Chapter 26

Approximating the Number of Distinct El-
ements in a Stream

“See? Genuine-sounding indignation. I programmed that myself. It’s the first thing you need in a university
environment: the ability to take offense at any slight, real or imagined.”

Robert Sawyer, Factoring Humanity

By Sariel Har-Peled, April 26, 2022%

26.1. Counting number of distinct elements

26.1.1. First order statistic

Let X1,...,X, be u random variables uniformly distributed in [0,1]. Let ¥ = min(Xy,...,X,). The
value Y is the first order statistic of X1,...,X,.

For a continuous variable X, the probability density function (i.e., pdf) is the “probability” of X
having this value. Since this is not well defined, one looks on the cumulative distribution function
F(x) =P[X <]. The pdf is then the derivative of the cdf. Somewhat abusing notations, the pdf of the
X;sisP[X; =x] =1.

The following proof is somewhat dense, check any standard text on probability for more details.

Lemma 26.1.1. The probability density function of ¥ is f(x) = ({)1(1 —x)*"*.
Proof: Considering the pdf of X; being x, and all other X;s being bigger. We have that this pdf is
2(x) = P[(X1 —x)n ﬁ(xi > Xl)] - P[ﬁ(x,- > X)) ) X, = x] PIX, = x] = (1-x)"".
i=2 i=2
Since every one of the X; has equal probability to realize Y, we have f(x) = ug(x). [

Lemma 26.1.2. We have E[Y] = - E[Y?] = m; and V[Y] = Mﬁw

u+l’

Proof: Using integration by guessing, we have
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Using integration by guessing again, we have

1 1 1
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We conclude that
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26.1.2. The algorithm

A single estimator. Assume that we have a perfectly random hash function A& that randomly
maps N = {1,...,n} to [0,1]. Assume that the stream has u unique numbers in N. Then the set
{h(s1),...,h(s;)} contains u random numbers uniformly distributed in [0.1]. The algorithm as such,
would compute X = min; A(s;).

Explanation. Note, that X is not an estimator for u — instead, as E[X] = 1/(u+1), we are estimating
1/(u+1). The key observation is that an 1 + & estimator for 1/(u + 1), is 1 = O(&) estimator for u + 1,
which is in turn an 1 + O(¢g) estimator for u.

Lemma 26.1.3. Let &,¢ € (0,1) be parameters. Given a stream S of items from {1,...,n} one can
return an estimate X, such that P[(l - 3/4)14% <X<(1 +8/4)ﬁ] > 1 — ¢, where u is the number of

unique elements in S. This requires O(SL2 log é) space.

Proof: The basic estimator Y has u = E[Y] = u}r—l and v = V[Y] = M;w
estimator into the mean/median framework. By Lemma 26.1.2, for ¢ some absolute constant, this
requires maintaining M estimators, where M is larger than

We now plug this

4-16v, - 1 u21 D) 2oL joe L .
C—5 5 log—=0|—F7zlog—)=0|—5log—].
2uz 8, 2u? By 2 8y
Observe that if (1 — 8/4)% <X<(1 +s/4)ﬁ then
u+1 1 u+1
—1x=-12 -1,
1—¢g/4 X 1+eg/4

which implies
(1+8)u2(1+8/4)u2u+8/421_ 5 u+1
1-¢g/4 l—-g/4 X 1+&/4

Namely, 1/X — 1 is a good estimator for the number of distinct elements.

-1=(1-¢)u.

The algorithm revisited. Compute X as above, and output the quantity 1/X — 1.

This immediately implies the following.

Lemma 26.1.4. Under the unreasonable assumption that we can sample perfectly random functions
from {1,...,n} to [0,1], and storing such a function requires O(1) words, then one can estimate the
number of unique elements in a stream, using O(72log ¢~ 1) words.
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26.2. Sampling from a stream with “low quality” randomness

Assume that we have a stream of elements S = s1,...,s,, all taken from the set {1,...,n}. In the
following, let set(S) denote the set of values that appear in S. That is

Fo = Fo(S) = [set(S)|

is the number of distinct values in the stream S.
Assume that we have a random sequence of bits 8 = By, ..., By, such that P[B; = 1] = p, for some
p. Furthermore, we can compute B; efficiently. Assume that the bits of 8 are pairwise independent.

The sampling algorithm. When the ith arrives s;, we compute By,. If this bit is 1, then we insert
s; into the random sample R (if it is already in R, there is no need to store a second copy, naturally).
This defines a natural random sample

R={i|B;=1andieS}CS.

Lemma 26.2.1. For the above random sample R, let X = |R|. We have that E[X] = pv and V[X] =
pv — p2v, where v = Fy(8S) is the number of district elements in S.

Proof: Let X = |R|, and we have

E[X] = E[ZBL-] = ZE[BJ =pv.

€S ieS

As for the ]E[Xz], we have

5[x7] =5[] = LBl +2 3 mlms]=prer Y mimlE(E] - pvet())

i€S ieS i,jE€S,i<j i,j€S,i<j
As such, we have

V[X] =VI[IR|] = E[XQ] —(B[X])?=pv+ 2p2(;) - p*? = pv+2p2$ - p*?

=pv+piv(v-1)-p>? = pv - p*y. [

Lemma 26.2.2. Let ¢ € (0,1/4). Given O(1/€?) space, and a parameter N. Consider the task of
estimating the size of Fy = |set(S)|, where Fy > N /4. Then, the algorithm described below outputs one
of the following:

(A) Fy > 2N.

(B) Output a number p such that (1 —¢&)Fy < p < (1+¢)Fp.

(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability
> 7/8.

Proof: We set p = 5=, where ¢ is a constant to be determined shortly. Let T = pN = 0(1/£?). We
sample a random sample R from S, by scanning the elements of S, and adding i € S to R if B; =1, If
the random sample is larger than 8T, at any point, then the algorithm outputs that |S| > 2N.

In all other cases, the algorithm outputs |R| /p as the estimate for the size of §, together with R.
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To bound the failure probability, consider first the case that N/4 < |set(S)|. In this case, we have
by the above, that

_ ~ E[X] o VIX] 1
P[|IX - E[X]| > ¢ E[X]] < P|IX —E[X]| > & T VVIX]| <e EIX)E S

if % < 4, For v = Fy > N/4, this happens if 82§;V2 < 4. This in turn is equivalent to 8/&% < pv.

This is in turn happens if
c N,E
NeZz 4 — g%’
which implies that this holds for ¢ = 32. Namely, the algorithm in this case would output a (1 + &)-
estimate for |S|.
If the sample get bigger than 87T, then the above readily implies that with probability at least 7/8,

the size of S is at least (1 —&)8T/p > 2N, Namely, the output of the algorithm is correct in this case. m

Lemma 26.2.3. Let € € (0,1/4) and ¢ € (0,1). Given O(¢2log¢™!) space, and a parameter N, and
the task is to estimate Fy of S, given that Fy > N /4. Then, there is an algorithm that would output one
of the following:

(A) Fy > 2N.

(B) Output a number p such that (1 -¢&)Fy < p < (1+¢)Fy.
(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability
>1-¢.

Proof: We run O (log ¢ !) copies of the of Lemma 26.2.2. If half of them returns that Fy > 2N, then the
algorithm returns that Fy > 2N. Otherwise, the algorithm returns the median of the estimates returned,
and return it as the desired estimated. The correctness readily follows by a repeated application of
Chernoft’s inequality. ]

Lemma 26.2.4. Let € € (0,1/4). Given O(g~2log?n) space, one can read the stream S once, and
output a number p, such that (1 —¢e)Fy < p < (1+&)Fy. The estimate is correct with high probability
(i.e., > 1-1/n°W),

Proof: Let N; =2 fori=1,...,M = [lgn]. Run M copies of Lemma 26.2.3, for each value of N;, with
¢ =1/n%V_ Let Yy,..., Yy be the outputs of these algorithms for the stream. A prefix of these outputs,
are going to be “Fy > 2N;”, Let j be the first ¥; that is a number. Return this number as the desired
estimate. The correctness is easy — the first estimate that is a number, is a correct estimate with high
probability. Since Ny, > n, it also follows that Y3; must be a number. As such, there is a first number
in the sequence, and the algorithm would output an estimate.

More precisely, there is an index i, such that N;/4 < Fy < 2Fp, and Y; is a good estimate, with high
probability. If any of the Y;, for j < i, is an estimate, then it is correct (again) with high probability. m

26.3. Bibliographical notes

26.4. From previous lectures

Theorem 26.4.1. Let D be a non-negative distribution with u = E[D] and v = V[D], and let g, ¢ €
4y

(0,1) be parameters. For some absolute constant ¢ > 0, let M > 24[ . ;‘lné, and consider sampling

&2p
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variables X1,..., Xy ~D. One can compute, in, O(M) time, a quantity Z from the sampled variables,
such that
P[(l—s)y <Z< (1+8),Ll] >1-¢.

Theorem 26.4.2 (Chebyshev’s inequality). Let X be a real random variable, with ux = E[X], and
ox =+\V[X]. Then, for any t >0, we have P[lX — ux| > ta'X] <1/¢.

Lemma 26.4.3. Let X1,..., X, be n independent Bernoulli trials, where P[X; = 1] = p;, and P[X; = 0] =
1—pi, fori=1,...,n. Let X = Z?:l X;, and u = E[X] =, pi- Ford € (0,4), we have

P[X > (1 +6),u] < exp(—,u52/4),

Theorem 26.4.4. let p be a prime number, and pick independently and uniformly k values bo.b1,...,bx-1 €
Zp, and let g(x) = Z,I'(:_()l bix' mod p. Then the random variables

Yo=g(0),....Y,1 =g(p - 1).

are uniformly distributed in Z, and are k-wise independent.
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