
Chapter 29

Random Walks II
By Sariel Har-Peled, April 26, 2022①

“Then you must begin a reading program immediately so that you man understand the crises of our age," Ignatius
said solemnly. "Begin with the late Romans, including Boethius, of course. Then you should dip rather extensively
into early Medieval. You may skip the Renaissance and the Enlightenment. That is mostly dangerous propaganda.
Now, that I think about of it, you had better skip the Romantics and the Victorians, too. For the contemporary
period, you should study some selected comic books.”
“You’re fantastic.”
“I recommend Batman especially, for he tends to transcend the abysmal society in which he’s found himself. His
morality is rather rigid, also. I rather respect Batman.”

John Kennedy Toole, A confederacy of Dunces

29.1. Catalan numbers
For a sequence 𝜎 of symbols, let #(𝜎, 𝑋) be the number of times the symbol 𝑋 appears in 𝜎.

Definition 29.1.1. A sequence/word 𝜎 of length 2𝑛 elements/characters made out of two symbols 𝑋 and
𝑌 , is balanced, if

(I) 𝑋 appears 𝑛 times (i.e., #(𝜎, 𝑋) = 𝑛),
(II) 𝑌 appears 𝑛 times (i.e., #(𝜎,𝑌 ) = 𝑛),

(III) In any prefix of the string, the number of 𝑋s is at least as large as the number of 𝑌s.
Such a string is known as a Dyck word. If 𝑋 and 𝑌 are the open and close parenthesis characters,
respectively, then the word is a balanced/valid parenthesis pattern.

Definition 29.1.2. The Catalan number , denoted by 𝐶𝑛, is the number of balanced strings of length
2𝑛.

There are many other equivalent definitions of Catalan number.

Definition 29.1.3. A sequence 𝜎 made out of two symbols 𝑋 and 𝑌 is dominating, if for any non-empty
prefix of 𝜎, the number of 𝑋s is strictly larger than the number of 𝑌s.

Lemma 29.1.4. Let 𝜎 be a cyclic sequence made out symbols 𝑋 and 𝑌 , where 𝑛 = #(𝜎, 𝑋) and 𝑚 =

#(𝜎, 𝑦), with 𝑛 > 𝑚. Then there are exactly 𝑛 − 𝑚 locations where cutting the cyclic sequence at these
locations, results in a dominating sequence.

Proof: Consider a location in 𝜎 that contains 𝑋, and the next location contains 𝑌 . Clearly, such a
location can not be a start for a dominating sequence. Of course, the next location can also not be a
start position for a dominating sequence. As such, these two locations must be interior to a dominating
sequence, and deleting both of these symbols from 𝜎, results in a new cyclic sequence, where every
dominating start location corresponds to a dominating start location in the original sequence. Observe,
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that as long as the number of 𝑋s is larger than the number of 𝑌s, there must be such a location with 𝑋𝑌

as the prefix. Repeatedly deleting 𝑋𝑌 substring, results in a string of length 𝑛−𝑚, where every location
is a good start of a dominating sequence. We conclude that there are exactly 𝑛 − 𝑚 such locations. ■

Observation 29.1.5. The number of distinct cyclic sequences of length 𝑚 + 𝑛, with 𝑚 appearances of
𝑋, and 𝑛 appearances of 𝑌 is (𝑛+𝑚−1)!

𝑚!𝑛! = 1
𝑛+𝑚

(𝑛+𝑚
𝑛

)
, since there are (𝑛 + 𝑚 − 1)! different cyclic ways to

arrange 𝑛 + 𝑚 distinct values.

Theorem 29.1.6. For 𝑛 ≥ 1, we have that the Catalan number 𝐶𝑛 =
1

𝑛+1
(2𝑛
𝑛

)
.

Proof: Consider a dominating sequence 𝜎 of length 2𝑛 + 1 with #(𝜎, 𝑋) = 𝑛 + 1, and #(𝜎,𝑌 ) = 𝑛. Such
a sequence must start with an 𝑋, and if we remove the leading 𝑋, then what remains is a balanced
sequence. Such a sequence 𝜎 can be interpreted as a cyclic sequence. By the above lemma, there is a
unique shift that is dominating. As such, the number of such cyclic sequence is the Catalan number 𝐶𝑛.
By the above observation, the number of such cyclic sequences is

(𝑛 + 𝑚 − 1)!
𝑚!𝑛! =

(𝑛 + 𝑛 + 1 − 1)!
(𝑛 + 1)!𝑛! =

1
𝑛 + 1

2𝑛!
𝑛!𝑛! =

1
𝑛 + 1

(
2𝑛
𝑛

)
.

29.2. Walking on the integer line revisited

29.2.1. Estimating the middle binomial coefficient

Lemma 29.2.1. For 𝑖 ≥ 112, we have 1
4 · 22𝑖

√
𝑖
≤

(
2𝑖
𝑖

)
≤ 2 · 22𝑖

√
𝑖
. and

( 2𝑖
𝑖+
√
𝑖

)
≥ 1

12 · 22𝑖
√
𝑖

Proof: Observe that
(2𝑖
𝑖

)
≥

(2𝑖
𝑗

)
, for any 𝑗 . We assume that 𝑖 ≥ 112, and

√
𝑖 is an integer. O bserve that( 2𝑖

𝑖+𝜏
)
= 2𝑖!

(𝑖+𝜏)!(𝑖−𝜏)! =
2𝑖!
𝑖!𝑖!

(𝑖−𝜏+1)···(𝑖−1)𝑖
(𝑖+1)···(𝑖+𝜏) =

(2𝑖
𝑖

) ∏𝜏
𝑘=1

𝑖−𝜏+𝑘
𝑖+𝑘 . Now, by Lemma ??, we have

𝛼 =

𝜏∏
𝑘=1

𝑖 − 𝜏 + 𝑘

𝑖 + 𝑘
=

𝜏∏
𝑘=1

(
1 − 𝜏

𝑖 + 𝑘

)
≥

(
1 − 𝜏

𝑖

)𝜏
≥

(
1 − 𝜏2

𝑖2
𝜏

)
exp

(
−𝜏

2

𝑖

)
≥ 1

3 ,

for 𝜏 ≤
√
𝑖, and 𝑖 ≥ 112. Namely, for any 𝑘, such that −

√
𝑖 ≤ 𝑘 ≤

√
𝑖, we have

( 2𝑖
𝑖+𝑘

)
≥

(2𝑖
𝑖

)
/3. We thus

have that

1 ≥ 1
22𝑖

√
𝑖∑︁

𝑘=−
√
𝑖+1

(
2𝑖

𝑖 + 𝑘

)
≥ 2

√
𝑖

3 · 22𝑖

(
2𝑖
𝑖

)
=⇒

(
2𝑖
𝑖

)
≤ 2

3 · 22𝑖
√
𝑖
.

Let Δ =
√
𝑖 − 1 and 𝑋 ∼ bin(2𝑖, 1/2). We have that E[𝑋] = 𝑖, and V[𝑋] = 2𝑖(1/2) (1/2) = 𝑖/2.

Let 𝛽 = 1
22𝑖

∑Δ
𝑘=−Δ

( 2𝑖
𝑖+𝑘

)
. By Chebychev, we have that 1 − 𝛽 = P

[
|𝑋 − 𝑖 | ≥

√
2
√︁
𝑖/2

]
≤ 1/2. which implies

𝛽 ≥ 1/2. We have

1
2 ≤ 𝛽 ≤ 1

22𝑖

Δ∑︁
𝑘=−Δ

(
2𝑖

𝑖 + 𝑘

)
≤ 2Δ + 1

22𝑖

(
2𝑖
𝑖

)
=⇒

(
2𝑖
𝑖

)
≥ 22𝑖

2(2Δ + 1) ≥ 22𝑖

4
√
𝑖
.
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Lemma 29.2.2. In a random walk on the line starting at zero, in expectation, after 48𝑛2 steps, the
walk had visited either −𝑛 or +𝑛.

Proof: By Lemma ??, the probability that after 2𝑖 steps, for 𝑖 = 16𝑛2, the walk is in the range {−
√
𝑖 +

1, . . . ,
√
𝑖 − 1} is at most

2𝑛 1
22𝑖 ·

2
3 · 22𝑖

√
𝑖
= 2𝑛2

3 · 1
4𝑛 =

1
3 .

Namely, the walk arrived to either −𝑛 or +𝑛 during the first 32𝑛2 steps (note that 𝑛 ≤ 𝑖/2) with
probability ≥ 2/3. If this did not happen, we continue the walk. As 𝑖 ≥ 2𝑛, the same argumentation
essentially implies that every 32𝑛2 steps, the walk terminates with probability at least 2/3. As such, in
expectation, after 3/2 such epochs, the walk would terminate. ■

29.3. Solving 2SAT using random walk
Let G = 𝐺 (𝑉, 𝐸) be a undirected connected graph. For 𝑣 ∈ 𝑉 , let Γ(𝑣) denote the neighbors of 𝑣 in G.
A random walk on G is the following process: Starting from a vertex 𝑣0, we randomly choose one of
the neighbors of 𝑣0, and set it to be 𝑣1. We continue in this fashion, such that 𝑣𝑖 ∈ Γ(𝑣𝑖−1). It would
be interesting to investigate the process of the random walk. For example, questions like: (i) how long
does it take to arrive from a vertex 𝑣 to a vertex 𝑢 in G? and (ii) how long does it take to visit all the
vertices in the graph.

29.3.1. Solving 2SAT
Consider a 2SAT formula 𝐹 with 𝑚 clauses defined over 𝑛 variables. Start from an arbitrary assignment
to the variables, and consider a non-satisfied clause in 𝐹. Randomly pick one of the clause variables,
and change its value. Repeat this till you arrive to a satisfying assignment.

Consider the random variable 𝑋𝑖, which is the number of variables assigned the correct value (ac-
cording to the satisfying assignment) in the current assignment. Clearly, with probability (at least) half
𝑋𝑖 = 𝑋𝑖−1 + 1.

Thus, we can think about this algorithm as performing a random walk on the numbers 0, 1, . . . , 𝑛,
where at each step, we go to the right probability at least half. The question is, how long does it take
to arrive to 𝑛 in such a settings.

Theorem 29.3.1. The expected number of steps to arrive to a satisfying assignment is 𝑂 (𝑛2).

Proof: For simplicity of exposition assume that 𝑛 is divisible by 4. Consider the random walk on the
integer line, starting from zero, where we go to the left with probability 1/2, and to the right probability
1/2. Let 𝑌𝑖 be the location of the walk at the 𝑖 step. Clearly, E[𝑌𝑖] ≥ E[𝑋𝑖]. By defining the random
walk on the integer line more carefully, one can ensure that 𝑌𝑖 ≤ 𝑋𝑖. Thus, the expected number of steps
till 𝑌𝑖 is equal to 𝑛 is an upper bound on the required quantity.

For an 𝑖, 𝑌2𝑖 is an even number. Thus, consider the event that 𝑌2𝑖 = 2Δ ≥ 𝑛, let 𝑌2𝑖 = 𝑅2𝑖 − 𝐿2𝑖, where
𝑅2𝑖 is the number of steps to the right, and 𝐿2𝑖 is the number of steps to the left. Observe that{

𝑅2𝑖 − 𝐿2𝑖 = 2Δ
𝑅2𝑖 + 𝐿2𝑖 = 2𝑖

=⇒
{
𝑅2𝑖 = 𝑖 + Δ

𝐿2𝑖 = 𝑖 − 𝑅2𝑖 = 𝑖 − Δ.
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Thus, for 𝑖 ≥ 𝑛/2, we have that the probability that in the 2𝑖th step we have 𝑌2𝑖 ≥ 𝑛 is

𝜌 =

𝑖∑︁
Δ=𝑛/2

1
22𝑖

( 2𝑖
𝑖 + Δ

)
.

Lemma ?? below, tells us that for 𝜌 > 1/3, is implied if Δ ≤
√
𝑖/6. That is, 𝑛/2 ≤

√
𝑖/6, which holds for

𝑖 = 9𝑛2.
Next, if 𝑋2𝑖 fails to arrive to 𝑛 at the first 𝜇 steps, we will reset 𝑌𝜇 = 𝑋𝜇 and continue the random

walk, repeating this process as many phases as necessary. The probability that the number of phases
exceeds 𝑖 is ≤ (2/3)𝑖. As such, the expected number of steps in the walk is at most∑︁

𝑖

𝑐′𝑛2𝑖(1 − 𝜌)𝑖 = 𝑂 (𝑛2),

as claimed. ■

Lemma 29.3.2. We have
∑︁2𝑖

𝑘=𝑖+
√
𝑖/6

1
22𝑖

(
2𝑖
𝑘

)
≥ 1

3 .

Proof: It is known② that
(2𝑖
𝑖

)
≤ 22𝑖/

√
𝑖 (better constants are known). As such, since

(2𝑖
𝑖

)
≥

(2𝑖
𝑚

)
, for all 𝑚,

we have by symmetry that
2𝑖∑︁

𝑘=𝑖+
√
𝑖/6

1
22𝑖

(
2𝑖
𝑘

)
≥

2𝑖∑︁
𝑘=𝑖+1

1
22𝑖

(
2𝑖
𝑘

)
−
√
𝑖/6 1

22𝑖

(
2𝑖
𝑖

)
≥ 1

2 −
√
𝑖/6 1

22𝑖 ·
22𝑖
√
𝑖
=

1
3 .

29.4. Markov chains
Let S denote a state space, which is either finite or countable. A Markov chain is at one state at any
given time. There is a transition probability P𝑖 𝑗 , which is the probability to move to the state 𝑗 , if
the Markov chain is currently at state 𝑖. As such,

∑
𝑗 P𝑖 𝑗 = 1 and ∀𝑖, 𝑗 we have 0 ≤ P𝑖 𝑗 ≤ 1. The matrix

P =
{
P𝑖 𝑗

}
𝑖 𝑗

is the transition probabilities matrix.

P =

©­­­­­­­«

𝑗th column

𝑖th row P𝑖 𝑗

ª®®®®®®®¬
The Markov chain start at an initial state 𝑋0, and at each point in time moves according to the

transition probabilities. This form a sequence of states {𝑋𝑡}. We have a distribution over those sequences.
Such a sequence would be referred to as a history.

Similar to Martingales, the behavior of a Markov chain in the future, depends only on its location
𝑋𝑡 at time 𝑡, and does not depends on the earlier stages that the Markov chain went through. This
is the memorylessness property of the Markov chain, and it follows as P𝑖 𝑗 is independent of time.
Formally, the memorylessness property is

P
[
𝑋𝑡+1 = 𝑗

�� 𝑋0 = 𝑖0, 𝑋1 = 𝑖1, . . . , 𝑋𝑡−1 = 𝑖𝑡−1, 𝑋𝑡 = 𝑖
]
= P[𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖] = P𝑖 𝑗 .

②Probably because you got it as a homework problem, if not wikipedia knows, and if you are bored you can try and
prove it yourself.
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The initial state of the Markov chain might also be chosen randomly in some cases.
For states 𝑖, 𝑗 ∈ S, the 𝑡-step transition probability is P(𝑡)

𝑖 𝑗
= P

[
𝑋𝑡 = 𝑗

�� 𝑋0 = 𝑖
]
. The probability

that we visit 𝑗 for the first time, starting from 𝑖 after 𝑡 steps, is denoted by

r(𝑡)
𝑖 𝑗

= P
[
𝑋𝑡 = 𝑗 and 𝑋1 ≠ 𝑗 , 𝑋2 ≠ 𝑗 , . . . , 𝑋𝑡−1 ≠ 𝑗

�� 𝑋0 = 𝑖
]
.

Let f𝑖 𝑗 =
∑

𝑡>0 r(𝑡)
𝑖 𝑗

denote the probability that the Markov chain visits state 𝑗 , at any point in time,
starting from state 𝑖. The expected number of steps to arrive to state 𝑗 starting from 𝑖 is

h𝑖 𝑗 =
∑︁
𝑡>0

𝑡 · r(𝑡)
𝑖 𝑗
.

Of course, if f𝑖 𝑗 < 1, then there is a positive probability that the Markov chain never arrives to 𝑗 , and
as such h𝑖 𝑗 = ∞ in this case.

Definition 29.4.1. A state 𝑖 ∈ S for which f𝑖𝑖 < 1 (i.e., the chain has positive probability of never visiting
𝑖 again), is a transient state. If f𝑖𝑖 = 1 then the state is persistent.

A state 𝑖 that is persistent but h𝑖𝑖 = ∞ is null persistent. A state 𝑖 that is persistent and h𝑖𝑖 ≠ ∞
is non null persistent.

Example 29.4.2. Consider the state 0 in the random walk on the integers. We already know that in
expectation the random walk visits the origin infinite number of times, so this hints that this is a
persistent state. Let figure out the probability r(2𝑛)

00 . To this end, consider a walk 𝑋0, 𝑋1, . . . , 𝑋2𝑛 that
starts at 0 and return to 0 only in the 2𝑛 step. Let 𝑆𝑖 = 𝑋𝑖 −𝑋𝑖−1, for all 𝑖. Clearly, we have 𝑆𝑖 ∈ {−1, +1}
(i.e., move left or move right). Assume the walk starts by 𝑆1 = +1 (the case −1 is handled similarly).
Clearly, the walk 𝑆2, . . . , 𝑆2𝑛−1 must be prefix balanced; that is, the number of 1s is always bigger (or
equal) for any prefix of this sequence.

Strings with this property are known as Dyck words, and the number of such words of length 2𝑚
is the Catalan number 𝐶𝑚 = 1

𝑚+1
(2𝑚
𝑚

)
. As such, the probability of the random walk to visit 0 for the

first time (starting from 0) after 2𝑛 steps, is

r(2𝑛)
00 = 21

𝑛

(
2𝑛 − 2
𝑛 − 1

)
1

22𝑛 = Θ

(
1
𝑛
· 1
√
𝑛

)
= Θ

(
1

𝑛3/2

)
.

(the 2 here is because the other option is that the sequence starts with −1), using that
(2𝑛
𝑛

)
= Θ

(
22𝑛/

√
𝑛
)
.

Observe that f00 =
∑∞

𝑛=0 r(2𝑛)
00 = 𝑂 (1). However, one can be more precise – that is, f00 = 1 (this

requires a trick)! On the other hand, we have that

h00 =
∑︁
𝑡>0

𝑡 · r(𝑡)
00 ≥

∞∑︁
𝑛=1

2𝑛r(2𝑛)
00 =

∞∑︁
𝑛=1

Θ
(
1/
√
𝑛
)
= ∞.

Namely, 0 (and indeed all integers) are null persistent.

In finite Markov chains there are no null persistent states (this requires a proof, which is left as an
exercise). There is a natural directed graph associated with a Markov chain. The states are the vertices,
and the transition probability P𝑖 𝑗 is the weight assigned to the edge (𝑖 → 𝑗). Note that we include only
edges with P𝑖 𝑗 > 0.
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Definition 29.4.3. A strong component (or a strong connected component) of a directed graph G is a
maximal subgraph 𝐶 of G such that for any pair of vertices 𝑖 and 𝑗 in the vertex set of 𝐶, there is a
directed path from 𝑖 to 𝑗 , as well as a directed path from 𝑗 to 𝑖.

Definition 29.4.4. A strong component 𝐶 is a final strong component if there is no edge going from
a vertex in 𝐶 to a vertex that is not in 𝐶.

In a finite Markov chain, there is positive probability to arrive from any vertex on 𝐶 to any other
vertex of 𝐶 in a finite number of steps. If 𝐶 is a final strong component, then this probability is 1, since
the Markov chain can never leave 𝐶 once it enters it③. It follows that a state is persistent if and only if
it lies in a final strong component.

Definition 29.4.5. A Markov chain is irreducible if its underlying graph consists of a single strong
component.

Clearly, if a Markov chain is irreducible, then all states are persistent.

Definition 29.4.6. Let q (𝑡) =

(
𝑞
(𝑡)
1 , 𝑞

(𝑡)
2 , . . . , 𝑞

(𝑡)
𝑛

)
be the state probability vector (also known as the

distribution of the chain at time 𝑡), to be the row vector whose 𝑖th component is the probability that
the chain is in state 𝑖 at time 𝑡.

The key observation is that
q (𝑡) = q (𝑡−1)P = q (0)P𝑡 .

Namely, a Markov chain is fully defined by q (0) and P.

Definition 29.4.7. A stationary distribution for a Markov chain with the transition matrix P is a
probability distribution 𝜋 such that 𝜋 = 𝜋P.

In general, stationary distribution does not necessarily exist. We will mostly be interested in Markov
chains that have stationary distribution. Intuitively it is clear that if a stationary distribution exists,
then the Markov chain, given enough time, will converge to the stationary distribution.

Definition 29.4.8. The periodicity of a state 𝑖 is the maximum integer 𝑇 for which there exists an initial
distribution q (0) and positive integer 𝑎 such that, for all 𝑡 if at time 𝑡 we have 𝑞

(𝑡)
𝑖

> 0 then 𝑡 belongs
to the arithmetic progression

{
𝑎 + 𝑡𝑖

�� 𝑖 ≥ 0
}
. A state is said to be periodic if it has periodicity greater

than 1, and is aperiodic otherwise. A Markov chain in which every state is aperiodic is aperiodic.

Example 29.4.9. The easiest example maybe of a periodic Markov chain is a directed cycle.

v1

v2

v3

For example, the Markov chain on the right, has periodicity of three. In particular,
the initial state probability vector q (0) = (1, 0, 0) leads to the following sequence of state
probability vectors

q (0) = (1, 0, 0) =⇒ q (1) = (0, 1, 0) =⇒ q (2) = (0, 0, 1) =⇒ q (3) = (1, 0, 0) =⇒ . . . .

Note, that this chain still has a stationary distribution, that is (1/3, 1/3, 1/3), but unless you start from
this distribution, you are going to converge to it.

③Think about it as hotel California.
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A neat trick that forces a Markov chain to be aperiodic, is to shrink all the probabilities by a factor
of 2, and make every state to have a transition probability to itself equal to 1/2. Clearly, the resulting
Markov chain is aperiodic.

Definition 29.4.10. An ergodic state is aperiodic and (non-null) persistent.
An ergodic Markov chain is one in which all states are ergodic.

The following theorem is the fundamental property of Markov chains that we will need. The inter-
ested reader, should check the proof in [n-mc-98] (the proof is not hard).

Theorem 29.4.11 (Fundamental theorem of Markov chains). Any irreducible, finite, and aperi-
odic Markov chain has the following properties.

(i) All states are ergodic.
(ii) There is a unique stationary distribution 𝜋 such that, for 1 ≤ 𝑖 ≤ 𝑛, we have 𝜋𝑖 > 0.

(iii) For 1 ≤ 𝑖 ≤ 𝑛, we have f𝑖𝑖 = 1 and h𝑖𝑖 = 1/𝜋𝑖.
(iv) Let 𝑁 (𝑖, 𝑡) be the number of times the Markov chain visits state 𝑖 in 𝑡 steps. Then

lim
𝑡→∞

𝑁 (𝑖, 𝑡)
𝑡

= 𝜋𝑖 .

Namely, independent of the starting distribution, the process converges to the stationary distribu-
tion.

29.5. From previous lectures
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