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“I’ve never touched the hard stuff, only smoked grass a few times with the boys to be polite, and that’s all, though
ten is the age when the big guys come around teaching you all sorts to things. But happiness doesn’t mean much
to me, I still think life is better. Happiness is a mean son of a bitch and needs to be put in his place. Him and me
aren’t on the same team, and I’m cutting him dead. I’ve never gone in for politics, because somebody always stand
to gain by it, but happiness is an even crummier racket, and their ought to be laws to put it out of business.”

Momo, Emile Ajar

In this chapter we will try to quantify the notion of geometric complexity. It is intuitively clear that a
a (i.e., disk) is a simpler shape than an c (i.e., ellipse), which is in turn simpler than a - (i.e., smiley).
This becomes even more important when we consider several such shapes and how they interact with
each other. As these examples might demonstrate, this notion of complexity is somewhat elusive.

To this end, we show that one can capture the structure of a distribution/point set by a small subset.
The size here would depend on the complexity of the shapes/ranges we care about, but surprisingly it
would be independent of the size of the point set.

38.1. VC dimension
Definition 38.1.1. A range space S is a pair (X,R), where X is a ground set (finite or infinite) and R
is a (finite or infinite) family of subsets of X. The elements of X are points and the elements of R are
ranges.

Our interest is in the size/weight of the ranges in the range space. For technical reasons, it will be
easier to consider a finite subset x as the underlining ground set.

Definition 38.1.2. Let S = (X,R) be a range space, and let x be a finite (fixed) subset of X. For a range
r ∈ R, its measure is the quantity

𝑚(r) = |r ∩ x |
|x | .

While x is finite, it might be very large. As such, we are interested in getting a good estimate to
𝑚(r) by using a more compact set to represent the range space.

Definition 38.1.3. Let S = (X,R) be a range space. For a subset 𝑁 (which might be a multi-set) of x, its
estimate of the measure of 𝑚(r), for r ∈ R, is the quantity

𝑠(r) = |r ∩ 𝑁 |
|𝑁 | .

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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The main purpose of this chapter is to come up with methods to generate a sample 𝑁, such that
𝑚(r) ≈ 𝑠(r), for all the ranges r ∈ R.

It is easy to see that in the worst case, no sample can capture the measure of all ranges. Indeed,
given a sample 𝑁, consider the range x \ 𝑁 that is being completely missed by 𝑁. As such, we need
to concentrate on range spaces that are “low dimensional”, where not all subsets are allowable ranges.
The notion of VC dimension (named after Vapnik and Chervonenkis [VC71]) is one way to limit the
complexity of a range space.

Definition 38.1.4. Let S = (X,R) be a range space. For 𝑌 ⊆ X, let

R |𝑌 =
{
r ∩ 𝑌

�� r ∈ R
}

(38.1)

denote the projection of R on 𝑌 . The range space S projected to 𝑌 is S|𝑌 =
(
𝑌,R |𝑌

)
.

If R |𝑌 contains all subsets of 𝑌 (i.e., if 𝑌 is finite, we have
��R |𝑌

�� = 2|𝑌 |), then 𝑌 is shattered by R (or
equivalently 𝑌 is shattered by S).

The Vapnik-Chervonenkis dimension (or VC dimension) of S, denoted by dimVC(S), is the
maximum cardinality of a shattered subset of X. If there are arbitrarily large shattered subsets, then
dimVC(𝑆) = ∞.

38.1.1. Examples
Intervals. Consider the set X to be the real line, and consider R to be the set of all intervals
on the real line. Consider the set 𝑌 = {1, 2}. Clearly, one can find four intervals that contain
all possible subsets of 𝑌 . Formally, the projection R |𝑌 = {{ } , {1} , {2} , {1, 2}}. The intervals
realizing each of these subsets are depicted on the right.

1 2

p q sHowever, this is false for a set of three points 𝐵 = {p, u, v}, since there is no interval
that can contain the two extreme points p and v without also containing u. Namely, the subset {p, v} is
not realizable for intervals, implying that the largest shattered set by the range space (real line, intervals)
is of size two. We conclude that the VC dimension of this space is two.

Disks. Let X = R2, and let R be the set of disks in the plane. Clearly, for any
three points in the plane (in general position), denoted by p, u, and v, one can
find eight disks that realize all possible 23 different subsets. See the figure on
the right.
But can disks shatter a set with four points? Consider such a set P of four
points. If the convex hull of P has only three points on its boundary, then the
subset 𝑋 having only those three vertices (i.e., it does not include the middle
point) is impossible, by convexity. Namely, there is no disk that contains only
the points of 𝑋 without the middle point.

{p.q}
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Alternatively, if all four points are vertices of the convex hull and they are
𝑎, 𝑏, 𝑐, 𝑑 along the boundary of the convex hull, either the set {𝑎, 𝑐} or the set
{𝑏, 𝑑} is not realizable. Indeed, if both options are realizable, then consider
the two disks 𝐷1 and 𝐷2 that realize those assignments. Clearly, 𝜕𝐷1 and
𝜕𝐷2 must intersect in four points, but this is not possible, since two circles
have at most two intersection points. See the figure on the left. Hence the VC
dimension of this range space is 3.
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Convex sets. Consider the range space S = (R2,R), where R is the set of all
(closed) convex sets in the plane. We claim that dimVC(S) = ∞. Indeed, consider
a set 𝑈 of 𝑛 points 𝑝1, . . . , 𝑝𝑛 all lying on the boundary of the unit circle in the
plane. Let 𝑉 be any subset of 𝑈, and consider the convex hull CH(𝑉). Clearly,
CH(𝑉) ∈ R, and furthermore, CH(𝑉) ∩ 𝑈 = 𝑉 . Namely, any subset of 𝑈 is
realizable by S. Thus, S can shatter sets of arbitrary size, and its VC dimension is
unbounded.

CH(V)

Complement. Consider the range space S = (X,R) with 𝛿 = dimVC(S). Next, consider the complement
space, S =

(
X,R

)
, where

R =
{
X \ r

�� r ∈ R
}
.

Namely, the ranges of S are the complement of the ranges in S. What is the VC dimension of S? Well,
a set 𝐵 ⊆ X is shattered by S if and only if it is shattered by S. Indeed, if S shatters 𝐵, then for any
𝑍 ⊆ 𝐵, we have that (𝐵 \ 𝑍) ∈ R |𝐵, which implies that 𝑍 = 𝐵 \ (𝐵 \ 𝑍) ∈ R |𝐵. Namely, R |𝐵 contains all
the subsets of 𝐵, and S shatters 𝐵. Thus, dimVC

(
S
)
= dimVC(S).

Lemma 38.1.5. For a range space S = (X,R) we have that dimVC(S) = dimVC
(
S
)

, where S is the
complement range space.

38.1.1.1. Halfspaces

Let S = (X,R), where X = R𝑑 and R is the set of all (closed) halfspaces in R𝑑. We need the following
technical claim.

Claim 38.1.6. Let P = {p1, . . . , p𝑑+2} be a set of 𝑑+2 points in R𝑑. There are real numbers 𝛽1, . . . , 𝛽𝑑+2,
not all of them zero, such that

∑
𝑖 𝛽𝑖p𝑖 = 0 and

∑
𝑖 𝛽𝑖 = 0.

Proof: Indeed, set u𝑖 = (p𝑖, 1), for 𝑖 = 1, . . . , 𝑑+2. Now, the points u1, . . . , u𝑑+2 ∈ R𝑑+1 are linearly depen-
dent, and there are coefficients 𝛽1, . . . , 𝛽𝑑+2, not all of them zero, such that

∑𝑑+2
𝑖=1 𝛽𝑖u𝑖 = 0. Considering

only the first 𝑑 coordinates of these points implies that
∑𝑑+2

𝑖=1 𝛽𝑖p𝑖 = 0. Similarly, by considering only the
(𝑑 + 1)st coordinate of these points, we have that

∑𝑑+2
𝑖=1 𝛽𝑖 = 0. ■

To see what the VC dimension of halfspaces in R𝑑 is, we need the following result of Radon. (For a
reminder of the formal definition of convex hulls, see Definition 38.5.1.)

Theorem 38.1.7 (Radon’s theorem). Let P = {p1, . . . , p𝑑+2} be a set of 𝑑 + 2 points in R𝑑. Then,
there exist two disjoint subsets 𝐶 and 𝐷 of P, such that CH(𝐶) ∩ CH (𝐷) ≠ ∅ and 𝐶 ∪ 𝐷 = P.

Proof: By Claim 38.1.6 there are real numbers 𝛽1, . . . , 𝛽𝑑+2, not all of them zero, such that
∑

𝑖 𝛽𝑖p𝑖 = 0
and

∑
𝑖 𝛽𝑖 = 0.

Assume, for the sake of simplicity of exposition, that 𝛽1, . . . , 𝛽𝑘 ≥ 0 and 𝛽𝑘+1, . . ., 𝛽𝑑+2 < 0. Further-
more, let 𝜇 =

∑𝑘
𝑖=1 𝛽𝑖 = −∑𝑑+2

𝑖=𝑘+1 𝛽𝑖. We have that

𝑘∑︁
𝑖=1

𝛽𝑖p𝑖 = −
𝑑+2∑︁
𝑖=𝑘+1

𝛽𝑖p𝑖 .

In particular, 𝑣 =
∑𝑘

𝑖=1(𝛽𝑖/𝜇)p𝑖 is a point in CH({p1, . . . , p𝑘 }). Furthermore, for the same point 𝑣 we
have 𝑣 =

∑𝑑+2
𝑖=𝑘+1 −(𝛽𝑖/𝜇)p𝑖 ∈ CH({p𝑘+1, . . . , p𝑑+2}). We conclude that 𝑣 is in the intersection of the two

convex hulls, as required. ■
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The following is a trivial observation, and yet we provide a proof to demonstrate it is true.

Lemma 38.1.8. Let P ⊆ R𝑑 be a finite set, let v be any point in CH(P), and let ℎ+ be a halfspace of
R𝑑 containing v. Then there exists a point of P contained inside ℎ+.

Proof: The halfspace ℎ+ can be written as ℎ+ =
{
x ∈ R𝑑

�� ⟨x, 𝑣⟩ ≤ 𝑐
}
. Now v ∈ CH(P) ∩ ℎ+, and as such

there are numbers 𝛼1, . . . , 𝛼𝑚 ≥ 0 and points p1, . . . , p𝑚 ∈ P, such that
∑

𝑖 𝛼𝑖 = 1 and
∑

𝑖 𝛼𝑖p𝑖 = v. By the
linearity of the dot product, we have that

v ∈ ℎ+ =⇒ ⟨v, 𝑣⟩ ≤ 𝑐 =⇒
〈 𝑚∑︁
𝑖=1

𝛼𝑖p𝑖, 𝑣
〉
≤ 𝑐 =⇒ 𝛽 =

𝑚∑︁
𝑖=1

𝛼𝑖 ⟨p𝑖, 𝑣⟩ ≤ 𝑐.

Setting 𝛽𝑖 = ⟨p𝑖, 𝑣⟩, for 𝑖 = 1, . . . , 𝑚, the above implies that 𝛽 is a weighted average of 𝛽1, . . . , 𝛽𝑚. In
particular, there must be a 𝛽𝑖 that is no larger than the average. That is 𝛽𝑖 ≤ 𝑐. This implies that
⟨p𝑖, 𝑣⟩ ≤ 𝑐. Namely, p𝑖 ∈ ℎ+ as claimed. ■

Let S be the range space having R𝑑 as the ground set and all the close halfspaces as ranges. Radon’s
theorem implies that if a set Q of 𝑑 + 2 points is being shattered by S, then we can partition this set
Q into two disjoint sets 𝑌 and 𝑍 such that CH(𝑌 ) ∩ CH (𝑍) ≠ ∅. In particular, let v be a point in
CH(𝑌 ) ∩ CH (𝑍). If a halfspace ℎ+ contains all the points of 𝑌 , then CH(𝑌 ) ⊆ ℎ+, since a halfspace is
a convex set. Thus, any halfspace ℎ+ containing all the points of 𝑌 will contain the point v ∈ CH(𝑌 ).
But v ∈ CH(𝑍) ∩ ℎ+, and this implies that a point of 𝑍 must lie in ℎ+, by Lemma 38.1.8. Namely,
the subset 𝑌 ⊆ Q cannot be realized by a halfspace, which implies that Q cannot be shattered. Thus
dimVC(𝑆) < 𝑑 + 2. It is also easy to verify that the regular simplex with 𝑑 + 1 vertices is shattered by S.
Thus, dimVC(𝑆) = 𝑑 + 1.

38.2. Shattering dimension and the dual shattering dimension
The main property of a range space with bounded VC dimension is that the number of ranges for a set
of 𝑛 elements grows polynomially in 𝑛 (with the power being the dimension) instead of exponentially.
Formally, let the growth function be

G𝛿 (𝑛) =
𝛿∑︁
𝑖=0

(
𝑛

𝑖

)
≤

𝛿∑︁
𝑖=0

𝑛𝑖

𝑖! ≤ 𝑛𝛿, (38.2)

for 𝛿 > 1 (the cases where 𝛿 = 0 or 𝛿 = 1 are not interesting and we will just ignore them). Note that
for all 𝑛, 𝛿 ≥ 1, we have G𝛿 (𝑛) = G𝛿 (𝑛 − 1) + G𝛿−1(𝑛 − 1)②.

Lemma 38.2.1 (Sauer’s lemma). If (X,R) is a range space of VC dimension 𝛿 with |X| = 𝑛, then
|R | ≤ G𝛿 (𝑛).

Proof: The claim trivially holds for 𝛿 = 0 or 𝑛 = 0.
Let 𝑥 be any element of X, and consider the sets

R𝑥 =
{
r \ {𝑥}

�� r ∪ {𝑥} ∈ R and r \ {𝑥} ∈ R
}

and R \ 𝑥 =
{
r \ {𝑥}

�� r ∈ R
}
.

②Here is a cute (and standard) counting argument: G𝛿 (𝑛) is just the number of different subsets of size at most 𝛿 out
of 𝑛 elements. Now, we either decide to not include the first element in these subsets (i.e., G𝛿 (𝑛 − 1)) or, alternatively, we
include the first element in these subsets, but then there are only 𝛿 − 1 elements left to pick (i.e., G𝛿−1 (𝑛 − 1)).
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Observe that |R | = |R𝑥 | + |R \ 𝑥 |. Indeed, we charge the elements of R to their corresponding element in
R \ 𝑥. The only bad case is when there is a range r such that both r∪ {𝑥} ∈ R and r \ {𝑥} ∈ R, because
then these two distinct ranges get mapped to the same range in R \ 𝑥. But such ranges contribute
exactly one element to R𝑥. Similarly, every element of R𝑥 corresponds to two such “twin” ranges in R.

Observe that (𝑋 \ {𝑥} ,R𝑥) has VC dimension 𝛿 − 1, as the largest set that can be shattered is of size
𝛿 − 1. Indeed, any set 𝐵 ⊂ X \ {𝑥} shattered by R𝑥 implies that 𝐵 ∪ {𝑥} is shattered in R.

Thus, we have
|R | = |R𝑥 | + |R \ 𝑥 | ≤ G𝛿−1(𝑛 − 1) + G𝛿 (𝑛 − 1) = G𝛿 (𝑛),

by induction. ■

Interestingly, Lemma 38.2.1 is tight.
Next, we show pretty tight bounds on G𝛿 (𝑛). The proof is technical and not very interesting, and it

is delegated to Section 38.4.

Lemma 38.2.2. For 𝑛 ≥ 2𝛿 and 𝛿 ≥ 1, we have
(𝑛
𝛿

)𝛿
≤ G𝛿 (𝑛) ≤ 2

(𝑛𝑒
𝛿

)𝛿
, where G𝛿 (𝑛) =

𝛿∑︁
𝑖=0

(
𝑛

𝑖

)
.

Definition 38.2.3 (Shatter function). Given a range space S = (X,R), its shatter function 𝜋S(𝑚) is the
maximum number of sets that might be created by S when restricted to subsets of size 𝑚. Formally,

𝜋S(𝑚) = max
𝐵⊂X
|𝐵|=𝑚

��R |𝐵
��;

see Eq. (38.1).

Our arch-nemesis in the following is the function 𝑥/ln 𝑥. The following lemma states some properties
of this function, and its proof is left as an exercise.

Lemma 38.2.4. For the function 𝑓 (𝑥) = 𝑥/ln 𝑥 the following hold.
(A) 𝑓 (𝑥) is monotonically increasing for 𝑥 ≥ 𝑒.
(B) 𝑓 (𝑥) ≥ 𝑒, for 𝑥 > 1.
(C) For 𝑢 ≥

√
𝑒, if 𝑓 (𝑥) ≤ 𝑢, then 𝑥 ≤ 2𝑢 ln 𝑢.

(D) For 𝑢 ≥
√
𝑒, if 𝑥 > 2𝑢 ln 𝑢, then 𝑓 (𝑥) > 𝑢.

(E) For 𝑢 ≥ 𝑒, if 𝑓 (𝑥) ≥ 𝑢, then 𝑥 ≥ 𝑢 ln 𝑢.

38.2.1. Mixing range spaces
Lemma 38.2.5. Let S = (X,R) and T = (X,R′) be two range spaces of VC dimension 𝛿 and 𝛿′,
respectively, where 𝛿, 𝛿′ > 1. Let R̂ = {r ∪ r′ | r ∈ R, r′ ∈ R′} . Then, for the range space Ŝ =

(
X, R̂

)
, we

have that dimVC
(
Ŝ
)
= 𝑂 (𝛿 + 𝛿′).

Proof: As a warm-up exercise, we prove a somewhat weaker bound here of 𝑂 ((𝛿 + 𝛿′) log(𝛿 + 𝛿′)). The
stronger bound follows from Theorem 38.2.6 below. Let 𝐵 be a set of 𝑛 points in X that are shattered by
Ŝ. There are at most G𝛿 (𝑛) and G𝛿′ (𝑛) different ranges of 𝐵 in the range sets R |𝐵 and R′

|𝐵, respectively,
by Lemma 38.2.1. Every subset 𝐶 of 𝐵 realized by 𝑟̂ ∈ R̂ is a union of two subsets 𝐵∩r and 𝐵∩r′, where
r ∈ 𝑅 and r′ ∈ R′, respectively. Thus, the number of different subsets of 𝐵 realized by Ŝ is bounded
by G𝛿 (𝑛)G𝛿′ (𝑛). Thus, 2𝑛 ≤ 𝑛𝛿𝑛𝛿

′ , for 𝛿, 𝛿′ > 1. We conclude that 𝑛 ≤ (𝛿 + 𝛿′) lg 𝑛, which implies that
𝑛 = 𝑂 ((𝛿 + 𝛿′) log(𝛿 + 𝛿′)), by Lemma 38.2.4(C). ■
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Interestingly, one can prove a considerably more general result with tighter bounds. The required
computations are somewhat more painful.

Theorem 38.2.6. Let S1 =
(
X,R1) , . . . , S𝑘 =

(
X,R𝑘

)
be range spaces with VC dimension 𝛿1, . . . , 𝛿𝑘 ,

respectively. Next, let 𝑓 (r1, . . . , r𝑘 ) be a function that maps any 𝑘-tuple of sets r1 ∈ R1, . . . , r𝑘 ∈ R𝑘

into a subset of X. Here, the function 𝑓 is restricted to be defined by a sequence of set operations like
complement, intersection and union. Consider the range set

R′ =
{
𝑓 (r1, . . . , r𝑘 )

�� r1 ∈ R1, . . . , r𝑘 ∈ R𝑘

}
and the associated range space T = (X,R′). Then, the VC dimension of T is bounded by 𝑂 (𝑘𝛿 lg 𝑘),
where 𝛿 = max𝑖 𝛿𝑖.

Proof: Assume a set 𝑌 ⊆ X of size 𝑡 is being shattered by R′, and observe that��R′
|𝑌
�� ≤ ��� { (r1, . . . , r𝑘 )

�� r1 ∈ R1
|𝑌 , . . . , r𝑘 ∈ R𝑘

|𝑌
}��� ≤ ��R1

|𝑌
�� · · · ��R𝑘

|𝑌
�� ≤ G𝛿1 (𝑡) · G𝛿2 (𝑡) · · ·G𝛿𝑘 (𝑡)

≤
(
G𝛿 (𝑡)

) 𝑘 ≤
(
2
(
𝑡𝑒/𝛿

)𝛿) 𝑘
,

by Lemma 38.2.1 and Lemma 38.2.2. On the other hand, since 𝑌 is being shattered by R′, this implies
that

��R′
|𝑌
�� = 2𝑡 . Thus, we have the inequality 2𝑡 ≤

(
2(𝑡𝑒/𝛿)𝛿

) 𝑘 , which implies 𝑡 ≤ 𝑘 (1 + 𝛿 lg(𝑡𝑒/𝛿)).
Assume that 𝑡 ≥ 𝑒 and 𝛿 lg(𝑡𝑒/𝛿) ≥ 1 since otherwise the claim is trivial, and observe that 𝑡 ≤
𝑘 (1 + 𝛿 lg(𝑡𝑒/𝛿)) ≤ 3𝑘𝛿 lg(𝑡/𝛿). Setting 𝑥 = 𝑡/𝛿, we have

𝑡

𝛿
≤ 3𝑘 ln(𝑡/𝛿)

ln 2 ≤ 6𝑘 ln 𝑡

𝛿
=⇒ 𝑥

ln 𝑥
≤ 6𝑘 =⇒ 𝑥 ≤ 2 · 6𝑘 ln(6𝑘) =⇒ 𝑥 ≤ 12𝑘 ln(6𝑘),

by Lemma 38.2.4(C). We conclude that 𝑡 ≤ 12𝛿𝑘 ln(6𝑘), as claimed. ■

Corollary 38.2.7. Let S = (X,R) and T = (X,R′) be two range spaces of VC dimension 𝛿 and 𝛿′,
respectively, where 𝛿, 𝛿′ > 1. Let R̂ =

{
r ∩ r′

�� r ∈ R, r′ ∈ R′} . Then, for the range space Ŝ = (X, R̂), we
have that dimVC(Ŝ) = 𝑂 (𝛿 + 𝛿′).

Corollary 38.2.8. Any finite sequence of combining range spaces with finite VC dimension (by inter-
secting, complementing, or taking their union) results in a range space with a finite VC dimension.

38.3. On 𝜀-nets and 𝜀-sampling

38.3.1. 𝜀-nets and 𝜀-samples
Definition 38.3.1 (𝜀-sample). Let S = (X,R) be a range space, and let x be a finite subset of X. For
0 ≤ 𝜀 ≤ 1, a subset 𝐶 ⊆ x is an 𝜀-sample for x if for any range r ∈ R, we have��𝑚(r) − 𝑠(r)

�� ≤ 𝜀,

where 𝑚(r) = |x ∩ r| / |x | is the measure of r (see Definition 38.1.2) and 𝑠(r) = |𝐶 ∩ r| / |𝐶 | is the
estimate of r (see Definition 38.1.3). (Here 𝐶 might be a multi-set, and as such |𝐶 ∩ r| is counted with
multiplicity.)
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As such, an 𝜀-sample is a subset of the ground set x that “captures” the range space up to an error
of 𝜀. Specifically, to estimate the fraction of the ground set covered by a range r, it is sufficient to count
the points of 𝐶 that fall inside r.

If X is a finite set, we will abuse notation slightly and refer to 𝐶 as an 𝜀-sample for S.
To see the usage of such a sample, consider x = X to be, say, the population of a country (i.e., an

element of X is a citizen). A range in R is the set of all people in the country that answer yes to a
question (i.e., would you vote for party Y?, would you buy a bridge from me?, questions like that). An
𝜀-sample of this range space enables us to estimate reliably (up to an error of 𝜀) the answers for all
these questions, by just asking the people in the sample.

The natural question of course is how to find such a subset of small (or minimal) size.

Theorem 38.3.2 (𝜺-sample theorem, [VC71]). There is a positive constant 𝑐 such that if (X,R) is
any range space with VC dimension at most 𝛿, x ⊆ X is a finite subset and 𝜀, 𝜑 > 0, then a random
subset 𝐶 ⊆ x of cardinality

𝑠 =
𝑐

𝜀2

(
𝛿 log 𝛿

𝜀
+ log 1

𝜑

)
is an 𝜀-sample for x with probability at least 1 − 𝜑.

(In the above theorem, if 𝑠 > |x |, then we can just take all of x to be the 𝜀-sample.)
Sometimes it is sufficient to have (hopefully smaller) samples with a weaker property – if a range is

“heavy”, then there is an element in our sample that is in this range.

Definition 38.3.3 (𝜀-net). A set 𝑁 ⊆ x is an 𝜀-net for x if for any range r ∈ R, if 𝑚(r) ≥ 𝜀 (i.e.,
|r ∩ x | ≥ 𝜀 |x |), then r contains at least one point of 𝑁 (i.e., r ∩ 𝑁 ≠ ∅).

Theorem 38.3.4 (𝜺-net theorem, [HW87]). Let (X,R) be a range space of VC dimension 𝛿, let x
be a finite subset of X, and suppose that 0 < 𝜀 ≤ 1 and 𝜑 < 1. Let 𝑁 be a set obtained by 𝑚 random
independent draws from x, where

𝑚 ≥ max
(

4
𝜀

lg 4
𝜑
,

8𝛿
𝜀

lg 16
𝜀

)
. (38.3)

Then 𝑁 is an 𝜀-net for x with probability at least 1 − 𝜑.

(We remind the reader that lg = log2.)
The proofs of the above theorems are somewhat involved and we first turn our attention to some

applications before presenting the proofs.

Remark 38.3.5. The above two theorems also hold for spaces with shattering dimension at most 𝛿, in
which case the sample size is slightly larger. Specifically, for Theorem 38.3.4, the sample size needed is
𝑂

(
1
𝜀

lg 1
𝜑
+ 𝛿

𝜀
lg 𝛿

𝜀

)
.

Remark 38.3.6. The 𝜀-net theorem is a relatively easy consequence (up to constants) of the 𝜀-sample
theorem – see bibliographical notes for details.

38.3.2. Some applications
We mention two (easy) applications of these theorems, which (hopefully) demonstrate their power.
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38.3.2.1. Range searching

So, consider a (very large) set of points P in the plane. We would like to be able to quickly decide how
many points are included inside a query rectangle. Let us assume that we allow ourselves 1% error.
What Theorem 38.3.2 tells us is that there is a subset of constant size (that depends only on 𝜀) that
can be used to perform this estimation, and it works for all query rectangles (we used here the fact
that rectangles in the plane have finite VC dimension). In fact, a random sample of this size works with
constant probability.

38.3.2.2. Learning a concept

Dunknown
Assume that we have a function 𝑓 defined in the plane that returns

‘1’ inside an (unknown) disk 𝐷unknown and ‘0’ outside it. There is some
distribution D defined over the plane, and we pick points from this distri-
bution. Furthermore, we can compute the function for these labels (i.e., we
can compute 𝑓 for certain values, but it is expensive). For a mystery value
𝜀 > 0, to be explained shortly, Theorem 38.3.4 tells us to pick (roughly)
𝑂 ((1/𝜀) log(1/𝜀)) random points in a sample R from this distribution and
to compute the labels for the samples. This is demonstrated in the figure
on the right, where black dots are the sample points for which 𝑓 (·) returned 1.

D

So, now we have positive examples and negative examples. We would like
to find a hypothesis that agrees with all the samples we have and that hopefully
is close to the true unknown disk underlying the function 𝑓 . To this end,
compute the smallest disk 𝐷 that contains the sample labeled by ‘1’ and does
not contain any of the ‘0’ points, and let 𝑔 : R2 → {0, 1} be the function 𝑔 that
returns ‘1’ inside the disk and ‘0’ otherwise. We claim that 𝑔 classifies correctly
all but an 𝜀-fraction of the points (i.e., the probability of misclassifying a point
picked according to the given distribution is smaller than 𝜀); that is, Prp∈D [ 𝑓 (p) ≠ 𝑔(p)] ≤ 𝜀.

D ⊕ Dunknown

D

DunknownGeometrically, the region where 𝑔 and 𝑓 disagree is all the points in the
symmetric difference between the two disks. That is, E = 𝐷 ⊕ 𝐷unknown; see
the figure on the right.

Thus, consider the range space S having the plane as the ground set and the
symmetric difference between any two disks as its ranges. By Corollary 38.2.8,
this range space has finite VC dimension. Now, consider the (unknown) disk
𝐷′ that induces 𝑓 and the region r = 𝐷unknown ⊕ 𝐷. Clearly, the learned
classifier 𝑔 returns incorrect answers only for points picked inside r.

Thus, the probability of a mistake in the classification is the measure of r under the distribution D.
So, if PD [r] > 𝜀 (i.e., the probability that a sample point falls inside r), then by the 𝜀-net theorem (i.e.,
Theorem 38.3.4) the set R is an 𝜀-net for S (ignore for the time being the possibility that the random
sample fails to be an 𝜀-net) and as such, R contains a point u inside r. But, it is not possible for 𝑔

(which classifies correctly all the sampled points of R) to make a mistake on u, a contradiction, because
by construction, the range r is where 𝑔 misclassifies points. We conclude that PD

[
r
]
≤ 𝜀, as desired.

Little lies. The careful reader might be tearing his or her hair out because of the above description.
First, Theorem 38.3.4 might fail, and the above conclusion might not hold. This is of course true, and
in real applications one might use a much larger sample to guarantee that the probability of failure is so
small that it can be practically ignored. A more serious issue is that Theorem 38.3.4 is defined only for
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finite sets. Nowhere does it speak about a continuous distribution. Intuitively, one can approximate a
continuous distribution to an arbitrary precision using a huge sample and apply the theorem to this sam-
ple as our ground set. A formal proof is more tedious and requires extending the proof of Theorem 38.3.4
to continuous distributions. This is straightforward and we will ignore this topic altogether.

38.4. A better bound on the growth function
In this section, we prove Lemma 38.2.2. Since the proof is straightforward but tedious, the reader can
safely skip reading this section.

Lemma 38.4.1. For any positive integer 𝑛, the following hold.
(i) (1 + 1/𝑛)𝑛 ≤ 𝑒. (ii) (1 − 1/𝑛)𝑛−1 ≥ 𝑒−1.

(iii) 𝑛! ≥ (𝑛/𝑒)𝑛. (iv) For any 𝑘 ≤ 𝑛, we have
(𝑛
𝑘

) 𝑘
≤

(
𝑛

𝑘

)
≤

(𝑛𝑒
𝑘

) 𝑘
.

Proof: (i) Indeed, 1 + 1/𝑛 ≤ exp(1/𝑛), since 1 + 𝑥 ≤ 𝑒𝑥, for 𝑥 ≥ 0. As such (1 + 1/𝑛)𝑛 ≤ exp(𝑛(1/𝑛)) = 𝑒.
(ii) Rewriting the inequality, we have that we need to prove

(
𝑛−1
𝑛

)𝑛−1 ≥ 1
𝑒
. This is equivalent to

proving 𝑒 ≥
(

𝑛
𝑛−1

)𝑛−1
=
(
1 + 1

𝑛−1
)𝑛−1, which is our friend from (i).

(iii) Indeed,
𝑛𝑛

𝑛! ≤
∞∑︁
𝑖=0

𝑛𝑖

𝑖! = 𝑒𝑛,

by the Taylor expansion of 𝑒𝑥 =
∑∞

𝑖=0
𝑥𝑖

𝑖! . This implies that (𝑛/𝑒)𝑛 ≤ 𝑛!, as required.
(iv) Indeed, for any 𝑘 ≤ 𝑛, we have 𝑛

𝑘
≤ 𝑛−1

𝑘−1 , as can be easily verified. As such, 𝑛
𝑘

≤ 𝑛−𝑖
𝑘−𝑖 , for

1 ≤ 𝑖 ≤ 𝑘 − 1. As such, (𝑛
𝑘

) 𝑘
≤ 𝑛

𝑘
· 𝑛 − 1
𝑘 − 1 · · · 𝑛 − 𝑘 + 1

1 =

(
𝑛

𝑘

)
.

As for the other direction, by (iii), we have
(
𝑛

𝑘

)
≤ 𝑛𝑘

𝑘! ≤ 𝑛𝑘(
𝑘
𝑒

) 𝑘 =

(𝑛𝑒
𝑘

) 𝑘
. ■

Lemma 38.2.2 restated. For 𝑛 ≥ 2𝛿 and 𝛿 ≥ 1, we have
(𝑛
𝛿

)𝛿
≤ G𝛿 (𝑛) ≤ 2

(𝑛𝑒
𝛿

)𝛿
, where G𝛿 (𝑛) =

𝛿∑︁
𝑖=0

(
𝑛

𝑖

)
.

Proof: Note that by Lemma 38.4.1 (iv), we have G𝛿 (𝑛) =
𝛿∑︁
𝑖=0

(
𝑛

𝑖

)
≤ 1+

𝛿∑︁
𝑖=1

(𝑛𝑒
𝑖

) 𝑖
. This series behaves like

a geometric series with constant larger than 2, since(𝑛𝑒
𝑖

) 𝑖
/
( 𝑛𝑒

𝑖 − 1

) 𝑖−1
=
𝑛𝑒

𝑖

(
𝑖 − 1
𝑖

) 𝑖−1
=
𝑛𝑒

𝑖

(
1 − 1

𝑖

) 𝑖−1
≥ 𝑛𝑒

𝑖

1
𝑒
=
𝑛

𝑖
≥ 𝑛

𝛿
≥ 2,

by Lemma 38.4.1. As such, this series is bounded by twice the largest element in the series, implying
the claim. ■
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38.5. Some required definitions

Definition 38.5.1 (Convex hull). The convex hull of a set R ⊆ R𝑑 is the set of all convex combinations
of points of R; that is,

CH(R) =
{

𝑚∑︁
𝑖=0

𝛼𝑖v𝑖

�����∀𝑖 v𝑖 ∈ R, 𝛼𝑖 ≥ 0, and
𝑚∑︁
𝑗=1

𝛼𝑖 = 1
}
.
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