Chapter 26

Approximating the Number of Distinct Elements in a Stream

"See? Genuine-sounding indignation. I programmed that myself. It's the first thing you need in a university environment: the ability to take offense at any slight, real or imagined."

By Sariel Har-Peled, April 26, 2022⁽¹⁾

Robert Sawyer, Factoring Humanity

26.1. Counting number of distinct elements

26.1.1. First order statistic

Let X_1, \ldots, X_u be *u* random variables uniformly distributed in [0, 1]. Let $Y = \min(X_1, \ldots, X_u)$. The value *Y* is the *first order statistic* of X_1, \ldots, X_u .

For a continuous variable X, the **probability density function** (i.e., **pdf**) is the "probability" of X having this value. Since this is not well defined, one looks on the **cumulative distribution function** $F(x) = \mathbb{P}[X \leq]$. The **pdf** is then the derivative of the **cdf**. Somewhat abusing notations, the **pdf** of the X_i s is $\mathbb{P}[X_i = x] = 1$.

The following proof is somewhat dense, check any standard text on probability for more details.

Lemma 26.1.1. The probability density function of Y is $f(x) = {\binom{u}{1}}1(1-x)^{u-1}$.

Proof: Considering the pdf of X_1 being x, and all other X_i s being bigger. We have that this pdf is

$$g(x) = \mathbb{P}\Big[(X_1 = x) \cap \bigcap_{i=2}^{u} (X_i > X_1)\Big] = \mathbb{P}\Big[\bigcap_{i=2}^{u} (X_i > X_1) \mid X_1 = x\Big] \mathbb{P}[X_1 = x] = (1 - x)^{u - 1}.$$

Since every one of the X_i has equal probability to realize Y, we have f(x) = ug(x).

Lemma 26.1.2. We have $\mathbb{E}[Y] = \frac{1}{u+1}$, $\mathbb{E}[Y^2] = \frac{2}{(u+1)(u+2)}$, and $\mathbb{V}[Y] = \frac{u}{(u+1)^2(u+2)}$.

Proof: Using integration by guessing, we have

$$\mathbb{E}[Y] = \int_{y=0}^{1} y \mathbb{P}[Y=y] \, \mathrm{d}y = \int_{y=0}^{1} y \cdot \binom{u}{1} 1(1-y)^{u-1} \, \mathrm{d}y = \int_{y=0}^{1} uy(1-y)^{u-1} \, \mathrm{d}y$$
$$= \left[-y(1-y)^{u} - \frac{(1-y)^{u+1}}{u+1}\right]_{y=0}^{1} = \frac{1}{u+1}.$$

[®]This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Using integration by guessing again, we have

$$\mathbb{E}[Y^2] = \int_{y=0}^1 y^2 \mathbb{P}[Y=y] \, \mathrm{d}y = \int_{y=0}^1 y^2 \cdot \binom{u}{1} 1(1-y)^{u-1} \, \mathrm{d}y = \int_{y=0}^1 uy^2 (1-y)^{u-1} \, \mathrm{d}y$$
$$= \left[-y^2 (1-y)^u - \frac{2y(1-y)^{u+1}}{u+1} - \frac{2(1-y)^{u+2}}{(u+1)(u+2)}\right]_{y=0}^1 = \frac{2}{(u+1)(u+2)}.$$

We conclude that

$$\mathbb{V}[Y] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \frac{2}{(u+1)(u+2)} - \frac{1}{(u+1)^2} = \frac{1}{u+1} \left(\frac{2}{u+2} - \frac{1}{u+1}\right) = \frac{u}{(u+1)^2(u+2)}.$$

26.1.2. The algorithm

A single estimator. Assume that we have a perfectly random hash function h that randomly maps $N = \{1, ..., n\}$ to [0, 1]. Assume that the stream has u unique numbers in N. Then the set $\{h(s_1), ..., h(s_m)\}$ contains u random numbers uniformly distributed in [0.1]. The algorithm as such, would compute $X = \min_i h(s_i)$.

Explanation. Note, that X is *not* an estimator for u – instead, as $\mathbb{E}[X] = 1/(u+1)$, we are estimating 1/(u+1). The key observation is that an $1 \pm \varepsilon$ estimator for 1/(u+1), is $1 \pm O(\varepsilon)$ estimator for u+1, which is in turn an $1 \pm O(\varepsilon)$ estimator for u.

Lemma 26.1.3. Let $\varepsilon, \varphi \in (0, 1)$ be parameters. Given a stream S of items from $\{1, \ldots, n\}$ one can return an estimate X, such that $\mathbb{P}\left[(1 - \varepsilon/4)\frac{1}{u+1} \le X \le (1 + \varepsilon/4)\frac{1}{u+1}\right] \ge 1 - \varphi$, where u is the number of unique elements in S. This requires $O\left(\frac{1}{\varepsilon^2}\log\frac{1}{\varphi}\right)$ space.

Proof: The basic estimator Y has $\mu = \mathbb{E}[Y] = \frac{1}{u+1}$ and $\nu = \mathbb{V}[Y] = \frac{u}{(u+1)^2(u+2)}$. We now plug this estimator into the mean/median framework. By Lemma 26.1.2, for c some absolute constant, this requires maintaining M estimators, where M is larger than

$$c\frac{4\cdot 16\nu}{\varepsilon^2\mu^2}\log\frac{1}{\varphi} = O\left(\frac{u^2}{\varepsilon^2u^2}\log\frac{1}{\varphi}\right) = O\left(\frac{1}{\varepsilon^2}\log\frac{1}{\varphi}\right).$$

Observe that if $(1 - \varepsilon/4)\frac{1}{u+1} \le X \le (1 + \varepsilon/4)\frac{1}{u+1}$ then

$$\frac{u+1}{1-\varepsilon/4} - 1 \ge \frac{1}{X} - 1 \ge \frac{u+1}{1+\varepsilon/4} - 1,$$

which implies

$$(1+\varepsilon)u \ge \frac{(1+\varepsilon/4)u}{1-\varepsilon/4} \ge \frac{u+\varepsilon/4}{1-\varepsilon/4} \ge \frac{1}{X} - 1 \ge \frac{u+1}{1+\varepsilon/4} - 1 \ge (1-\varepsilon)u.$$

Namely, 1/X - 1 is a good estimator for the number of distinct elements.

The algorithm revisited. Compute X as above, and output the quantity 1/X - 1.

This immediately implies the following.

Lemma 26.1.4. Under the unreasonable assumption that we can sample perfectly random functions from $\{1, \ldots, n\}$ to [0, 1], and storing such a function requires O(1) words, then one can estimate the number of unique elements in a stream, using $O(\varepsilon^{-2} \log \varphi^{-1})$ words.

26.2. Sampling from a stream with "low quality" randomness

Assume that we have a stream of elements $S = s_1, \ldots, s_m$, all taken from the set $\{1, \ldots, n\}$. In the following, let set(S) denote the set of values that appear in S. That is

$$F_0 = F_0(\mathcal{S}) = |\text{set}(\mathcal{S})|$$

is the number of distinct values in the stream \mathcal{S} .

Assume that we have a random sequence of bits $\mathcal{B} \equiv B_1, \ldots, B_n$, such that $\mathbb{P}[B_i = 1] = p$, for some p. Furthermore, we can compute B_i efficiently. Assume that the bits of \mathcal{B} are pairwise independent.

The sampling algorithm. When the *i*th arrives s_i , we compute B_{s_i} . If this bit is 1, then we insert s_i into the random sample R (if it is already in R, there is no need to store a second copy, naturally).

This defines a natural random sample

$$R = \{i \mid B_i = 1 \text{ and } i \in S\} \subseteq S.$$

Lemma 26.2.1. For the above random sample R, let X = |R|. We have that $\mathbb{E}[X] = pv$ and $\mathbb{V}[X] = pv - p^2v$, where $v = F_0(S)$ is the number of district elements in S.

Proof: Let X = |R|, and we have

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i\in S} B_i\right] = \sum_{i\in S} \mathbb{E}[B_i] = pv.$$

As for the $\mathbb{E}[X^2]$, we have

$$\mathbb{E}\left[X^2\right] = \mathbb{E}\left[\left(\sum_{i\in S} B_i\right)^2\right] = \sum_{i\in S} \mathbb{E}\left[B_i^2\right] + 2\sum_{i,j\in S,\,i< j} \mathbb{E}\left[B_iB_j\right] = p\nu + 2\sum_{i,j\in S,\,i< j} \mathbb{E}\left[B_i\right] \mathbb{E}\left[B_j\right] = p\nu + 2p^2\binom{\nu}{2}.$$

As such, we have

$$\mathbb{V}[X] = \mathbb{V}[|R|] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = pv + 2p^2 \binom{v}{2} - p^2 v^2 = pv + 2p^2 \frac{v(v-1)}{2} - p^2 v^2$$
$$= pv + p^2 v(v-1) - p^2 v^2 = pv - p^2 v.$$

Lemma 26.2.2. Let $\varepsilon \in (0, 1/4)$. Given $O(1/\varepsilon^2)$ space, and a parameter N. Consider the task of estimating the size of $F_0 = |\text{set}(S)|$, where $F_0 > N/4$. Then, the algorithm described below outputs one of the following:

(A) $F_0 > 2N$.

(B) Output a number ρ such that $(1 - \varepsilon)F_0 \leq \rho \leq (1 + \varepsilon)F_0$.

(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability $\geq 7/8$.

Proof: We set $p = \frac{c}{N\varepsilon^2}$, where c is a constant to be determined shortly. Let $T = pN = O(1/\varepsilon^2)$. We sample a random sample R from S, by scanning the elements of S, and adding $i \in S$ to R if $B_i = 1$, If the random sample is larger than 8T, at any point, then the algorithm outputs that |S| > 2N.

In all other cases, the algorithm outputs |R|/p as the estimate for the size of S, together with R.

To bound the failure probability, consider first the case that $N/4 < |set(\mathcal{S})|$. In this case, we have by the above, that

$$\mathbb{P}[|X - \mathbb{E}[X]| > \varepsilon \mathbb{E}[X]] \le \mathbb{P}\left[|X - \mathbb{E}[X]| > \varepsilon \frac{\mathbb{E}[X]}{\sqrt{\mathbb{V}[X]}} \sqrt{\mathbb{V}[X]}\right] \le \varepsilon^2 \frac{\mathbb{V}[X]}{(\mathbb{E}[X])^2} \le \frac{1}{8},$$

if $\frac{\mathbb{V}[X]}{\varepsilon^2(\mathbb{E}[X])^2} \leq \frac{1}{8}$, For $\nu = F_0 \geq N/4$, this happens if $\frac{p\nu}{\varepsilon^2 p^2 \nu^2} \leq \frac{1}{8}$. This in turn is equivalent to $8/\varepsilon^2 \leq p\nu$. This is in turn happens if

$$\frac{c}{N\varepsilon^2} \cdot \frac{N}{4} \ge \frac{8}{\varepsilon^2},$$

which implies that this holds for c = 32. Namely, the algorithm in this case would output a $(1 \pm \varepsilon)$ -estimate for |S|.

If the sample get bigger than 8T, then the above readily implies that with probability at least 7/8, the size of S is at least $(1 - \varepsilon)8T/p > 2N$, Namely, the output of the algorithm is correct in this case.

Lemma 26.2.3. Let $\varepsilon \in (0, 1/4)$ and $\varphi \in (0, 1)$. Given $O(\varepsilon^{-2} \log \varphi^{-1})$ space, and a parameter N, and the task is to estimate F_0 of S, given that $F_0 > N/4$. Then, there is an algorithm that would output one of the following:

(A) $F_0 > 2N$.

(B) Output a number ρ such that $(1 - \varepsilon)F_0 \leq \rho \leq (1 + \varepsilon)F_0$.

(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability $\geq 1 - \varphi$.

Proof: We run $O(\log \varphi^{-1})$ copies of the of Lemma 26.2.2. If half of them returns that $F_0 > 2N$, then the algorithm returns that $F_0 > 2N$. Otherwise, the algorithm returns the median of the estimates returned, and return it as the desired estimated. The correctness readily follows by a repeated application of Chernoff's inequality.

Lemma 26.2.4. Let $\varepsilon \in (0, 1/4)$. Given $O(\varepsilon^{-2} \log^2 n)$ space, one can read the stream S once, and output a number ρ , such that $(1 - \varepsilon)F_0 \leq \rho \leq (1 + \varepsilon)F_0$. The estimate is correct with high probability $(i.e., \geq 1 - 1/n^{O(1)})$.

Proof: Let $N_i = 2^i$, for $i = 1, ..., M = \lceil \lg n \rceil$. Run M copies of Lemma 26.2.3, for each value of N_i , with $\varphi = 1/n^{O(1)}$. Let $Y_1, ..., Y_M$ be the outputs of these algorithms for the stream. A prefix of these outputs, are going to be " $F_0 > 2N_i$ ", Let j be the first Y_j that is a number. Return this number as the desired estimate. The correctness is easy – the first estimate that is a number, is a correct estimate with high probability. Since $N_M \ge n$, it also follows that Y_M must be a number. As such, there is a first number in the sequence, and the algorithm would output an estimate.

More precisely, there is an index i, such that $N_i/4 \leq F_0 \leq 2F_0$, and Y_i is a good estimate, with high probability. If any of the Y_j , for j < i, is an estimate, then it is correct (again) with high probability.

26.3. Bibliographical notes

26.4. From previous lectures

Theorem 26.4.1. Let \mathcal{D} be a non-negative distribution with $\mu = \mathbb{E}[\mathcal{D}]$ and $\nu = \mathbb{V}[\mathcal{D}]$, and let $\varepsilon, \varphi \in (0,1)$ be parameters. For some absolute constant c > 0, let $M \ge 24 \left[\frac{4\nu}{\varepsilon^2 \mu^2}\right] \ln \frac{1}{\varphi}$, and consider sampling

variables $X_1, \ldots, X_M \sim \mathcal{D}$. One can compute, in, O(M) time, a quantity Z from the sampled variables, such that

$$\mathbb{P}\left[(1-\varepsilon)\mu \le Z \le (1+\varepsilon)\mu\right] \ge 1-\varphi.$$

Theorem 26.4.2 (Chebyshev's inequality). Let X be a real random variable, with $\mu_X = \mathbb{E}[X]$, and $\sigma_X = \sqrt{\mathbb{V}[X]}$. Then, for any t > 0, we have $\mathbb{P}[|X - \mu_X| \ge t\sigma_X] \le 1/t^2$.

Lemma 26.4.3. Let X_1, \ldots, X_n be *n* independent Bernoulli trials, where $\mathbb{P}[X_i = 1] = p_i$, and $\mathbb{P}[X_i = 0] = 1 - p_i$, for $i = 1, \ldots, n$. Let $X = \sum_{i=1}^{b} X_i$, and $\mu = \mathbb{E}[X] = \sum_i p_i$. For $\delta \in (0, 4)$, we have

$$\mathbb{P}\left[X > (1+\delta)\mu\right] < \exp\left(-\mu\delta^2/4\right),$$

Theorem 26.4.4. *let* p *be a prime number, and pick independently and uniformly* k *values* $b_0.b_1, \ldots, b_{k-1} \in \mathbb{Z}_p$, and let $g(x) = \sum_{i=0}^{k-1} b_i x^i \mod p$. Then the random variables

$$Y_0 = g(0), \ldots, Y_{p-1} = g(p-1).$$

are uniformly distributed in \mathbb{Z}_p and are k-wise independent.

References

[MR95] R. Motwani and P. Raghavan. *Randomized algorithms*. Cambridge, UK: Cambridge University Press, 1995.