. We conclude:
Theorem 40.5.3 (Low quality Bourgain theorem). Given a 𝑛-point metric 𝑀, one can embed it
into Euclidean space of dimension 𝑛−1, such that the distortion of the embedding is at most 𝑂 (log3/2 𝑛).

Using the Johnson-Lindenstrauss lemma, the dimension can be further reduced to 𝑂 (log 𝑛). Being
more careful in the proof, it is possible to reduce the dimension to 𝑂 (log 𝑛) directly.

40.6. Bibliographical notes
The partitions we use are due to Calinescu et al. [CKR04]. The idea of embedding into spanning
trees is due to Alon et al. [AKPW95], which showed that one can get a probabilistic distortion of

2𝑂
(√

log 𝑛 log log 𝑛
)
. Yair Bartal realized that by allowing trees with additional vertices, one can get a

considerably better result. In particular, he showed [Bar96] that probabilistic embedding into trees can
be done with polylogarithmic average distortion. He later improved the distortion to 𝑂 (log 𝑛 log log 𝑛)
in [Bar98]. Improving this result was an open question, culminating in the work of Fakcharoenphol et al.
[FRT04] which achieve the optimal 𝑂 (log 𝑛) distortion.

Our proof of Lemma 40.3.1 (which is originally from [FRT04]) is taken from [KLMN05]. The proof
of Theorem 40.5.3 is by Gupta [Gup00].

A good exposition of metric spaces is available in Matoušek [Mat02].

Embedding into spanning trees. The above embeds the graph into a Steiner tree. A more useful
representation, would be a random embedding into a spanning tree. Surprisingly, this can be done, as
shown by Emek et al. [EEST08]. This was improved to 𝑂 (log 𝑛 · log log 𝑛 · (log log log 𝑛)3)③ by Abraham
et al. [ABN08a, ABN08b].

③Truely a polyglot of logs.
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Alternative proof of the tree embedding result. Interestingly, if one does not care about the
optimal distortion, one can get similar result (for embedding into probabilistic trees), by first embedding
the metric into Euclidean space, then reduce the dimension by the Johnson-Lindenstrauss lemma, and
finally, construct an HST by constructing a quadtree over the points. The “trick” is to randomly translate
the quadtree. It is easy to verify that this yields 𝑂 (log4 𝑛) distortion. See the survey by Indyk [Ind01]
for more details. This random shifting of quadtrees is a powerful technique that was used in getting
several result, and it is a crucial ingredient in Arora [Aro98] approximation algorithm for Euclidean
TSP.

40.7. Exercises
Exercise 40.7.1 (Clustering for HST). Let (X, d) be a HST defined over 𝑛 points, and let 𝑘 > 0 be an
integer. Provide an algorithm that computes the optimal 𝑘-median clustering of X in 𝑂 (𝑘2𝑛) time.

[Transform the HST into a tree where every node has only two children. Next, run a dynamic
programming algorithm on this tree.]

Exercise 40.7.2 (Partition induced metric).
(a) Give a counter example to the following claim: Let (X, d) be a metric space, and let 𝑃 be a

partition of X. Then, the pair (𝑃, d′) is a metric, where d′(𝐶,𝐶′) = d(𝐶,𝐶′) = min𝑥∈𝐶,𝑦∈𝐶′ d(𝑥, 𝑦)
and 𝐶,𝐶′ ∈ 𝑃.

(b) Let (X, d) be a 𝑛-point metric space, and consider the set 𝑈 =
{
𝑖
�� 2𝑖 ≤ d(𝑥, 𝑦) ≤ 2𝑖+1, for 𝑥, 𝑦 ∈ X

}
.

Prove that |𝑈 | = 𝑂 (𝑛). Namely, there are only 𝑛 different resolutions that “matter” for a finite
metric space.

Exercise 40.7.3 (Computing the diameter via embeddings).
(a) (h:1) Let ℓ be a line in the plane, and consider the embedding 𝑓 : R2 → ℓ, which is the projection

of the plane into ℓ. Prove that 𝑓 is 1-Lipschitz, but it is not 𝐾-bi-Lipschitz for any constant 𝐾.
(b) (h:3) Prove that one can find a family of projections F of size 𝑂 (1/

√
Y), such that for any two

points 𝑥, 𝑦 ∈ R2, for one of the projections 𝑓 ∈ F we have d( 𝑓 (𝑥), 𝑓 (𝑦)) ≥ (1 − Y)d(𝑥, 𝑦).
(c) (h:1) Given a set 𝑃 of 𝑛 in the plane, given a 𝑂 (𝑛/

√
Y) time algorithm that outputs two points

𝑥, 𝑦 ∈ 𝑃, such that d(𝑥, 𝑦) ≥ (1 − Y)diam(𝑃), where diam(𝑃) = max𝑧,𝑤∈𝑃 d(𝑧, 𝑤) is the diameter of
𝑃.

(d) (h:2) Given 𝑃, show how to extract, in 𝑂 (𝑛) time, a set 𝑄 ⊆ 𝑃 of size 𝑂 (Y−2), such that diam(𝑄) ≥
(1 − Y/2)diam(𝑃). (Hint: Construct a grid of appropriate resolution.)
In particular, give an (1−Y)-approximation algorithm to the diameter of 𝑃 that works in 𝑂 (𝑛+Y−2.5)
time. (There are slightly faster approximation algorithms known for approximating the diameter.)
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