
Chapter 36

Backwards analysis
By Sariel Har-Peled, April 26, 2022① Version: 1.0

The idea of backwards analysis (or backward analysis) is a technique to analyze randomized
algorithms by imagining as if it was running backwards in time, from output to input. Most of the more
interesting applications of backward analysis are in Computational Geometry, but nevertheless, there
are some other applications that are interesting and we survey some of them here.

36.1. How many times can the minimum change?
Let Π = 𝜋1 . . . 𝜋𝑛 be a random permutation of {1, . . . , 𝑛}. Let E𝑖 be the event that 𝜋𝑖 is the minimum
number seen so far as we read Π; that is, E𝑖 is the event that 𝜋𝑖 = min𝑖

𝑘=1 𝜋𝑘 . Let 𝑋𝑖 be the indicator
variable that is one if E𝑖 happens. We already seen, and it is easy to verify, that E[𝑋𝑖] = 1/𝑖. We are
interested in how many times the minimum might change②; that is 𝑍 =

∑
𝑖 𝑋𝑖, and how concentrated is

the distribution of 𝑍 . The following is maybe surprising.

Lemma 36.1.1. The events E1, . . . ,E𝑛 are independent (as such, variables 𝑋1, . . . , 𝑋𝑛 are independent).

Proof: The trick is to think about the sampling process in a different way, and then the result readily
follows. Indeed, we randomly pick a permutation of the given numbers, and set the first number to be
𝜋𝑛. We then, again, pick a random permutation of the remaining numbers and set the first number as
the penultimate number (i.e., 𝜋𝑛−1) in the output permutation. We repeat this process till we generate
the whole permutation.

Now, consider 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑘 ≤ 𝑛, and observe that P
[
E𝑖1

��E𝑖2 ∩ . . . ∩ E𝑖𝑘

]
= P

[
E𝑖1

]
, since by

our thought experiment, E𝑖1 is determined after all the other variables E𝑖2 , . . . ,E𝑖𝑘 . In particular, the
variable E𝑖1 is inherently not effected by these events happening or not. As such, we have

P
[
E𝑖1 ∩ E𝑖2 ∩ . . . ∩ E𝑖𝑘

]
= P

[
E𝑖1

��E𝑖2 ∩ . . . ∩ E𝑖𝑘

]
P
[
E𝑖2 ∩ . . . ∩ E𝑖𝑘

]
= P

[
E𝑖1

]
P
[
E𝑖2 ∩ E𝑖2 ∩ . . . ∩ E𝑖𝑘

]
=

𝑘∏
𝑗=1
P
[
E𝑖 𝑗

]
=

𝑘∏
𝑗=1

1
𝑖 𝑗
,

by induction. ■

Theorem 36.1.2. Let Π = 𝜋1 . . . 𝜋𝑛 be a random permutation of 1, . . . , 𝑛, and let 𝑍 be the number of
times, that 𝜋𝑖 is the smallest number among 𝜋1, . . . , 𝜋𝑖, for 𝑖 = 1, . . . , 𝑛. Then, we have that for 𝑡 ≥ 2𝑒
that P

[
𝑍 > 𝑡 ln 𝑛

]
≤ 1/𝑛𝑡 ln 2, and for 𝑡 ∈

[
1, 2𝑒

]
, we have that P

[
𝑍 > 𝑡 ln 𝑛

]
≤ 1/𝑛(𝑡−1)2/4.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

②The answer, my friend, is blowing in the permutation.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof: Follows readily from Chernoff’s inequality, as 𝑍 =
∑

𝑖 𝑋𝑖 is a sum of independent indicator vari-
ables, and, since by linearity of expectations, we have

𝜇 = E
[
𝑍

]
=
∑︁
𝑖

E
[
𝑋𝑖

]
=

𝑛∑︁
𝑖=1

1
𝑖
≥
∫ 𝑛+1

𝑥=1

1
𝑥

d𝑥 = ln(𝑛 + 1) ≥ ln 𝑛.

Next, we set 𝛿 = 𝑡 − 1, and use Chernoff inequality. ■

36.2. Computing a good ordering of the vertices of a graph
We are given a G = (V, E) be an edge-weighted graph with 𝑛 vertices and 𝑚 edges. The task is to
compute an ordering 𝜋 = ⟨𝜋1, . . . , 𝜋𝑛⟩ of the vertices, and for every vertex 𝑣 ∈ V, the list of vertices 𝐿𝑣,
such that 𝜋𝑖 ∈ Ł𝑣, if 𝜋𝑖 is the closet vertex to 𝑣 in the 𝑖th prefix ⟨𝜋1, . . . , 𝜋𝑖⟩.

This situation can arise for example in a streaming scenario, where we install servers in a network.
In the 𝑖th stage there 𝑖 servers installed, and every client in the network wants to know its closest server.
As we install more and more servers (ultimately, every node is going to be server), each client needs to
maintain its current closest server.

The purpose is to minimize the total size of these lists L =
∑

𝑣∈V |𝐿𝑣 |.

36.2.1. The algorithm
Take a random permutation 𝜋1, . . . , 𝜋𝑛 of the vertices V of G. Initially, we set 𝛿(𝑣) = +∞, for all 𝑣 ∈ V.

In the 𝑖th iteration, set 𝛿(𝜋𝑖) to 0, and start Dijkstra from the 𝑖th vertex 𝜋𝑖. The Dijkstra propagates
only if it improves the current distance associated with a vertex. Specifically, in the 𝑖th iteration, we
update 𝛿(𝑢) to dG(𝜋𝑖, 𝑢) if and only if dG(𝜋𝑖, 𝑢) < 𝛿(𝑢) before this iteration started. If 𝛿(𝑢) is updated,
then we add 𝜋𝑖 to 𝐿𝑢. Note, that this Dijkstra propagation process might visit only small portions of
the graph in some iterations – since it improves the current distance only for few vertices.

36.2.2. Analysis

Lemma 36.2.1. The above algorithm computes a permutation 𝜋, such that E
[
|L|

]
= 𝑂 (𝑛 log 𝑛), and

the expected running time of the algorithm is 𝑂

(
(𝑛 log 𝑛 + 𝑚) log 𝑛

)
, where 𝑛 = |𝑉 (G) | and 𝑚 = |E(G) |.

Note, that both bounds also hold with high probability.

Proof: Fix a vertex 𝑣 ∈ V = {𝑣1, . . . , 𝑣𝑛}. Consider the set of 𝑛 numbers {dG(𝑣, 𝑣1), . . . , dG(𝑣, 𝑣𝑛)}.
Clearly, dG(𝑣, 𝜋1), . . . , dG(𝑣, 𝜋𝑛) is a random permutation of this set, and by Lemma 36.1.1 the random
permutation 𝜋 changes this minimum 𝑂 (log 𝑛) time in expectations (and also with high probability).
This readily implies that |𝐿𝑣 | = 𝑂 (log 𝑛) both in expectations and high probability.

The more interesting claim is the running time. Consider an edge 𝑢𝑣 ∈ E(G), and observe that
𝛿(𝑢) or 𝛿(𝑣) changes 𝑂 (log 𝑛) times. As such, an edge gets visited 𝑂 (log 𝑛) times, which implies overall
running time of 𝑂 (𝑛 log2 𝑛 + 𝑚 log 𝑛), as desired.

Indeed, overall there are 𝑂 (𝑛 log 𝑛) changes in the value of 𝛿(·). Each such change might require
one delete-min operation from the queue, which takes 𝑂 (log 𝑛) time operation. Every edge, by the
above, might trigger 𝑂 (log 𝑛) decrease-key operations. Using Fibonacci heaps, each such operation
takes 𝑂 (1) time. ■

2

36.3. Computing nets

36.3.1. Basic definitions
Definition 36.3.1. A metric space is a pair (X, d) where X is a set and d : X ×X → [0,∞) is a metric
satisfying the following axioms: (i) d(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦, (ii) d(𝑥, 𝑦) = d(𝑦, 𝑥), and (iii)
d(𝑥, 𝑦) + d(𝑦, 𝑧) ≥ d(𝑥, 𝑧) (triangle inequality).

For example, R2 with the regular Euclidean distance is a metric space. In the following, we assume
that we are given black-box access to dM . Namely, given two points p, u ∈ X, we assume that d(p, u)
can be computed in constant time.

Another standard example for a finite metric space is a graph G with non-negative weights 𝜔(·)
defined on its edges. Let dG(𝑥, 𝑦) denote the shortest path (under the given weights) between any
𝑥, 𝑦 ∈ 𝑉 (G). It is easy to verify that dG(·, ·) is a metric. In fact, any finite metric (i.e., a metric
defined over a finite set) can be represented by such a weighted graph.

36.3.1.1. Nets

Definition 36.3.2. For a point set P in a metric space with a metric d, and a parameter 𝑟 > 0, an 𝑟-net
of P is a subset C ⊆ P, such that

(i) for every p, u ∈ C, p ≠ u, we have that d(p, u) ≥ 𝑟, and
(ii) for all p ∈ P, we have that minu∈C d(p, u) < 𝑟.

Intuitively, an 𝑟-net represents P in resolution 𝑟.

36.3.2. Computing an 𝑟-net in a sparse graph
Given a G = (V, E) be an edge-weighted graph with 𝑛 vertices and 𝑚 edges, and let 𝑟 > 0 be a parameter.
We are interested in the problem of computing an 𝑟-net for G. That is, a set of vertices of G that complies
with Definition 36.3.2p3.

36.3.2.1. The algorithm

We compute an 𝑟-net in a sparse graph using a variant of Dijkstra’s algorithm with the sequence of
starting vertices chosen in a random permutation.

Let 𝜋𝑖 be the 𝑖th vertex in a random permutation 𝜋 of V. For each vertex 𝑣 we initialize 𝛿(𝑣) to +∞.
In the 𝑖th iteration, we test whether 𝛿(𝜋𝑖) ≥ 𝑟, and if so we do the following steps:
(A) Add 𝜋𝑖 to the resulting net N .
(B) Set 𝛿(𝜋𝑖) to zero.
(C) Perform Dijkstra’s algorithm starting from 𝜋𝑖, modified to avoid adding a vertex 𝑢 to the priority

queue unless its tentative distance is smaller than the current value of 𝛿(𝑢). When such a vertex
𝑢 is expanded, we set 𝛿(𝑢) to be its computed distance from 𝜋𝑖, and relax the edges adjacent to 𝑢

in the graph.

36.3.2.2. Analysis

While the analysis here does not directly uses backward analysis, it is inspired to a large extent by such
an analysis as in Section 36.2p2.

3

Lemma 36.3.3. The set N is an 𝑟-net in G.

Proof: By the end of the algorithm, each 𝑣 ∈ V has 𝛿(𝑣) < 𝑟, for 𝛿(𝑣) is monotonically decreasing, and
if it were larger than 𝑟 when 𝑣 was visited then 𝑣 would have been added to the net.

An induction shows that if ℓ = 𝛿(𝑣), for some vertex 𝑣, then the distance of 𝑣 to the set N is at most
ℓ. Indeed, for the sake of contradiction, let 𝑗 be the (end of) the first iteration where this claim is false.
It must be that 𝜋 𝑗 ∈ N , and it is the nearest vertex in N to 𝑣. But then, consider the shortest path
between 𝜋 𝑗 and 𝑣. The modified Dijkstra must have visited all the vertices on this path, thus computing
𝛿(𝑣) correctly at this iteration, which is a contradiction.

Finally, observe that every two points in N have distance ≥ 𝑟. Indeed, when the algorithm handles
vertex 𝑣 ∈ N , its distance from all the vertices currently in N is ≥ 𝑟, implying the claim. ■

Lemma 36.3.4. Consider an execution of the algorithm, and any vertex 𝑣 ∈ V. The expected number
of times the algorithm updates the value of 𝛿(𝑣) during its execution is 𝑂 (log 𝑛), and more strongly the
number of updates is 𝑂 (log 𝑛) with high probability.

Proof: For simplicity of exposition, assume all distances in G are distinct. Let 𝑆𝑖 be the set of all the
vertices 𝑥 ∈ V, such that the following two properties both hold:

(A) dG(𝑥, 𝑣) < dG(𝑣,Π𝑖), where Π𝑖 = {𝜋1, . . . , 𝜋𝑖}.
(B) If 𝜋𝑖+1 = 𝑥 then 𝛿(𝑣) would change in the (𝑖 + 1)th iteration.

Let 𝑠𝑖 = |𝑆𝑖 |. Observe that 𝑆1 ⊇ 𝑆2 ⊇ · · · ⊇ 𝑆𝑛, and |𝑆𝑛 | = 0.
In particular, let E𝑖+1 be the event that 𝛿(𝑣) changed in iteration (𝑖 + 1) – we will refer to such an

iteration as being active. If iteration (𝑖 + 1) is active then one of the points of 𝑆𝑖 is 𝜋𝑖+1. However, 𝜋𝑖+1
has a uniform distribution over the vertices of 𝑆𝑖, and in particular, if E𝑖+1 happens then 𝑠𝑖+1 ≤ 𝑠𝑖/2,
with probability at least half, and we will refer to such an iteration as being lucky. (It is possible that
𝑠𝑖+1 < 𝑠𝑖 even if E𝑖+1 does not happen, but this is only to our benefit.) After 𝑂 (log 𝑛) lucky iterations
the set 𝑆𝑖 is empty, and we are done. Clearly, if both the 𝑖th and 𝑗th iteration are active, the events
that they are each lucky are independent of each other. By the Chernoff inequality, after 𝑐 log 𝑛 active
iterations, at least ⌈log2 𝑛⌉ iterations were lucky with high probability, implying the claim. Here 𝑐 is a
sufficiently large constant. ■

Interestingly, in the above proof, all we used was the monotonicity of the sets 𝑆1, . . . , 𝑆𝑛, and that if
𝛿(𝑣) changes in an iteration then the size of the set 𝑆𝑖 shrinks by a constant factor with good probability
in this iteration. This implies that there is some flexibility in deciding whether or not to initiate Dijkstra’s
algorithm from each vertex of the permutation, without damaging the number of times of the values of
𝛿(𝑣) are updated.

Theorem 36.3.5. Given a graph G = (V, E), with 𝑛 vertices and 𝑚 edges, the above algorithm computes
an 𝑟-net of G in 𝑂 ((𝑛 log 𝑛 + 𝑚) log 𝑛) expected time.

Proof: By Lemma 36.3.4, the two 𝛿 values associated with the endpoints of an edge get updated 𝑂 (log 𝑛)
times, in expectation, during the algorithm’s execution. As such, a single edge creates 𝑂 (log 𝑛) decrease-
key operations in the heap maintained by the algorithm. Each such operation takes constant time if we
use Fibonacci heaps to implement the algorithm. ■

4

36.4. Bibliographical notes
Backwards analysis was invented/discovered by Raimund Seidel, and the QuickSort example is taken
from Seidel [Sei93]. The number of changes of the minimum result of Section 36.1 is by now folklore.

The good ordering of Section 36.2 is probably also folklore, although a similar idea was used by
Mendel and Schwob [MS09] for a different problem.

Computing a net in a sparse graph, Section 36.3.2, is from [EHS14]. While backwards analysis fails
to hold in this case, it provide a good intuition for the analysis, which is slightly more complicated and
indirect.

References
[EHS14] D. Eppstein, S. Har-Peled, and A. Sidiropoulos. On the Greedy Permutation and Counting

Distances. manuscript. 2014.
[MS09] M. Mendel and C. Schwob. Fast c-k-r partitions of sparse graphs. Chicago J. Theor. Comput.

Sci., 2009, 2009.
[Sei93] R. Seidel. Backwards analysis of randomized geometric algorithms. New Trends in Discrete and

Computational Geometry. Ed. by J. Pach. Vol. 10. Algorithms and Combinatorics. Springer-
Verlag, 1993, pp. 37–68.

5

	Backwards analysis
	How many times can the minimum change?
	Computing a good ordering of the vertices of a graph
	The algorithm
	Analysis

	Computing nets
	Basic definitions
	Computing an r-net in a sparse graph

	Bibliographical notes

