
Chapter 39

Double sampling
By Sariel Har-Peled, April 26, 2022①

“What does not work when you apply force, would work when you apply even more force.”

, Anonymous

39.1. Double sampling
Double sampling is the idea that two random independent samples should look similar, and should not
be completely different in the way they intersect a certain set. We use the following sampling model,
which makes the computations somewhat easier.

Definition 39.1.1. Let S = { 𝑓1, . . . , 𝑓𝑛} be a set of objects, where the 𝑖th object has weight 𝜔𝑖 > 0, for
all 𝑖. Let 𝑊 =

∑
𝑖 𝜔𝑖. For a target size 𝜌, a 𝜌-sample is a random sample R ⊆ S, where object 𝑓𝑖 is

picked independently with probability 𝜌𝜔𝑖/𝑊 . To simplify the discussion, we assume that 𝜌𝜔𝑖/𝑊 < 1.
Handling the more general case is easy if somewhat tedious.

Lemma 39.1.2. Let R1 and R2 be two 𝜌-samples, and consider the merged sample R = R1 ∪ R2. Let
𝑇 ⊆ S be a set of 𝑚 elements. Then, we have that

P
[
𝑇 ⊆ R1

�� 𝑇 ⊆ R
]
≥ 1

2𝑚 and P
[
𝑇 ⊆ R1 and 𝑇 ∩ R2 = ∅

�� 𝑇 ⊆ R
]
≤ 1

2𝑚 .

Proof: Consider an object 𝑓 ∈ 𝑇 , and observe that P
[
𝑓 ∈ R1 or 𝑓 ∈ R2 | 𝑓 ∈ R

]
= 1. As such, by sym-

metry

P
[
𝑓 ∈ R1 | 𝑓 ∈ R

]
= P

[
𝑓 ∈ R2 | 𝑓 ∈ R

]
≥ 1/2,

Now, let 𝑇 = { 𝑓1, . . . , 𝑓𝑚}. Since R1 and R2 are independent, and each element is being picked indepen-
dently, we have that

P
[
𝑇 ⊆ R1 | 𝑇 ⊆ R

]
= P

[
𝑓1, . . . , 𝑓𝑚 ∈ R1 | 𝑓1, . . . , 𝑓𝑚 ∈ R

]
=

𝑏∏
𝑖=1
P
[
𝑓𝑖 ∈ R1 | 𝑓1, . . . , 𝑓𝑚 ∈ R

]
=

𝑏∏
𝑖=1
P
[
𝑓𝑖 ∈ R1 | 𝑓𝑖 ∈ R

]
≥ 1

2𝑚 .

For the second claim, observe that again, by symmetry, we have that

P
[
𝑓 ∈ R1 and 𝑓 ∉ R2

�� 𝑓 ∈ R
]
= P

[
𝑓 ∉ R1 and 𝑓 ∈ R2 | 𝑓 ∈ R

]
≤ 1/2,

as the two events are disjoint. Now, the claim follows by arguing as above. ■

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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39.1.1. Disagreement between samples on a specific set
We provide three proofs of the following lemma – the constants are somewhat different for each version.
Lemma 39.1.3. Let R1 and R2 be two 𝜌-samples from a ground set S, and consider a fixed set 𝑇 ⊆ S.
We have that

P
[��|R1 ∩ 𝑇 | − |R2 ∩ 𝑇 |

�� > 𝜀𝜌

]
≤ 3 exp

(
−𝜀2𝜌/2

)
.

Proof: (Simplest proof.) By Chernoff’s inequality, for 𝛿 ∈ (0, 1), we have

P
[��|R1 | − 𝜌

�� ≥ (𝜀/2)𝜌
]
≤ 2 exp

(
−(𝜀/2)2𝜌/4

)
= 2 exp

(
−𝜀2𝜌/16

)
.

The same holds for R2, and as such we have

P
[��|R1 | − |R2 |

�� ≥ 𝜀𝜌

]
≤ P

[��|R1 | − 𝜌
�� + ��𝜌 − |R2 |

�� ≥ 𝜀𝜌

]
≤ P

[��|R1 | − 𝜌
�� ≥ (𝜀/2)𝜌

]
+ P

[��𝜌 − |R2 |
�� ≥ (𝜀/2)𝜌

]
≤ 4 exp

(
−𝜀2𝜌/16

)
■

Proof: For an object 𝑓𝑖 ∈ S, let 𝑋𝑖 be a random variable, where

𝑋𝑖 =


1 𝑓𝑖 ∈ R1 and 𝑓𝑖 ∉ R2

−1 𝑓𝑖 ∉ R1 and 𝑓𝑖 ∈ R2

0 otherwise.

We have that 𝑝𝑖 = P[𝑋𝑖 = 1] = P[𝑋𝑖 = −1] = (𝜌𝜔𝑖/𝑊) (1 − 𝜌𝜔𝑖/𝑊) and E[𝑋𝑖] = 0. Applying the regular
concentration inequalities in this case is not immediate, since there are many 𝑋𝑖s that are zero. To
overcome this, let 𝑇 be a random variable that is the number of variables in 𝑋1, . . . , 𝑋𝑛 that are non-
zero. We have that 𝑇 is a sum of 𝑛 independent 0/1 random variables, where E[𝑇] =

∑
𝑖 2𝑝𝑖 = 2𝜌. In

particular, by Chernoff’s inequality, we have that

𝑞1 = P
[
𝑇 > (1 + 𝜀)2𝜌

]
≤ exp

(
−2𝜌𝜀2/4

)
= exp

(
−𝜌𝜀2/2

)
.

and assume this happens. In particular, let 𝑍1, . . . , 𝑍𝑇 be the non-zero variables in 𝑋1, . . . , 𝑋𝑛, and
observe that P[𝑍𝑖 = 1] = P[𝑍𝑖 = −1] = 1/2. Let 𝑌 =

∑
𝑖 𝑋𝑖 =

∑
𝑖 𝑍𝑖. Observe that E[𝑌 ] = 0, and by

Chernoff inequality, we have that

𝑞2 = P
[��|R1 ∩ S| − |R1 ∩ S|

�� > 𝜀𝜌

]
= P

[
|𝑌 − E[𝑌 ] | ≥ 𝜀𝜌

]
≤ P

[��∑
𝑖𝑍𝑖 − 0

�� ≥ 𝜀𝜌

]
≤ 2 exp

(
−2 (𝜀𝜌)

2

2𝑇

)
≤ 2 exp

(
−2 (𝜀𝜌)2

2(1 + 𝜀)𝜌

)
+ 𝑞1 = 2 exp

(
− 𝜀2𝜌

1 + 𝜀

)
+ 𝑞1 ≤ 3 exp

(
−𝜀2𝜌/2

)
,

using 𝑇 ≤ (1 + 𝜉)2𝜌. ■

39.1.2. Exponential decay for a single set
Lemma 39.1.4. Consider a set S of 𝑚 objects, where every object 𝑓𝑖 ∈ S has weight 𝜔𝑖 > 0, and 𝑊 =∑𝑚

𝑖=1 𝜔𝑖 . Next, consider a set r ⊆ S such that 𝜔(r) ≥ 𝑡𝑊/𝜌 (such a set is 𝑡-heavy). Let R be a 𝜌-sample
from S. Then, the probability that R misses r is at most 𝑒−𝑡. Formally, we have P[r ∩ R = ∅] ≤ exp(−𝑡).

Proof: Let r = { 𝑓1, . . . , 𝑓𝑘 }. Clearly, the probability that R fails to pick one of these conflicting ob-
jects, is bounded by P[r ∩ R = ∅] = P

[
∀𝑖 ∈ {1, . . . , 𝑘} 𝑓𝑖 ∉ R2

]
=

∏𝑘
𝑖=1

(
1 − 𝜌

𝜔𝑖

𝑊

)
≤ ∏𝑘

𝑖=1 exp
(
−𝜌𝜔𝑖

𝑊

)
=

exp
(
− 𝜌

𝑊

∑
𝑖 𝜔𝑖

)
≤ exp

(
− 𝜌

𝑊
· 𝑡𝑊

𝜌

)
= exp(−𝑡). ■
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39.1.3. Moments of the sample size
Lemma 39.1.5. Let R an 𝑚-sample. And let 𝑓 (𝑡) ≤ 𝛼𝑡𝛽, where 𝛼 ≥ 1 and 𝛽 ≥ 1 are constants, such
that 𝑚 ≥ 16𝛽. Then 𝑈 (𝑚) = E

[
𝑓
(
|R|

) ]
≤ 2𝛼(2𝑚)𝛽.

Proof: The proof follows from Chernoff’s inequality and some tedious but straightforward calculations.
The reader is as such encouraged to skip reading it.

Let 𝑋 = |R|. This is a sum of 0/1 random variables with expectation 𝑚. As such, we have

𝜈 = E
[
𝑓
(
|R|

) ]
≤

∞∑︁
𝑖=0
P[𝑋 = 𝑖] 𝑓 (𝑖) ≤ 𝛼

∞∑︁
𝑖=0
P[𝑋 = 𝑖]𝑖𝛽.

Considering the last sum, we have
∞∑︁
𝑖=0
P
[
𝑋 = 𝑖

]
𝑖𝛽 ≤

∞∑︁
𝑗=0
P
[
𝑋 ≥ 𝑗𝑚

]
(( 𝑗 + 1)𝑚)𝛽 ≤ (2𝑚)𝛽 + 𝑚𝛽

∞∑︁
𝑗=2
P
[
𝑋 ≥ 𝑗𝑚

]
( 𝑗 + 1)𝛽.

We bound the last summation using Chernoff’s inequality (see Theorem 39.3.2), we have

𝜏 =

5∑︁
𝑗=2
P
[
𝑋 ≥ 𝑗𝑚

]
( 𝑗 + 1)𝛽 +

∞∑︁
𝑗=6
P
[
𝑋 ≥ 𝑗𝑚

]
( 𝑗 + 1)𝛽

≤
5∑︁
𝑗=2

exp
(
−𝑚( 𝑗 − 1)2

4

)
( 𝑗 + 1)𝛽 +

∞∑︁
𝑗=6

2− 𝑗𝑚 ( 𝑗 + 1)𝛽

≤ exp
(
−𝑚4

)
3𝛽 + exp(−𝑚)4𝛽 + exp(−2𝑚)5𝛽 + exp(−4𝑚)6𝛽 +

∞∑︁
𝑗=6

2− 𝑗𝑚 ( 𝑗 + 1)𝛽 < 1,

since 𝑚 ≥ 16𝛽. We conclude that 𝜈 ≤ 𝛼(2𝑚)𝛽 + 𝛼𝑚𝛽𝜏 ≤ 2𝛼(2𝑚)𝛽. ■

Remark 39.1.6. The constant 16 in the above lemma is somewhat strange. A better constant can be
derived by breaking the range of sizes into smaller intervals and using the right Chernoff inequality.
Since this is somewhat tangential to the point of this write-up, we leave it as is (i.e., this constant is
not critical to our discussion).

39.1.4. Growth function
The growth function G𝛿 (𝑛) is the maximum number of ranges in a range space with VC dimension 𝛿,
and with 𝑛 elements. By Sauer’s lemma, it is known that

G𝛿 (𝑛) =
𝛿∑︁
𝑖=0

(
𝑛

𝑖

)
≤

𝛿∑︁
𝑖=0

𝑛𝑖

𝑖! ≤ 𝑛𝛿, (39.1)

The following is well known (the estimates are somewhat tedious to prove):

Lemma 39.1.7 ([Har11]). For 𝑛 ≥ 2𝛿 and 𝛿 ≥ 1, we have
(𝑛
𝛿

)𝛿
≤ G𝛿 (𝑛) ≤ 2

(𝑛𝑒
𝛿

)𝛿
, where G𝛿 (𝑛) =∑𝛿

𝑖=0
(𝑛
𝑖

)
.
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Lemma 39.1.8. Let R and R′ be two independent 𝑚-samples from x. Assume that 𝑚 ≥ 𝛿. Then
E
[
G𝛿

(
|R| + |R′|

) ]
≤ 𝐺

𝛿
(2𝑚), where 𝐺

𝛿
(2𝑚) = 4 (4𝑒𝑚/𝛿)𝛿 .

Proof: We set 𝛼 = 2
(
𝑒
𝛿

)𝛿
, 𝛽 = 𝛿, and 𝑓 (𝑛) = 𝛼𝑛𝛽. Duplicate every element in x, and let x′ be the resulting

set. Clearly, the size of a 2𝑚-sample R from x′ is the same as |R| + |𝑇 |. By Lemma 39.1.7, we have
E
[
G𝛿

(
|R|

) ]
≤ E

[
𝑓
(
|R|

) ]
≤ 2𝛼(4𝑚)𝛽 ≤ 4

( 4𝑒𝑚
𝛿

)𝛿 The last inequality follows from Lemma 39.1.5. ■

39.2. Proof of the 𝜀-net theorem
Here we are working in the unweighted settings (i.e., the weight of a single element is one).
Theorem 39.2.1 (𝜺-net theorem, [HW87]). Let (X,R) be a range space of VC dimension 𝛿, let x
be a finite subset of X, and suppose that 0 < 𝜀 ≤ 1 and 𝜑 < 1. Let 𝑁 be an 𝑚-sample from x (see
Definition 39.1.1), where

𝑚 ≥ max
(

8
𝜀

lg 4
𝜑
,

16𝛿
𝜀

lg 16
𝜀

)
. (39.2)

Then 𝑁 is an 𝜀-net for x with probability at least 1 − 𝜑.

39.2.1. The proof
39.2.1.1. Reduction to double sampling

Let 𝑛 = |x |. Let 𝑁 be the 𝑚-sample from x. Let E1 be the probability that 𝑁 fails to be an 𝜀-net.
Namely,

E1 =
{
∃r ∈ R

�� |r ∩ x | ≥ 𝜀𝑛 and r ∩ 𝑁 = ∅
}
.

(Namely, there exists a “heavy” range r that does not contain any point of 𝑁.) To complete the proof,
we must show that P[E1] ≤ 𝜑. Let 𝑇 be another 𝑚-sample generated in a similar fashion to 𝑁. Let E2
be the event that 𝑁 fails but 𝑇 “works”. Formally

E2 =

{
∃r ∈ R

��� |r ∩ x | ≥ 𝜀𝑛, r ∩ 𝑁 = ∅, and |r ∩ 𝑇 | ≥ 𝜀𝑚

2

}
.

Intuitively, since E
[
|r ∩ x |

]
≥ 𝜀𝑚, we have that for the range r that 𝑁 fails for, it follows with “good”

probability that |r ∩ 𝑇 | ≥ 𝜀𝑚/2. Namely, E1 and E2 have more or less the same probability.
Claim 39.2.2. P[E2] ≤ P[E1] ≤ 2P[E2].

Proof: Clearly, E2 ⊆ E1, and thus P[E2] ≤ P[E1]. As for the other part, note that by the definition of
conditional probability, we have

P[E2 | E1] = P[E2 ∩ E1]/P[E1] = P[E2]/P[E1] .

It is thus enough to show that P[E2 | E1] ≥ 1/2.
Assume that E1 occurs. There is r ∈ R, such that |r ∩ x | > 𝜀𝑛 and r∩𝑁 = ∅. The required probability

is at least the probability that for this specific r, we have 𝑋 = |r ∩ 𝑇 | ≥ 𝜀𝑛
2 . The variable 𝑋 is a sum

of 𝑡 = |r ∩ x | ≥ 𝜀𝑛 random independent 0/1 variables, each one has probability 𝑚/𝑛 to be one. Setting
𝜇 = E[𝑋] = 𝑡𝑚/𝑛 ≥ 𝜀𝑚 and 𝜉 = 1/2, we have by Chernoff’s inequality that

P[|r ∩ 𝑇 | ≤ 𝜀𝑚/2] ≤ P[𝑋 < (1 − 𝜉)𝜇] ≤ exp
(
−𝜇𝜉2/2

)
= exp(−𝜀𝑚/8) < 1/2,

if 𝜀𝑚 ≥ 8. Thus, for r ∈ E1, we have P[E2]/P[E1] ≥ P
[
|r ∩ 𝑇 | ≥ 𝜀𝑚

2
]
= 1 − P

[
|r ∩ 𝑇 | < 𝜀𝑚

2
]
≥ 1

2 . ■
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Claim 39.2.2 implies that to bound the probability of E1, it is enough to bound the probability of
E2. Let

E′
2 =

{
∃r ∈ R

��� r ∩ 𝑁 = ∅ and |r ∩ 𝑇 | ≥ 𝜀𝑚

2

}
.

Clearly, E2 ⊆ E′
2. Thus, bounding the probability of E′

2 is enough to prove Theorem 39.2.1. Note,
however, that a shocking thing happened! We no longer have x participating in our event. Namely, we
turned bounding an event that depends on a global quantity (i.e., the ground set x) into bounding a
quantity that depends only on a local quantity/experiment (involving only 𝑁 and 𝑇). This is the crucial
idea in this proof.

39.2.1.2. Using double sampling to finish the proof

Claim 39.2.3. P
[
E2

]
≤ P

[
E′

2
]
≤ 2−𝜀𝑚/2𝐺

𝛿
(2𝑚).

Proof: We fix the content of R = 𝑁 ∪ 𝑇 . The range space (R,R |R) has G𝛿 ( |R|) ranges. Fix a range
r in this range space. Let 𝑇 = r ∩ R. If 𝑏 = |𝑇 | < 𝜀𝑚/2 then the E′

2 can not happened. Otherwise,
the probability that r is a bad range is P

[
𝑇 ⊆ 𝑇 and 𝑇 ∩ 𝑁 = ∅

�� 𝑇 ⊆ R
]
≤ 1

2𝑏 , by Lemma 39.1.2. In
particular, by the union bound over all ranges, we have P

[
E′

2 | R
]
≤ 2−𝜀𝑚/2G𝛿 ( |R|). As such, we have

P
[
E′

2
]
=
∑︁

R
P
[
E′

2 | R
]
P[R] ≤

∑︁
R

2−𝜀𝑚/2G𝛿

(
|R|

)
P[R] ≤ 2−𝜀𝑚/2 E

[
G𝛿

(
|R|

) ]
≤ 2−𝜀𝑚/2𝐺𝛿 (2𝑚).

by Lemma 39.1.8. ■

Proof of Theorem 39.2.1. By Claim 39.2.2 and Claim 39.2.3, we have that P[E1] ≤ 2 · 2−𝜀𝑚/2𝐺
𝛿
(2𝑚).

It thus remains to verify that if 𝑚 satisfies Eq. (39.2), then the above is smaller than 𝜑. Which is
equivalent to

2 · 2−𝜀𝑚/2𝐺𝛿 (2𝑚) ≤ 𝜑 ⇐⇒ 16 · 2−𝜀𝑚/2
(
4𝑒𝑚
𝛿

)𝛿
≤ 𝜑 ⇐⇒ −4 + 𝜀𝑚

2 − 𝛿 lg
(
4𝑒𝑚
𝛿

)
≥ lg 1

𝜑

⇐⇒
(
𝜀𝑚

8 − 4 − 𝛿 lg 4𝑒
𝛿

)
+
(
𝜀𝑚

8 − lg 1
𝜑

)
+
(𝜀𝑚

4 − 𝛿 lg
(𝑚
𝛿

))
≥ 0

We remind the reader that the value of 𝑚 we pick is such that 𝑚 ≥ max
(

8
𝜀

lg 4
𝜑
, 16𝛿

𝜀
lg 16

𝜀

)
. In particular,

𝑚 ≥ 64𝛿/𝜀 and −4 − 𝛿 lg
( 4𝑒
𝛿

)
≥ −4 − 4𝛿 ≤ −8𝛿 ≥ −𝜀𝑚/8. Similarly, by the choice of 𝑚, we have

𝜀𝑚/8 ≥ lg 1
𝜑
. As such, we need to show that 𝜀𝑚

4 ≥ 𝛿 lg
(
𝑚
𝛿

)
⇐⇒ 𝑚 ≥ 4𝛿

𝜀
lg 𝑚

𝛿
, and one can verify using

some easy but tedious calculations that this holds if 𝑚 ≥ 16𝛿
𝜀

lg 16
𝜀

. ■

39.3. From previous lectures
Lemma 39.3.1. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E

[
𝑋
]
=
∑

𝑖 𝑝𝑖. For 𝛿 ∈ (0, 4), we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
< exp

(
−𝜇𝛿2/4

)
,
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Theorem 39.3.2. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent variables, where P
[
𝑋𝑖 = 1

]
= 𝑝𝑖 and P

[
𝑋𝑖 = 0

]
= 𝑞𝑖 =

1 − 𝑝𝑖, for all 𝑖. Let 𝑋 =
∑𝑏

𝑖=1 𝑋𝑖. 𝜇 = E
[
𝑋
]
=
∑

𝑖 𝑝𝑖. For any 𝛿 > 0, we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
<

(
𝑒𝛿

/
(1 + 𝛿)1+𝛿

)𝜇
.

Theorem 39.3.3. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables, such that P[𝑋𝑖 = 1] = P[𝑋𝑖 = −1] =
1
2 , for 𝑖 = 1, . . . , 𝑛. Let 𝑌 =

∑𝑛
𝑖=1 𝑋𝑖. Then, for any Δ > 0, we have

P
[
𝑌 ≥ Δ

]
≤ exp

(
−Δ2/2𝑛

)
.
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