Chapter 32

A Bit on Algebraic Graph Theory

By Sariel Har-Peled, April 26, $2022^{(1)}$
"The Party told you to reject the evidence of your eyes and ears. It was their final, most essential command."
1984, George Orwell

32.1. Graphs and Eigenvalues

Consider an undirected graph $\mathrm{G}=\mathrm{G}(V, E)$ with n vertices. The adjacency matrix $\mathrm{M}(\mathrm{G})$ of G is the $n \times n$ symmetric matrix where $\mathrm{M}_{i j}=\mathrm{M}_{j i}$ is the number of edges between the vertices v_{i} and v_{j}. If G is bipartite, we assume that V is made out of two independent sets X and Y. In this case the matrix $\mathrm{M}(\mathrm{G})$ can be written in block form.

32.1.1. Eigenvalues and eigenvectors

A non-zero vector v is an eigenvector of M, if there is a value λ, known as the eigenvalue of v, such that $\mathrm{M} v=\lambda v$. That is, the vector v is mapped to zero by the matrix $\mathrm{N}=\mathrm{M}-\lambda I$. This happens only if N is not full ranked, which in turn implies that $\operatorname{det}(\mathrm{N})=0$. We have that $f(\lambda)=\operatorname{det}(\mathrm{M}-\lambda I)$ is a polynomial of degree n. It has n roots (not necessarily real), which are the eigenvalues of M. A matrix $\mathrm{N} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathrm{N}^{T}=\mathrm{N}$.

Lemma 32.1.1. The eigenvalues of a symmetric real matrix $N \in \mathbb{R}^{n \times n}$ are real numbers.
Proof: Observe that for any real vector $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, we have that $\sum_{i=1}^{n} v_{i}^{2}=\langle v, v\rangle \geq 0$. As such, for a vector v with eigenvalue λ, we have

$$
0 \leq\langle\mathrm{N} v, \mathrm{~N} v\rangle=(\mathrm{N} v)^{T} \mathrm{~N} v=(\lambda v)^{T} \lambda v=\lambda^{2}\langle v, v\rangle
$$

Namely, λ^{2} is a non-negative number, which implies that the λ is a real number.
Lemma 32.1.2. Let $\mathrm{N} \in \mathbb{R}^{n \times n}$ be a matrix. Consider two eigenvectors v_{1}, v_{2} that corresponds to two eigenvalues λ_{1}, λ_{2}, where $\lambda_{1} \neq \lambda_{2}$. Then v_{1} and v_{2} are orthogonal.

Proof: Indeed, $v_{1}^{T} \mathrm{~N} v_{2}=\lambda_{2} v_{1}^{T} v_{2}$. Similarly, we have $\left.v_{1}^{T} \mathrm{~N} v_{2}=\left(\mathrm{N}^{T} v_{1}\right)^{T} v_{2}\right)=\lambda_{1} v_{1}^{T} v_{2}$. We conclude that either $\lambda_{1}=\lambda_{2}$, or v_{1} and v_{2} are orthogonal (i.e., $v_{1}^{T} v_{2}=0$).

32.1.2. Eigenvalues and eigenvectors of a graph

Since $N=M(G)$ the adjacency matrix of an undirected graph is symmetric, all its eigenvalues exists and are real numbers $\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{n}$, and their corresponding orthonormal basis vectors are e_{1}, \ldots, e_{n}.

We will need the following theorem.

[^0]Theorem 32.1.3 (Fundamental theorem of algebraic graph theory). Let $\mathrm{G}=\mathrm{G}(V, E)$ be an undirected (multi)graph with maximum degree d and with n vertices. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of $\mathrm{M}(\mathrm{G})$ and the corresponding orthonormal eigenvectors are e_{1}, \ldots, e_{n}. The following holds.
(i) If G is connected then $\lambda_{2}<\lambda_{1}$.
(ii) For $i=1, \ldots, n$, we have $\left|\lambda_{i}\right| \leq d$.
(iii) d is an eigenvalue if and only if G is regular.
(iv) If G is d-regular then the eigenvalue $\lambda_{1}=d$ has the eigenvector $e_{1}=\frac{1}{\sqrt{n}}(1,1,1, \ldots, 1)$.
(v) The graph G is bipartite if and only if for every eigenvalue λ there is an eigenvalue $-\lambda$ of the same multiplicity.
(vi) Suppose that G is connected. Then G is bipartite if and only if $-\lambda_{1}$ is an eigenvalue.
(vii) If G is d-regular and bipartite, then $\lambda_{n}=d$ and $e_{n}=\frac{1}{\sqrt{n}}(1,1, \ldots, 1,-1, \ldots,-1)$, where there are equal numbers of $1 s$ and $-1 s$ in e_{n}.

32.2. Bibliographical Notes

A nice survey of algebraic graph theory appears in [Wes01] and in [Bol98].

References

[Bol98] B. Bollobas. Modern graph theory. Springer-Verlag, 1998.
[Wes01] D. B. West. Intorudction to graph theory. 2ed. Prentice Hall, 2001.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

