
Chapter 37

Multiplicative Weight Update: Expert Se-
lection
By Sariel Har-Peled, April 26, 2022① Possession of anything new or expensive only

reflected a person’s lack of theology and
geometry; it could even cast doubts upon one’s
soul.

A confederacy of Dunces, John Kennedy
Toole

37.1. The problem: Expert selection
We are given 𝑁 experts J𝑁K = {1, 2, . . . , 𝑁}. At each time 𝑡, an expert 𝑖 makes a prediction what is
going to happen at this time slot. To make things simple, assume the prediction is one of two values,
say, 0 or 1. You are going to play this game for a while – at each iteration you are going to get the
advice of the 𝑁 experts, and you are going to select either decision as your own prediction. The purpose
here is to come up with a strategy that minimizes the overall number of wrong predictions made.

If there is an expert that is never wrong. This situation is easy – initially start with all 𝑛 experts
as being viable – to this end, we assign 𝑊 (𝑖) ← 1, for all 𝑖. If an expert prediction turns out to be
wrong, we set its weight to zero (i.e., it is no longer active). Clearly, if you follow the majority vote of
the still viable experts, then at most log2 𝑛 mistakes would be made, before one isolates the infallible
experts.

37.2. Majority vote
The algorithm. Unfortunately, we are unlikely to be in the above scenario – experts makes mistakes.
Throwing a way an expert because of a single mistake is a sure way to have no expert remaining. Instead,
we are going to moderate our strategy. If expert 𝑖 is wrong, in a round, we are going to decrease its
weight – to be precise, we set 𝑊 (𝑖) ← (1 − 𝜀)𝑊 (𝑖), where 𝜀 is some parameter. Note, that this weight
update is done every round, independent on the decision output in the round. It is now natural, in
each round, to compute the total weight of the experts predicting 0, and the total weight of the experts
predicting 1, and return the prediction that has a heavier total weight supporting it.

Intuition. The algorithm keeps track of the quality of the experts. The useless experts would have
weights very close to zero.

Analysis. We need the following easy calculation.

Lemma 37.2.1. For 𝑥 ∈ [0, 1/2], we have 1 − 𝑥 ≥ exp(−𝑥 − 𝑥2).
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Proof: For 𝑥 ∈ (−1, 1), the Taylor expansion of ln(1 + 𝑥) is
∑∞

𝑖=1(−1)𝑖+1 𝑥𝑖

𝑖
. As such, for 𝑥 ∈ [0, 1/2] we

have

ln(1 − 𝑥) = −
∞∑︁
𝑖=1

𝑥𝑖

𝑖
= −𝑥 − 𝑥2

2 −
𝑥3

3 · · · ≥ −𝑥 − 𝑥
2,

since 𝑥2+𝑖/(2 + 𝑖) ≤ 𝑥2/2𝑖 ⇐⇒ 𝑥𝑖/(2 + 𝑖) ≤ 1/2𝑖, which is obviously true as 𝑥 ≤ 1/2. ■

Lemma 37.2.2. Let assume we have 𝑁 experts. Let 𝜷𝑡 be the number of the mistakes the algorithm
performs, and let 𝛽𝑡 (𝑖) be the number of mistakes made by the 𝑖th expert, for 𝑖 ∈ J𝑛K (both till time 𝑡).
Then, if we run this algorithm for 𝑇 rounds, we have

∀𝑖 ∈ J𝑛K 𝜷𝑇 ≤ 2(1 + 𝜀)𝛽𝑇 (𝑖) +
2 log 𝑁

𝜀
.

Proof: Let Φ𝑡 be the total weight of the experts at the beginning of round 𝑡. Observe that Φ1 = 𝑁, and
if a mistake was made in the 𝑡 round, then

Φ𝑡+1 ≤ (1 − 𝜀/2)Φ𝑡 ≤ exp(−𝜀𝜷𝑡+1/2)𝑁.

On the other hand, an expert 𝑖 made 𝛽𝑖 (𝑡) mistakes in the first 𝑡 rounds, and as such its weight, at this
point in time, is (1 − 𝜀)𝛽𝑡 (𝑖). We thus have, at time 𝑇 , and for any 𝑖, that

exp
(
−
(
𝜀 + 𝜀2)𝛽𝑇 (𝑖)) ≤ (1 − 𝜀)𝛽𝑇 (𝑖) ≤ Φ𝑇 ≤ exp

(
−𝜀𝜷𝑇2

)
𝑁.

Taking ln of both sides, we have −
(
𝜀 + 𝜀2)𝛽𝑇 (𝑖) ≤ − 𝜀𝜷𝑇

2 + ln 𝑁. ⇐⇒ 𝜷𝑇 ≤ 2(1 + 𝜀)𝛽𝑇 (𝑖) + 2 ln 𝑁
𝜀
. ■

37.3. Randomized weighted majority
Let 𝑊𝑡 (𝑖) be the weight assigned to the 𝑖th expert with in the beginning of the 𝑡th round. We modify
the algorithm to choose expert 𝑖, at round 𝑡, with probability 𝑊𝑡 (𝑖)/Φ𝑡 . That is, the algorithm randomly
choose an expert to follow according to their weights. Unlike before, all the experts that are wrong in
a round get a weight decrease.

Proof: We have that Φ𝑡 =
∑𝑁

𝑖=1 𝑊𝑡 (𝑖). Let 𝑚𝑡 (𝑖) = 1 be a an indicator variable that is one if and only if
expert 𝑖 made a mistake at round 𝑡. Similarly, let m𝑡 = 1 ⇐⇒ the algorithm made a mistake at round
𝑡. By definition, we have that

E[m𝑡] =
𝑁∑︁
𝑖=1
P[𝑖 expert chosen] 𝑚𝑡 (𝑖) =

𝑁∑︁
𝑖=1

𝑊𝑡 (𝑖)
Φ𝑡

𝑚𝑡 (𝑖).

We then have that
𝑊𝑡+1(𝑖) =

(
1 − 𝜀𝑚𝑡 (𝑖)

)
𝑊𝑡 (𝑖).

As such, we have Φ𝑡+1 =
∑𝑁

𝑖=1 𝑊𝑡+1(𝑖), and

Φ𝑡+1 =

𝑁∑︁
𝑖=1

(
1 − 𝜀𝑚𝑡 (𝑖)

)
𝑊𝑡 (𝑖) = Φ𝑡 − 𝜀

𝑁∑︁
𝑖=1

𝑚𝑡 (𝑖)𝑊𝑡 (𝑖) = Φ𝑡 − 𝜀Φ𝑡

𝑁∑︁
𝑖=1

𝑚𝑡 (𝑖)
𝑊𝑡 (𝑖)
Φ𝑡

=

(
1 − 𝜀 E[m𝑡]

)
Φ𝑡 .
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We now follow the same argument as before

(1 − 𝜀)𝛽𝑇 (𝑖) ≤ Φ𝑇 ≤ 𝑁

𝑇∏
𝑡=1

(
1 − 𝜀 E[m𝑡]

)
≤ 𝑁 exp(−𝜀 E[𝜷𝑇 ]) =⇒ (−𝜀 − 𝜀2)𝛽𝑇 (𝑖) ≤ ln 𝑁 − 𝜀 E[𝜷𝑇 ]

=⇒ E[𝜷𝑇 ] ≤ (1 + 𝜀)𝛽𝑇 (𝑖) +
ln 𝑁

𝜀
. ■

37.4. Bibliographical notes

37.5. From previous lectures
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