
Chapter 27

Approximate Nearest Neighbor (ANN) Search
in High Dimensions
By Sariel Har-Peled, April 26, 2022① Possession of anything new or expensive only

reflected a person’s lack of theology and
geometry; it could even cast doubts upon one’s
soul.

A confederacy of Dunces, John Kennedy
Toole

27.1. ANN on the hypercube

27.1.1. ANN for the hypercube and the Hamming distance

Definition 27.1.1. The set of points H𝑑 = {0, 1}𝑑 is the 𝑑-dimensional hypercube. A point p =

(p1, . . . , p𝑑) ∈ H𝑑 can be interpreted, naturally, as a binary string p1p2 . . . p𝑑. The Hamming distance
d𝐻 (p, u) between p, u ∈ H𝑑 is the number of coordinates where p and u disagree.

It is easy to verify that the Hamming distance, being the 𝐿1-norm, complies with the triangle
inequality and is thus a metric.

As we saw previously, to solve the (1 + Y)-ANN problem efficiently, it is sufficient to solve the
approximate near neighbor problem. Namely, given a set P of 𝑛 points in H𝑑, a radius 𝑟 > 0, and
parameter Y > 0, we want to decide for a query point q whether d𝐻 (q,P) ≤ 𝑟 or d𝐻 (q,P) ≥ (1 + Y)𝑟,
where d𝐻 (q,P) = minp∈P d𝐻 (q, p).

Definition 27.1.2. For a set P of points, a data-structure D = D≈Near(P, 𝑟, (1 + Y)𝑟) solves the approxi-
mate near neighbor problem if, given a query point q, the data-structure works as follows.

• Near: If d𝐻 (q,P) ≤ 𝑟, then D outputs a point p ∈ P such that d𝐻 (p,q) ≤ (1 + Y)𝑟.
• Far: If d𝐻 (q,P) ≥ (1 + Y)𝑟, then D outputs “d𝐻 (q,P) ≥ 𝑟”.
• Don’t care: If 𝑟 ≤ d(q,P) ≤ (1 + Y)𝑟, then D can return either of the above answers.

Given such a data-structure, one can construct a data-structure that answers the approximate near-
est neighbor query using 𝑂

(
log

(
Y−1 log 𝑑

))
queries using an approximate near neighbor data-structure.

Indeed, the desired distance d𝐻 (q,P) is an integer number in the range 0, 1, . . . , 𝑑. We can build a
D≈Near data-structure for distances (1 + Y)𝑖, for 𝑖 = 1, . . . , 𝑀, where 𝑀 = 𝑂

(
Y−1 log 𝑑

)
. Performing a

binary search over these distances would resolve the approximate nearest neighbor query and requires
𝑂 (log𝑀) queries.

As such, in the following, we concentrate on constructing the approximate near neighbor data-
structure (i.e., D≈Near).

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

27.1.2. Preliminaries
Definition 27.1.3. Consider a sequence 𝑚 of 𝑘, not necessarily distinct, integers 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ J𝑑K, where
J𝑑K = {1, . . . , 𝑑}. For a point p = (𝑝1, . . . , 𝑝𝑑) ∈ R𝑑, its projection by 𝑚, denoted by 𝑚p is the
point

(
𝑝𝑖1 , . . . , 𝑝𝑖𝑘

)
∈ R𝑘 . Similarly, the projection of a point set P ⊆ R𝑑 by 𝑚 is the point set 𝑚P =

{𝑚p | p ∈ P}.

Given two sequences 𝑚 = 𝑖1, . . . , 𝑖𝑘 and 𝑢 = 𝑗1, . . . , 𝑗𝑘 ′ , let 𝑚 |𝑢 denote the concatenated sequence
𝑚 |𝑢 = 𝑖1, . . . , 𝑖𝑘 , 𝑗1, . . . , 𝑗𝑘 ′ . Given a probability 𝜑, a natural way to create such a projection, is to
include the 𝑖th coordinate, for 𝑖 = 1, . . . , 𝑑, with probability 𝜑. Let D𝜑 denote the distribution of such
sequences of indices.

Definition 27.1.4. Let D𝑇
𝜑 denote the distribution resulting from concatenating 𝑇 independent sequences

sampled from D𝜑. The length of a sampled sequence is 𝑑𝑇 .

Observe that for a point p ∈ {0, 1}𝑑, and 𝑀 ∈ D𝑇
𝜑 , the projection 𝑀p might be higher dimensional

than the original point p, as it might contain repeated coordinates of the original point.

27.1.2.1. Algorithm

27.1.2.1.1. Input. The input is a set P of 𝑛 points in the hypercube {0, 1}𝑑, and parameters 𝑟 and Y.

27.1.2.1.2. Preprocessing. We set parameters as follows:

𝛽 =
1

1 + Y ∈ (0, 1), 𝜑 = 1 − exp
(
−1
𝑟

)
≈ 1
𝑟
, 𝑇 = 𝛽 ln 𝑛, and 𝐿 = 𝑂 (𝑛𝛽 log 𝑛).

We randomly and independently pick 𝐿 sequences 𝑀1, . . . , 𝑀𝐿 ∈ D𝑇
𝜑 . Next, the algorithm computes

the point sets Q𝑖 = 𝑀𝑖P𝑖, for 𝑖 = 1, . . . , 𝐿, and stores them each in a hash table, denoted by 𝐷𝑖, for
𝑖 = 1, . . . , 𝐿.

27.1.2.1.3. Answering a query. Given a query point q ∈ {0, 1}𝑑, the algorithm computes q𝑖 = 𝑀𝑖q,
for 𝑖 = 1, . . . , 𝐿. From each 𝐷𝑖, the algorithm retrieves a list ℓ𝑖 of all the points that collide with q𝑖.
The algorithm scans the points in the lists ℓ1, . . . , ℓ𝐿. If any of these points is in Hamming distance
smaller than (1 + Y)𝑟, the algorithm returns it as the desired near-neighbor (and stops). Otherwise, the
algorithm returns that all the points in P are in distance at least 𝑟 from q.

27.1.2.2. Analysis

Lemma 27.1.5. Let 𝐾 be a set of 𝑟 marked/forbidden coordinates. The probability that a sequence
𝑀 = (𝑚1, . . . , 𝑚𝑇) sampled from D𝑇

𝜑 does not sample any of the coordinates of 𝐾 is 1/𝑛𝛽. This probability
increases if 𝐾 contains fewer coordinates.

Proof: For any 𝑖, the probability that 𝑚𝑖 does not contain any of these coordinates is (1−𝜑)𝑟 =
(
𝑒−1/𝑟)𝑟 =

1/𝑒. Since this experiment is repeated 𝑇 times, the probability is 𝑒−𝑇 = 𝑒−𝛽 ln 𝑛 = 𝑛−𝛽. ■

Lemma 27.1.6. Let p be the nearest-neighbor to q in P. If d𝐻 (q, p) ≤ 𝑟 then, with high probability,
the data-structure returns a point that is in distance ≤ (1 + Y)𝑟 from q.

2

Proof: The good event here is that p and q collide under one of the sequences of 𝑀1, . . . , 𝑀𝐿. However,
the probability that 𝑀𝑖p = 𝑀𝑖q is at least 1/𝑛𝛽, by Lemma 27.1.5, as this is the probability that 𝑀𝑖 does
not sample any of the (at most 𝑟) coordinates where p and q disagree. As such, the probability that
all 𝐿 data-structures fail (i.e., none of the lists ℓ1, . . . , ℓ𝐿 contains p), is at most (1 − 1/𝑛𝛽)𝐿 < 1/𝑛𝑂 (1),
as 𝐿 = 𝑂

(
𝑛𝛽 log 𝑛

)
. ■

Lemma 27.1.7. In expectation, the total number of points in ℓ1, . . . , ℓ𝐿 that are in distance ≥ (1 + Y)𝑟
from q is ≤ 𝐿.

Proof: Let P≥ be the set of points in P that are in distance ≥ (1 + Y)𝑟 from q. For a point u ∈ P≥, with
Δ = d𝐻 (u,q), we have that the probability for 𝑀 ∈ D𝑇

𝜑 misses all the Δ coordinates, where u and q

differ, is
(1 − 𝜑)Δ𝑇 ≤ (1 − 𝜑) (1+Y)𝑟𝑇 =

(
𝑒−1/𝑟

) (1+Y)𝑟𝑇
= exp(−(1 + Y)𝛽 ln 𝑛) = 1

𝑛
,

as 𝜑 = 1 − 𝑒−1/𝑟 , 𝑇 = 𝛽 ln 𝑛, and 𝛽 = 1/(1 + Y). But then, for any 𝑖, we have

E
[
|ℓ𝑖 |

]
=

∑︁
p∈P≥

P
𝑀𝑖

[
𝑀𝑖p = 𝑀𝑖q

]
≤
��P≥

�� 1
𝑛
≤ 1.

As such, the total number of far points in the lists is at most 𝐿 · 1 = 𝐿, implying the claim. ■

27.1.2.3. Running time

For each 𝑖, the query computes 𝑀𝑖q and that takes 𝑂 (𝑑𝑇) = 𝑂 (𝑑 log 𝑛) time. Repeated 𝐿 times,
this takes 𝑂 (𝐿𝑑 log 𝑛) time overall. Let 𝑋 be the random variable that is the number of points in
the extracted lists that are in distance ≥ (1 + Y)𝑟 from the query point. The time to scan the lists is
𝑂
(
𝑑 (𝑋 + 1)

)
, since the algorithm stops as soon as it finds a near point. As such, by Lemma 27.1.7, the

expected query time is 𝑂 (𝐿𝑑 log 𝑛 + 𝐿𝑑) = 𝑂
(
𝑑𝑛1/(1+Y) log2 𝑛

)
.

27.1.2.3.1. Improving the performance (a bit). Observe that for 𝑀 ∈ D𝑇
𝜑 , and any two points

p, u ∈ {0, 1}𝑑, all the algorithm cares about is whether 𝑀p = 𝑀u. As such, if a coordinate is probed many
times by 𝑀, we might as well probe this coordinate only once. In particular, for a sequence 𝑀 ∈ D𝑇

𝜑 ,
let 𝑀′ = uniq(𝑀) be the projection sequence resulting from removing replications in 𝑀. Significantly,
𝑀′ is only of length ≤ 𝑑, and as such, computing 𝑀′p, for a point p, takes only 𝑂 (𝑑) time. It is not
hard to verify that one can also sample directly uniq(𝑀), for 𝑀 ∈ D𝑇

𝜑 , in 𝑂 (𝑑) time. This improves the
query and processing by a logarithmic factor.

We thus get the following result.

Theorem 27.1.8. Given a set 𝑃 of 𝑛 points in {0, 1}𝑑, and parameters 𝑟, Y, one can preprocess 𝑃 in
𝑂 (𝑑𝑛1+1/(1+Y) log 𝑛) time and space, such that given a query point q, the algorithm returns, in expected
𝑂 (𝑑𝑛1/(1+Y) log 𝑛) time, one of the following:
(A) a point p ∈ 𝑃 such that d𝐻 (q, p) ≤ (1 + Y)𝑟, or
(B) the distance of q from 𝑃 is larger than 𝑟.

The algorithm may return either result if the distance of q from 𝑃 is in the range [𝑟, (1 + Y)𝑟]. The
algorithm succeeds with high probability (per query).

3

One can also get a high-probability guarantee on the query time. For a parameter 𝛿 > 0, create
𝑂 (log 𝛿−1) LSH data-structures as above. Perform the query as above, except that when the query
time exceeds (say) twice the expected time, move on to redo the query in the next LSH data-structure.
The probability that the query had failed on one of these LSH data-structures is ≤ 1/2, by Markov’s
inequality. As such, overall, the query time becomes 𝑂 (𝑑𝑛1/(1+Y) log 𝑛 log 𝛿−1), with probability ≥ 1 − 𝛿.

27.2. Testing for good items
Imagine that we have 𝑛 items. One of the items is good the rest are bad. We have two tests to check if
an item is good – we have a cheap test, a really expensive test. We would like to use the expensive test
as few times as possible, and classify correctly all the items. Let 𝑇 (𝑥) ∈ {good, bad} denote the result
of the cheap test on item 𝑥. We have that

P[𝑇 (𝑥) = good | 𝑥 is good] ≥ 𝛼 > 𝛽 ≥ P[𝑇 (𝑥) = good | 𝑥 is bad] .

Repeating, the experiment 𝑘 times, we create a 𝑘-test where we turn an item is good if all 𝑘 tests
return “good”. We then have

P
[
𝑇 𝑘 (𝑥) = good

�� 𝑥 is good
]
≥ 𝛼𝑘 > 𝛽𝑘 ≥ P

[
𝑇 𝑘 (𝑥) = good

�� 𝑥 is bad
]
.

We need to make sure we discover the good item, so let us repeat the 𝑘-test enough times, till we discover
it with good probability. A natural value would be to repeat the 𝑘-test for each item 𝑀 = (1/𝛼𝑘) ln 𝜑−1

times, so that the probability we fail to discover the good item is

(1 − 𝛼𝑘)𝑀 ≤ exp
(
−𝛼𝑘𝑀

)
< 𝜑.

As for the bad items, how many “false positive” would we have? Every 𝑘-test is going to return in
expectation at most

(𝑛 − 1)𝛽𝑘 ≤ 𝑛𝛽𝑘

items. As such, the total number of false positives over the 𝑀 repeated 𝑘-tests is going to be

𝑛𝛽𝑘𝑀 = 𝑂 (𝑛(𝛽/𝛼)𝑘 log 𝜑−1).

If everything is for free, that we will set 𝑘 to be quite large, so that the number of false positives is
practically zero. For our purposes it would be enough if every 𝑘-test returns (in expectation) one false
positive. That is, we will require that

𝛽𝑘𝑛 ≤ 1.

This would set up the values we need for 𝑘 and 𝑀.

27.3. LSH for the hypercube: An elaborate construction
We next present a similar scheme in a more systematic fashion – this would provide some intuition how
we came up with the above construction.

4

27.3.0.1. On sense and sensitivity

Let P = {p1, . . . , p𝑛} be a subset of vertices of the hypercube in 𝑑 dimensions. In the following we
assume that 𝑑 = 𝑛𝑂 (1). Let 𝑟, Y > 0 be two prespecified parameters. We are interested in building an
approximate near neighbor data-structure (i.e., D≈Near) for balls of radius 𝑟 in the Hamming distance.
Definition 27.3.1. A family F of functions (defined over H𝑑) is

(
𝑟, 𝑅, �̂�, 𝛽

)
-sensitive if for any q, v ∈

H𝑑, we have the following
(A) If v ∈ b(q, 𝑟), then P

[
𝑓 (q) = 𝑓 (v)

]
≥ �̂�.

(B) If v ∉ b(q, 𝑅), then P
[
𝑓 (q) = 𝑓 (v)

]
≤ 𝛽.

Here, 𝑓 is a randomly picked function from F , 𝑟 < 𝑅, and �̂� > 𝛽.

Intuitively, if we can construct an (𝑟, 𝑅, 𝛼, 𝛽)-sensitive family, then we can distinguish between two
points which are close together and two points which are far away from each other. Of course, the
probabilities 𝛼 and 𝛽 might be very close to each other, and we need a way to do amplification.

27.3.1. A simple sensitive family
A priori it is not even clear such a sensitive family exists, but it turns out that the family randomly
exposing one coordinate is sensitive.
Lemma 27.3.2. Let 𝑓𝑖 (p) denote the function that returns the 𝑖th coordinate of p, for 𝑖 = 1, . . . , 𝑑.
Consider the family of functions F = { 𝑓1, . . . , 𝑓𝑑}. Then, for any 𝑟 > 0 and Y, the family F is
(𝑟, (1 + Y)𝑟, 𝛼, 𝛽)-sensitive, where 𝛼 = 1 − 𝑟/𝑑 and 𝛽 = 1 − 𝑟 (1 + Y)/𝑑.

Proof: If u, v ∈ {0, 1}𝑑 are within distance smaller than 𝑟 from each other (under the Hamming distance),
then they differ in at most 𝑟 coordinates. The probability that a random ℎ ∈ F would project into a
coordinate that u and v agree on is ≥ 1 − 𝑟/𝑑.

Similarly, if d𝐻 (u, v) ≥ (1 + Y)𝑟, then the probability that a random ℎ ∈ F would map into a
coordinate that u and v agree on is ≤ 1 − (1 + Y)𝑟/𝑑. ■

27.3.2. A family with a large sensitivity gap
Let 𝑘 be a parameter to be specified shortly, and consider the family of functions G that concatenates
𝑘 of the given functions. Formally, let

G = combine(F , 𝑘) =
{
𝑔
�� 𝑔(p) = (

𝑓 1(p), . . . , 𝑓 𝑘 (p)
)
, for 𝑓 1, . . . , 𝑓 𝑘 ∈ F

}
be the set of all such functions.
Lemma 27.3.3. For a (𝑟, 𝑅, 𝛼, 𝛽)-sensitive family F , the family G = combine(F , 𝑘) is (𝑟, 𝑅, 𝛼𝑘 , 𝛽𝑘)-
sensitive.

Proof: For two fixed points u, v ∈ H𝑑 such that d𝐻 (u, v) ≤ 𝑟, we have that for a random ℎ ∈ F , we have
P[ℎ(u) = ℎ(v)] ≥ 𝛼. As such, for a random 𝑔 ∈ G, we have that

P[𝑔(u) = 𝑔(v)] = P
[
𝑓 1(u) = 𝑓 1(v) and 𝑓 2(u) = 𝑓 2(v) and . . . and 𝑓 𝑘 (u) = 𝑓 𝑘 (v)

]
=

𝑘∏
𝑖=1
P
[
𝑓 𝑖 (u) = 𝑓 𝑖 (v)

]
≥ 𝛼𝑘 .

Similarly, if d𝐻 (u, v) > 𝑅, then P[𝑔(u) = 𝑔(v)] =
∏𝑘
𝑖=1 P

[
𝑓 𝑖 (u) = 𝑓 𝑖 (v)

]
≤ 𝛽𝑘 . ■

5

The above lemma implies that we can build a family that has a gap between the lower and upper
sensitivities; namely, 𝛼𝑘/𝛽𝑘 = (𝛼/𝛽)𝑘 is arbitrarily large. The problem is that if 𝛼𝑘 is too small, then we
will have to use too many functions to detect whether or not there is a point close to the query point.

Nevertheless, consider the task of building a data-structure that finds all the points of P = {p1, . . . , p𝑛}
that are equal, under a given function 𝑔 ∈ G = combine(F , 𝑘), to a query point. To this end, we compute
the strings 𝑔(p1), . . . , 𝑔(p𝑛) and store them (together with their associated point) in a hash table (or a
prefix tree). Now, given a query point q, we compute 𝑔(q) and fetch from this data-structure all the
strings equal to it that are stored in it. Clearly, this is a simple and efficient data-structure. All the
points colliding with q would be the natural candidates to be the nearest neighbor to q.

By not storing the points explicitly, but using a pointer to the original input set, we get the following
easy result.

Lemma 27.3.4. Given a function 𝑔 ∈ G = combine(F , 𝑘) (see Lemma 27.3.3) and a set P ⊆ H𝑑 of 𝑛
points, one can construct a data-structure, in 𝑂 (𝑛𝑘) time and using 𝑂 (𝑛𝑘) additional space, such that
given a query point q, one can report all the points in 𝑋 =

{
p ∈ P

�� 𝑔(p) = 𝑔(q)
}

in 𝑂 (𝑘 + |𝑋 |) time.

27.3.3. Amplifying sensitivity
Our task is now to amplify the sensitive family we currently have. To this end, for two 𝜏-dimensional
points 𝑥 and 𝑦, let 𝑥 ≎ 𝑦 be the Boolean function that returns true if there exists an index 𝑖 such that
𝑥𝑖 = 𝑦𝑖 and false otherwise. Now, the regular “=” operator requires vectors to be equal in all coordinates
(i.e., it is equal to ⋂

𝑖 (𝑥𝑖 = 𝑦𝑖)) while 𝑥 ≎ 𝑦 is ⋃
𝑖 (𝑥𝑖 = 𝑦𝑖). The previous construction of Lemma 27.3.3

using this alternative equal operator provides us with the required amplification.

Lemma 27.3.5. Given an
(
𝑟, 𝑅, 𝛼𝑘 , 𝛽𝑘

)
-sensitive family G, the family H≎ = combine(G, 𝜏) if one uses

the ≎ operator to check for equality is
(
𝑟, 𝑅, 1 − (1 − 𝛼𝑘)𝜏, 1 − (1 − 𝛽𝑘)𝜏

)
-sensitive.

Proof: For two fixed points u, v ∈ H𝑑 such that d𝐻 (u, v) ≤ 𝑟, we have, for a random 𝑔 ∈ G, that
P[𝑔(u) = 𝑔(v)] ≥ 𝛼𝑘 . As such, for a random ℎ ∈ H≎, we have that

P[ℎ(u) ≎ ℎ(v)] = P
[
𝑔1(u) = 𝑔1(v) or 𝑔2(u) = 𝑔2(v) or . . . or 𝑔𝜏 (u) = 𝑔𝜏 (v)

]
= 1 −

𝜏∏
𝑖=1
P
[
𝑔𝑖 (u) ≠ 𝑔𝑖 (v)

]
≥ 1 −

(
1 − 𝛼𝑘

)𝜏
.

Similarly, if d𝐻 (u, v) > 𝑅, then

P
[
ℎ(u) ≎ ℎ(v)

]
= 1 −

𝜏∏
𝑖=1
P
[
𝑔𝑖 (u) ≠ 𝑔𝑖 (v)

]
≤ 1 −

(
1 − 𝛽𝑘

)𝜏
. ■

To see the effect of Lemma 27.3.5, it is useful to play with a concrete example. Consider an
(𝑟, 𝑅, 𝛼𝑘 , 𝛽𝑘)-sensitive family where 𝛽𝑘 = 𝛼𝑘/2 and yet 𝛼𝑘 is very small. Setting 𝜏 = 1/𝛼𝑘 , the re-
sulting family is (roughly) (𝑟, 𝑅, 1 − 1/𝑒, 1 − 1/

√
𝑒)-sensitive. Namely, the gap shrank, but the threshold

sensitivity is considerably higher. In particular, it is now a constant, and the gap is also a constant.
Using Lemma 27.3.5 as a data-structure to store P is more involved than before. Indeed, for a

random function ℎ =
(
𝑔1, . . . , 𝑔𝜏

)
∈ H≎ = combine(G, 𝜏) building the associated data-structure requires

us to build 𝜏 data-structures for each one of the functions 𝑔1, . . . , 𝑔𝜏, using Lemma 27.3.4. Now, given
a query point, we retrieve all the points of P that collide with each one of these functions, by querying
each of these data-structures.

6

Lemma 27.3.6. Given a function ℎ ∈ H≎ = combine(G, 𝜏) (see Lemma 27.3.5) and a set P ⊆ H𝑑 of
𝑛 points, one can construct a data-structure, in 𝑂 (𝑛𝑘𝜏) time and using 𝑂 (𝑛𝑘𝜏) additional space, such
that given a query point q, one can report all the points in 𝑋 =

{
p ∈ P

�� ℎ(p) ≎ ℎ(q)
}

in 𝑂 (𝑘𝜏 + |𝑋 |)
time.

27.3.4. The near neighbor data-structure and handling a query
We construct the data-structure D of Lemma 27.3.6 with parameters 𝑘 and 𝜏 to be determined shortly,
for a random function ℎ ∈ H≎. Given a query point q, we retrieve all the points that collide with ℎ

and compute their distance to the query point. Next, scan these points one by one and compute their
distance to q. As soon as encountering a point v ∈ P such that d𝐻 (q, v) ≤ 𝑅, the data-structures
returns true together with v.

Let’s assume that we know that the expected number of points of P \ b(q, 𝑅) (i.e., 𝑅 = (1 + Y)𝑟)
that will collide with q in D is in expectation 𝐿 (we will figure out the value of 𝐿 below). To ensure
the worst case query time, the query would abort after checking 4𝐿 + 1 points and would return false.
Naturally, the data-structure would also return false if all points encountered have distance larger than
𝑅 from q.

Clearly, the query time of this data-structure is 𝑂 (𝑘𝜏 + 𝑑𝐿).
We are left with the task of fine-tuning the parameters 𝜏 and 𝑘 to get the fastest possible query time,

while the data-structure has reasonable probability to succeed. Figuring the right values is technically
tedious, and we do it next.

27.3.4.1. Setting the parameters

If there exists p ∈ P such that d𝐻 (q, p) ≤ 𝑟, then the probability of this point to collide with q under
the function ℎ is 𝜙 ≥ 1 −

(
1 − 𝛼𝑘

)𝜏. Let us demand that this data-structure succeeds with probability
≥ 3/4. To this end, we set

𝜏 = 4
⌈
1/𝛼𝑘

⌉
=⇒ 𝜙 ≥ 1 −

(
1 − 𝛼𝑘

)𝜏 ≥ 1 − exp
(
−𝛼𝑘𝜏

)
≥ 1 − exp(−4) ≥ 3/4, (27.1)

since 1 − 𝑥 ≤ exp(−𝑥), for 𝑥 ≥ 0.

7

Lemma 27.3.7. The expected number of points of P \ b(q, 𝑅) colliding with the query point is 𝐿 =

𝑂
(
𝑛(𝛽/𝛼)𝑘

)
, where 𝑅 = (1 + Y)𝑟.

Proof: Consider the points in P \b(q, 𝑅). We would like to bound the number of points of this set that
collide with the query point. Observe that in this case, the probability of a point p ∈ P \ b(q, 𝑅) to
collide with the query point is

≤ 𝜓 = 1 −
(
1 − 𝛽𝑘

)𝜏
= 𝛽𝑘

(
1 + (1 − 𝛽𝑘) + (1 − 𝛽𝑘)2 + . . . + (1 − 𝛽𝑘)𝜏−1

)
≤ 𝛽𝑘𝜏 ≤ 8

(𝛽
𝛼

) 𝑘
,

as 𝜏 = 4
⌈
1/𝛼𝑘

⌉
and 𝛼, 𝛽 ∈ (0, 1). Namely, the expected number of points of P \ b(q, 𝑅) colliding with

the query point is ≤ 𝜓𝑛. ■

By Lemma 27.3.6, extracting the 𝑂 (𝐿) points takes 𝑂 (𝑘𝜏 + 𝐿) time. Computing the distance of the
query time for each one of these points takes 𝑂 (𝑘𝜏 + 𝐿𝑑) time. As such, by Lemma 27.3.7, the query
time is

𝑂 (𝑘𝜏 + 𝐿𝑑) = 𝑂
(
𝑘𝜏 + 𝑛𝑑 (𝛽/𝛼)𝑘

)
.

To minimize this query time, we “approximately” solve the equation requiring the two terms, in the
above bound, to be equal (we ignore 𝑑 since, intuitively, it should be small compared to 𝑛). We get that

𝑘𝜏 = 𝑛(𝛽/𝛼)𝑘 ;
𝑘

𝛼𝑘
≈ 𝑛 𝛽

𝑘

𝛼𝑘
=⇒ 𝑘 ≈ 𝑛𝛽𝑘 ; 1/𝛽𝑘 ≈ 𝑛 =⇒ 𝑘 ≈ ln1/𝛽 𝑛.

Thus, setting 𝑘 = ln1/𝛽 𝑛, we have that 𝛽𝑘 = 1/𝑛 and, by Eq. (27.1), that

𝜏 = 4
⌈
1/𝛼𝑘

⌉
= exp

(
ln 𝑛

ln 1/𝛽 ln 1/𝛼
)
= 𝑂 (𝑛𝜌), for 𝜌 =

ln 1/𝛼
ln 1/𝛽 . (27.2)

As such, to minimize the query time, we need to minimize 𝜌.

Lemma 27.3.8. (A) For 𝑥 ∈ [0, 1) and 𝑡 ≥ 1 such that 1 − 𝑡𝑥 > 0 we have ln(1 − 𝑥)
ln(1 − 𝑡𝑥) ≤ 1

𝑡
.

(B) For 𝛼 = 1 − 𝑟/𝑑 and 𝛽 = 1 − 𝑟 (1 + Y)/𝑑, we have that 𝜌 =
ln 1/𝛼
ln 1/𝛽 ≤ 1

1 + Y .

Proof: (A) Since ln(1− 𝑡𝑥) < 0, it follows that the claim is equivalent to 𝑡 ln(1− 𝑥) ≥ ln(1− 𝑡𝑥). This in
turn is equivalent to

𝑔(𝑥) ≡ (1 − 𝑡𝑥) − (1 − 𝑥)𝑡 ≤ 0.

This is trivially true for 𝑥 = 0. Furthermore, taking the derivative, we see 𝑔′(𝑥) = −𝑡 + 𝑡 (1− 𝑥)𝑡−1, which
is non-positive for 𝑥 ∈ [0, 1) and 𝑡 > 0. Therefore, 𝑔 is non-increasing in the interval of interest, and so
𝑔(𝑥) ≤ 0 for all values in this interval.

(B) Indeed 𝜌 =
ln 1/𝛼
ln 1/𝛽 =

ln 𝛼
ln 𝛽 =

ln 𝑑−𝑟
𝑑

ln 𝑑−(1+Y)𝑟
𝑑

=
ln
(
1 − 𝑟

𝑑

)
ln
(
1 − (1 + Y) 𝑟

𝑑

) ≤ 1
1 + Y , by part (A). ■

In the following, it would be convenient to consider 𝑑 to be considerably larger than 𝑟. This can be
ensured by (conceptually) padding the points with fake coordinates that are all zero. It is easy to verify
that this “hack” would not affect the algorithm’s performance in any way and it is just a trick to make
our analysis simpler. In particular, we assume that 𝑑 > 2(1 + Y)𝑟.

8

Lemma 27.3.9. For 𝛼 = 1− 𝑟/𝑑, 𝛽 = 1− 𝑟 (1 + Y)/𝑑, 𝑛 and 𝑑 as above, we have that I. 𝜏 = 𝑂
(
𝑛1/(1+Y)

)
,

II. 𝑘 = 𝑂 (ln 𝑛), and III. 𝐿 = 𝑂 (𝑛1/(1+Y)).

Proof: By Eq. (27.1), 𝜏 = 4
⌈
1/𝛼𝑘

⌉
= 𝑂 (𝑛𝜌) = 𝑂 (𝑛1/(1+Y)), by Lemma 27.3.8(B).

Now, 𝛽 = 1 − 𝑟 (1 + Y)/𝑑 ≤ 1/2, since we assumed that 𝑑 > 2(1 + Y)𝑟. As such, we have 𝑘 = ln1/𝛽 𝑛 =

ln 𝑛
ln 1/𝛽 = 𝑂 (ln 𝑛).

By Lemma 27.3.7, 𝐿 = 𝑂
(
𝑛(𝛽/𝛼)𝑘

)
. Now 𝛽𝑘 = 1/𝑛 and as such 𝐿 = 𝑂 (1/𝛼𝑘) = 𝑂 (𝜏) = 𝑂

(
𝑛1/(1+Y)) . ■

27.3.5. The result
Theorem 27.3.10. Given a set P of 𝑛 points on the hypercube H𝑑 and parameters Y > 0 and 𝑟 > 0,
one can build a data-structure D = D≈Near(P, 𝑟, (1 + Y)𝑟) that solves the approximate near neighbor
problem (see Definition 27.1.2). The data-structure answers a query successfully with high probability.
In addition we have the following:
(A) The query time is 𝑂

(
𝑑𝑛1/(1+Y) log 𝑛

)
.

(B) The preprocessing time to build this data-structure is 𝑂
(
𝑛1+1/(1+Y) log2 𝑛

)
.

(C) The space required to store this data-structure is 𝑂
(
𝑛𝑑 + 𝑛1+1/(1+Y) log2 𝑛

)
.

Proof: Our building block is the data-structure described above. By Markov’s inequality, the probability
that the algorithm has to abort because of too many collisions with points of P\b(q, (1+Y)𝑟) is bounded
by 1/4 (since the algorithm tries 4𝐿 + 1 points). Also, if there is a point inside b(q, 𝑟), the algorithm
would find it with probability ≥ 3/4, by Eq. (27.1). As such, with probability at least 1/2 this data-
structure returns the correct answer in this case. By Lemma 27.3.6, the query time is 𝑂 (𝑘𝜏 + 𝐿𝑑).

This data-structure succeeds only with constant probability. To achieve high probability, we con-
struct 𝑂 (log 𝑛) such data-structures and perform the near neighbor query in each one of them. As such,
the query time is

𝑂 ((𝑘𝜏 + 𝐿𝑑) log 𝑛) = 𝑂
(
𝑛1/(1+Y) log2 𝑛 + 𝑑𝑛1/(1+Y) log 𝑛

)
= 𝑂

(
𝑑𝑛1/(1+Y) log 𝑛

)
,

by Lemma 27.3.9 and since 𝑑 = Ω(lg 𝑛) if P contains 𝑛 distinct points of H𝑑.
As for the preprocessing time, by Lemma 27.3.6 and Lemma 27.3.9, we have

𝑂 (𝑛𝑘𝜏 log 𝑛) = 𝑂
(
𝑛1+1/(1+Y) log2 𝑛

)
.

Finally, this data-structure requires𝑂 (𝑑𝑛) space to store the input points. Specifically, by Lemma 27.3.6,
we need an additional 𝑂

(
𝑛𝑘𝜏 log 𝑛

)
= 𝑂

(
𝑛1+1/(1+Y) log2 𝑛

)
space. ■

In the hypercube case, when 𝑑 = 𝑛𝑂 (1), we can build 𝑀 = 𝑂 (log1+Y 𝑑) = 𝑂 (Y−1 log 𝑑) such data-
structures such that (1 + Y)-ANN can be answered using binary search on those data-structures which
correspond to radii 𝑟1, . . . , 𝑟𝑀 , where 𝑟𝑖 = (1 + Y)𝑖, for 𝑖 = 1, . . . , 𝑀.

Theorem 27.3.11. Given a set P of 𝑛 points on the hypercube H𝑑 (where 𝑑 = 𝑛𝑂 (1)) and a param-
eter Y > 0, one can build a data-structure to answer approximate nearest neighbor queries (under the
Hamming distance) using 𝑂

(
𝑑𝑛+𝑛1/(1+Y)Y−1 log2 𝑛 log 𝑑

)
space, such that given a query point q, one can

return a (1 + Y)-ANN in P (under the Hamming distance) in 𝑂 (𝑑𝑛1/(1+Y) log 𝑛 log(Y−1 log 𝑑)) time. The
result returned is correct with high probability.

9

Remark 27.3.12. The result of Theorem 27.3.11 needs to be oblivious to the queries used. Indeed, for
any instantiation of the data-structure of Theorem 27.3.11 there exist query points for which it would
fail.

In particular, formally, if we perform a sequence of ANN queries using such a data-structure, where
the queries depend on earlier returned answers, then the guarantee of a high probability of success is no
longer implied by the above analysis (it might hold because of some other reasons, naturally).

27.4. LSH and ANN in Euclidean space

27.4.1. Preliminaries
Lemma 27.4.1. Let 𝑋 = (𝑋1, . . . , 𝑋𝑑) be a vector of 𝑑 independent variables which have normal distri-
bution N, and let 𝑣 = (𝑣1, . . . , 𝑣𝑑) ∈ R𝑑. We have that ⟨𝑣, 𝑋⟩ =

∑
𝑖 𝑣𝑖𝑋𝑖 is distributed as ∥𝑣∥ 𝑍, where

𝑍 ∼ N.

Proof: By Lemma 27.6.1p13 the point 𝑋 has multi-dimensional normal distribution N𝑑. As such, if
∥𝑣∥ = 1, then this holds by the symmetry of the normal distribution. Indeed, let 𝑒1 = (1, 0, . . . , 0). By
the symmetry of the 𝑑-dimensional normal distribution, we have that ⟨𝑣, 𝑋⟩ ∼ ⟨𝑒1, 𝑋⟩ = 𝑋1 ∼ N.

Otherwise, ⟨𝑣, 𝑋⟩ /∥𝑣∥ ∼ N, and as such ⟨𝑣, 𝑋⟩ ∼ 𝑁
(
0, ∥𝑣∥2), which is indeed the distribution of

∥𝑣∥ 𝑍 . ■

Definition 27.4.2. A distribution D over R is called 𝑝-stable if there exists 𝑝 ≥ 0 such that for any
𝑛 real numbers 𝑣1, . . . , 𝑣𝑛 and 𝑛 independent variables 𝑋1, . . . , 𝑋𝑛 with distribution D, the random
variable ∑

𝑖 𝑣𝑖𝑋𝑖 has the same distribution as the variable (∑𝑖 |𝑣𝑖 |𝑝)1/𝑝𝑋, where 𝑋 is a random variable
with distribution D.

By Lemma 27.4.1, the normal distribution is a 2-stable distribution.

27.4.2. Locality sensitive hashing (LSH)
Let p and u be two points in R𝑑. We want to perform an experiment to decide if ∥p − u∥ ≤ 1 or
∥p − u∥ ≥ [, where [= 1 + Y. We will randomly choose a vector v from the 𝑑-dimensional normal
distribution N𝑑 (which is 2-stable). Next, let 𝑟 be a parameter, and let 𝑡 be a random number chosen
uniformly from the interval [0, 𝑟]. For p ∈ R𝑑, consider the random hash function

ℎ(p) =
⌊
⟨p, v⟩ + 𝑡

𝑟

⌋
. (27.3)

Assume that the distance between p and u is [and the distance between the projection of the
two points to the direction v is 𝛽. Then, the probability that p and u get the same hash value is
max(1 − 𝛽/𝑟, 0), since this is the probability that the random sliding will not separate them. Indeed,
consider the line through v to be the 𝑥-axis, and assume u is projected to 𝑟 and v is projected to 𝑟 − 𝛽
(assuming 𝑟 ≥ 𝛽). Clearly, u and v get mapped to the same value by ℎ(·) if and only if 𝑡 ∈ [0, 𝑟 − 𝛽], as
claimed.

As such, we have that the probability of collusion is

𝛼([, 𝑟) = P
[
ℎ(p) = ℎ(q)

]
=

∫ 𝑟

𝛽=0
P
[
|⟨p, v⟩ − ⟨u, v⟩| = 𝛽

] (
1 − 𝛽

𝑟

)
𝑑𝛽.

10

However, since v is chosen from a 2-stable distribution, we have that

𝑍 = ⟨p, v⟩ − ⟨u, v⟩ = ⟨p − u, v⟩ ∼ N
(
0, ∥p − u∥2) .

Since we are considering the absolute value of the variable, we need to multiply this by two. Thus, we
have

𝛼([, 𝑟) =
∫ 𝑟

𝛽=0

2
√

2𝜋[
exp

(
− 𝛽2

2[2

) (
1 − 𝛽

𝑟

)
𝑑𝛽,

by plugging in the density of the normal distribution for 𝑍 . Intuitively, we care about the difference
𝛼(1 + Y, 𝑟) − 𝛼(1, 𝑟), and we would like to maximize it as much as possible (by choosing the right value
of 𝑟). Unfortunately, this integral is unfriendly, and we have to resort to numerical computation.

Now, we are going to use this hashing scheme for constructing locality sensitive hashing, as in the
hypercube case, and as such we care about the ratio

𝜌(1 + Y) = min
𝑟

log(1/𝛼(1, 𝑟))
log(1/𝛼(1 + Y, 𝑟)) ;

see Eq. (27.2). The following is verified using numerical calculations.

Lemma 27.4.3 ([DIIM04]). One can choose 𝑟, such that 𝜌(1 + Y) ≤ 1
1+Y .

Lemma 27.4.3 implies that the hash functions defined by Eq. (27.3) are (1, 1+Y, 𝛼′, 𝛽′)-sensitive and,
furthermore, 𝜌 =

log(1/𝛼′)
log(1/𝛽′) ≤ 1

1+Y , for some values of 𝛼′ and 𝛽′. As such, we can use this hashing family
to construct an approximate near neighbor data-structure D≈Near(P, 𝑟, (1 + Y)𝑟) for the set P of points
in R𝑑. Following the same argumentation of Theorem 27.3.10, we have the following.

Theorem 27.4.4. Given a set P of 𝑛 points in R𝑑 and parameters Y > 0 and 𝑟 > 0, one can build a
D≈Near = D≈Near(P, 𝑟, (1 + Y)𝑟), such that given a query point q, one can decide:
(A) If b(𝑞, 𝑟) ∩ P ≠ ∅, then D≈Near returns a point 𝑢 ∈ P, such that d𝐻 (𝑢, 𝑞) ≤ (1 + Y)𝑟.
(B) If b(𝑞, (1 + Y)𝑟) ∩ P = ∅, then D≈Near returns the result that no point is within distance ≤ 𝑟 from

q.
In any other case, any of the answers is correct. The query time is 𝑂 (𝑑𝑛1/(1+Y) log 𝑛) and the space used
is 𝑂

(
𝑑𝑛 + 𝑛1+1/(1+Y) log 𝑛

)
. The result returned is correct with high probability.

27.4.3. ANN in high-dimensional euclidean space
Unlike the binary hypercube case, where we could just do direct binary search on the distances, here we
need to use the reduction from ANN to near neighbor queries.

27.4.3.1. The result

Plugging the above into known reduction from approximate nearest-neighbor to near-neighbor queries,
yields the following:

Corollary 27.4.5. Given a set P of 𝑛 points in R𝑑, one can construct a data-structure D that answers
(1 + Y)-ANN queries, by performing 𝑂 (log(𝑛/Y)) (1 + Y)-approximate near neighbor queries. The total
number of points stored at these approximate near neighbor data-structure of D is 𝑂 (𝑛Y−1 log(𝑛/Y)).

11

This in turn leads to the following:

Theorem 27.4.6. Given a set P of 𝑛 points in R𝑑 and parameters Y > 0 and 𝑟 > 0, one can build an
ANN data-structure using

𝑂

(
𝑑𝑛 + 𝑛1+1/(1+Y)Y−2 log3(𝑛/Y)

)
space, such that given a query point q, one can returns a (1 + Y)-ANN in P in

𝑂

(
𝑑𝑛1/(1+Y) (log 𝑛) log 𝑛

Y

)
time. The result returned is correct with high probability.

The construction time is 𝑂
(
𝑑𝑛1+1/(1+Y)Y−2 log3(𝑛/Y)

)
.

27.5. Bibliographical notes
Section 27.1 follows the exposition of Indyk and Motwani [IM98]. Kushilevitz et al. [KOR00] offered
an alternative data-structure with somewhat inferior performance. It is quite surprising that one can
perform approximate nearest neighbor queries in high dimensions in time and space polynomial in the
dimension (which is sublinear in the number of points). One can reduce the approximate near neighbor
in Euclidean space to the same question on the hypercube “directly” (we show the details below).
However, doing the LSH directly on the Euclidean space is more efficient.

The value of the results shown in this chapter depends to a large extent on the reader’s perspective.
Indeed, for a small value of Y > 0, the query time 𝑂 (𝑑𝑛1/(1+Y)) is very close to linear dependency on 𝑛
and is almost equivalent to just scanning the points. Thus, from the low-dimensional perspective, where
Y is assumed to be small, this result is slightly sublinear. On the other hand, if one is willing to pick Y
to be large (say 10), then the result is clearly better than the naive algorithm, suggesting running time
for an ANN query which takes (roughly) 𝑂

(
𝑛1/11

)
time.

The idea of doing locality sensitive hashing directly on the Euclidean space, as done in Section 27.4,
is not shocking after seeing the Johnson-Lindenstrauss lemma. Our description follows the paper of
Datar et al. [DIIM04]. In particular, the current analysis which relies on computerized estimates is far
from being satisfactory. It would be nice to have a simpler and more elegant scheme for this case. This
is an open problem for further research.

Currently, the best LSH construction in R𝑑 is due to Andoni and Indyk [AI06]. Its space usage is
bounded by 𝑂

(
𝑑𝑛 + 𝑛1+1/(1+Y)2+𝑜(1)

)
and its query time is bounded by 𝑂

(
𝑑𝑛1/(1+Y)2+𝑜(1)

)
. This (almost)

matches the lower bound of Motwani et al. [MNP06]. For a nice survey on LSH see [AI08].
From approximate near neighbor in R𝑑 to approximate near neighbor on the hypercube.

The reduction is quite involved, and we only sketch the details. Let P be a set of 𝑛 points in R𝑑.
We first reduce the dimension to 𝑘 = 𝑂 (Y−2 log 𝑛) using the Johnson-Lindenstrauss lemma. Next, we
embed this space into ℓ𝑘 ′1 (this is the space R𝑘 , where distances are the 𝐿1 metric instead of the regular
𝐿2 metric), where 𝑘′ = 𝑂 (𝑘/Y2). This can be done with distortion (1 + Y).

Let 𝑄′ be the resulting set of points in R𝑘 ′ . We want to solve approximate near neighbor queries
on this set of points, for radius 𝑟. As a first step, we partition the space into cells by taking a grid
with sidelength (say) 𝑘′𝑟 and randomly translating it, clipping the points inside each grid cell. It is
now sufficient to solve the approximate near neighbor problem inside this grid cell (which has bounded

12

diameter as a function of 𝑟), since with small probability the result would be correct. We amplify the
probability by repeating this a polylogarithmic number of times.

Thus, we can assume that P is contained inside a cube of sidelength ≤ 𝑘′𝑛𝑟, it is in R𝑘 ′ , and the
distance metric is the 𝐿1 metric. We next snap the points of P to a grid of sidelength (say) Y𝑟/𝑘′. Thus,
every point of P now has an integer coordinate, which is bounded by a polynomial in log 𝑛 and 1/Y.
Next, we write the coordinates of the points of P using unary notation. (Thus, a point (2, 5) would be
written as (00011, 11111) assuming the number of bits for each coordinates is 5.) It is now easy to verify
that the Hamming distance on the resulting strings is equivalent to the 𝐿1 distance between the points.

Thus, we can solve the near neighbor problem for points in R𝑑 by solving it on the hypercube under
the Hamming distance.

See Indyk and Motwani [IM98] for more details.

We have only scratched the surface of proximity problems in high dimensions. The interested reader
is referred to the survey by Indyk [Aga04] for more information.

27.6. From previous lectures
Lemma 27.6.1. We have the following properties:
(A) Consider 𝑑 independent variables 𝑋1, . . . , 𝑋𝑑 ∼ N(0, 1), the point u = (𝑋1, . . . , 𝑋𝑑) has the multi-

dimensional normal distribution N𝑑.
(B) The multi-dimensional normal distribution is symmetric. For any two points p, u ∈ R𝑑 such that

∥p∥ = ∥u∥, we have that 𝑔(p) = 𝑔(u), where 𝑔(·) is the density function of the multi-dimensional
normal distribution N𝑑.

(C) The projection of the normal distribution on any direction (i.e., any vector of length 1) is a one-
dimensional normal distribution.

References
[Aga04] P. K. Agarwal. Range searching. Handbook of Discrete and Computational Geometry. Ed.

by J. E. Goodman and J. O’Rourke. 2nd. Boca Raton, FL, USA: CRC Press LLC, 2004.
Chap. 36, pp. 809–838.

[AI06] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Proc. 47th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), 459–468,
2006.

[AI08] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Commun. ACM, 51(1): 117–122, 2008.

[DIIM04] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme
based on 𝑝-stable distributions. Proc. 20th Annu. Sympos. Comput. Geom. (SoCG), 253–
262, 2004.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. Proc. 30th Annu. ACM Sympos. Theory Comput. (STOC), 604–613, 1998.

[KOR00] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neigh-
bor in high dimensional spaces. SIAM J. Comput., 2(30): 457–474, 2000.

13

http://www.cs.duke.edu/~pankaj/papers/revised-rs.ps.gz
http://dx.doi.org/10.1109/FOCS.2006.49
http://dx.doi.org/10.1109/FOCS.2006.49
http://dx.doi.org/10.1145/1327452.1327494
http://dx.doi.org/10.1145/1327452.1327494
http://dx.doi.org/10.1145/997817.997857
http://dx.doi.org/10.1145/997817.997857
http://dx.doi.org/10.1145/276698.276876
http://dx.doi.org/10.1145/276698.276876
http://dx.doi.org/10.1137/S0097539798347177
http://dx.doi.org/10.1137/S0097539798347177

[MNP06] R. Motwani, A. Naor, and R. Panigrahi. Lower bounds on locality sensitive hashing. Proc.
22nd Annu. Sympos. Comput. Geom. (SoCG), 154–157, 2006.

14

	Approximate Nearest Neighbor (ANN) Search in High Dimensions
	ANN on the hypercube
	ANN for the hypercube and the Hamming distance
	Preliminaries

	Testing for good items
	LSH for the hypercube: An elaborate construction
	A simple sensitive family
	A family with a large sensitivity gap
	Amplifying sensitivity
	The near neighbor data-structure and handling a query
	The result

	LSH and ANN in Euclidean space
	Preliminaries
	Locality sensitive hashing (LSH)
	ANN in high-dimensional euclidean space

	Bibliographical notes
	From previous lectures

