
Chapter 26

Approximating the Number of Distinct El-
ements in a Stream

“See? Genuine-sounding indignation. I programmed that myself. It’s the first thing you need in a university
environment: the ability to take offense at any slight, real or imagined.”

Robert Sawyer, Factoring Humanity
By Sariel Har-Peled, April 26, 2022①

26.1. Counting number of distinct elements

26.1.1. First order statistic
Let 𝑋1, . . . , 𝑋𝑢 be 𝑢 random variables uniformly distributed in [0, 1]. Let 𝑌 = min(𝑋1, . . . , 𝑋𝑢). The
value 𝑌 is the first order statistic of 𝑋1, . . . , 𝑋𝑢.

For a continuous variable 𝑋, the probability density function (i.e., pdf) is the “probability” of 𝑋
having this value. Since this is not well defined, one looks on the cumulative distribution function
𝐹 (𝑥) = P[𝑋 ≤]. The pdf is then the derivative of the cdf. Somewhat abusing notations, the pdf of the
𝑋𝑖s is P[𝑋𝑖 = 𝑥] = 1.

The following proof is somewhat dense, check any standard text on probability for more details.

Lemma 26.1.1. The probability density function of 𝑌 is 𝑓 (𝑥) =
(𝑢
1
)
1(1 − 𝑥)𝑢−1.

Proof: Considering the pdf of 𝑋1 being 𝑥, and all other 𝑋𝑖s being bigger. We have that this pdf is

𝑔(𝑥) = P
[
(𝑋1 = 𝑥) ∩

𝑢⋂
𝑖=2

(𝑋𝑖 > 𝑋1)
]
= P

[𝑢⋂
𝑖=2

(𝑋𝑖 > 𝑋1)
��� 𝑋1 = 𝑥

]
P[𝑋1 = 𝑥] = (1 − 𝑥)𝑢−1.

Since every one of the 𝑋𝑖 has equal probability to realize 𝑌 , we have 𝑓 (𝑥) = 𝑢𝑔(𝑥). ■

Lemma 26.1.2. We have E[𝑌] = 1
𝑢+1 , E

[
𝑌2] = 2

(𝑢+1) (𝑢+2) , and V[𝑌] = 𝑢
(𝑢+1)2 (𝑢+2) .

Proof: Using integration by guessing, we have

E[𝑌] =
∫ 1

𝑦=0
𝑦 P[𝑌 = 𝑦] d𝑦 =

∫ 1

𝑦=0
𝑦 ·

(
𝑢

1

)
1(1 − 𝑦)𝑢−1 d𝑦 =

∫ 1

𝑦=0
𝑢𝑦(1 − 𝑦)𝑢−1 d𝑦

=

[
−𝑦(1 − 𝑦)𝑢 − (1 − 𝑦)𝑢+1

𝑢 + 1

]1

𝑦=0
=

1
𝑢 + 1 .

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Using integration by guessing again, we have

E
[
𝑌2] = ∫ 1

𝑦=0
𝑦2 P[𝑌 = 𝑦] d𝑦 =

∫ 1

𝑦=0
𝑦2 ·

(
𝑢

1

)
1(1 − 𝑦)𝑢−1 d𝑦 =

∫ 1

𝑦=0
𝑢𝑦2(1 − 𝑦)𝑢−1 d𝑦

=

[
−𝑦2(1 − 𝑦)𝑢 − 2𝑦(1 − 𝑦)𝑢+1

𝑢 + 1 − 2(1 − 𝑦)𝑢+2

(𝑢 + 1) (𝑢 + 2)

]1

𝑦=0
=

2
(𝑢 + 1) (𝑢 + 2) .

We conclude that

V[𝑌] = E
[
𝑋2] − (E[𝑋])2 =

2
(𝑢 + 1) (𝑢 + 2) −

1
(𝑢 + 1)2 =

1
𝑢 + 1

(
2

𝑢 + 2 − 1
𝑢 + 1

)
=

𝑢

(𝑢 + 1)2(𝑢 + 2) . ■

26.1.2. The algorithm
A single estimator. Assume that we have a perfectly random hash function ℎ that randomly
maps 𝑁 = {1, . . . , 𝑛} to [0, 1]. Assume that the stream has 𝑢 unique numbers in 𝑁. Then the set
{ℎ(𝑠1), . . . , ℎ(𝑠𝑚)} contains 𝑢 random numbers uniformly distributed in [0.1]. The algorithm as such,
would compute 𝑋 = min𝑖 ℎ(𝑠𝑖).

Explanation. Note, that 𝑋 is not an estimator for 𝑢 – instead, as E[𝑋] = 1/(𝑢 +1), we are estimating
1/(𝑢 + 1). The key observation is that an 1 ± 𝜀 estimator for 1/(𝑢 + 1), is 1 ± 𝑂 (𝜀) estimator for 𝑢 + 1,
which is in turn an 1 ±𝑂 (𝜀) estimator for 𝑢.
Lemma 26.1.3. Let 𝜀, 𝜑 ∈ (0, 1) be parameters. Given a stream S of items from {1, . . . , 𝑛} one can
return an estimate 𝑋, such that P

[
(1 − 𝜀/4) 1

𝑢+1 ≤ 𝑋 ≤ (1 + 𝜀/4) 1
𝑢+1

]
≥ 1 − 𝜑, where 𝑢 is the number of

unique elements in S. This requires 𝑂

(
1
𝜀2 log 1

𝜑

)
space.

Proof: The basic estimator 𝑌 has 𝜇 = E[𝑌] = 1
𝑢+1 and 𝜈 = V[𝑌] = 𝑢

(𝑢+1)2 (𝑢+2) . We now plug this
estimator into the mean/median framework. By Lemma 26.1.2, for 𝑐 some absolute constant, this
requires maintaining 𝑀 estimators, where 𝑀 is larger than

𝑐
4 · 16𝜈
𝜀2𝜇2 log 1

𝜑
= 𝑂

(
𝑢2

𝜀2𝑢2 log 1
𝜑

)
= 𝑂

(
1
𝜀2 log 1

𝜑

)
. ■

Observe that if (1 − 𝜀/4) 1
𝑢+1 ≤ 𝑋 ≤ (1 + 𝜀/4) 1

𝑢+1 then
𝑢 + 1

1 − 𝜀/4 − 1 ≥ 1
𝑋

− 1 ≥ 𝑢 + 1
1 + 𝜀/4 − 1,

which implies
(1 + 𝜀)𝑢 ≥ (1 + 𝜀/4)𝑢

1 − 𝜀/4 ≥ 𝑢 + 𝜀/4
1 − 𝜀/4 ≥ 1

𝑋
− 1 ≥ 𝑢 + 1

1 + 𝜀/4 − 1 ≥ (1 − 𝜀)𝑢.

Namely, 1/𝑋 − 1 is a good estimator for the number of distinct elements.

The algorithm revisited. Compute 𝑋 as above, and output the quantity 1/𝑋 − 1.

This immediately implies the following.
Lemma 26.1.4. Under the unreasonable assumption that we can sample perfectly random functions
from {1, . . . , 𝑛} to [0, 1], and storing such a function requires 𝑂 (1) words, then one can estimate the
number of unique elements in a stream, using 𝑂 (𝜀−2 log 𝜑−1) words.

2

26.2. Sampling from a stream with “low quality” randomness
Assume that we have a stream of elements S = 𝑠1, . . . , 𝑠𝑚, all taken from the set {1, . . . , 𝑛}. In the
following, let set(𝑆) denote the set of values that appear in 𝑆. That is

𝐹0 = 𝐹0(S) = |set(𝑆) |

is the number of distinct values in the stream S.
Assume that we have a random sequence of bits B ≡ 𝐵1, . . . , 𝐵𝑛, such that P[𝐵𝑖 = 1] = 𝑝, for some

𝑝. Furthermore, we can compute 𝐵𝑖 efficiently. Assume that the bits of B are pairwise independent.

The sampling algorithm. When the 𝑖th arrives 𝑠𝑖, we compute 𝐵𝑠𝑖 . If this bit is 1, then we insert
𝑠𝑖 into the random sample R (if it is already in R, there is no need to store a second copy, naturally).

This defines a natural random sample

𝑅 = {𝑖 | 𝐵𝑖 = 1 and 𝑖 ∈ 𝑆} ⊆ 𝑆.

Lemma 26.2.1. For the above random sample 𝑅, let 𝑋 = |𝑅 |. We have that E[𝑋] = 𝑝𝜈 and V[𝑋] =

𝑝𝜈 − 𝑝2𝜈, where 𝜈 = 𝐹0(S) is the number of district elements in 𝑆.

Proof: Let 𝑋 = |𝑅 |, and we have

E[𝑋] = E
[∑︁
𝑖∈𝑆

𝐵𝑖

]
=
∑︁
𝑖∈𝑆
E[𝐵𝑖] = 𝑝𝜈.

As for the E
[
𝑋2] , we have

E
[
𝑋2] = E[(∑︁

𝑖∈𝑆
𝐵𝑖)2

]
=
∑︁
𝑖∈𝑆
E
[
𝐵2
𝑖

]
+ 2

∑︁
𝑖, 𝑗∈𝑆, 𝑖< 𝑗

E
[
𝐵𝑖𝐵 𝑗

]
= 𝑝𝜈 + 2

∑︁
𝑖, 𝑗∈𝑆, 𝑖< 𝑗

E[𝐵𝑖] E
[
𝐵 𝑗

]
= 𝑝𝜈 + 2𝑝2

(
𝜈

2

)
.

As such, we have

V[𝑋] = V[|𝑅 |] = E
[
𝑋2] − (E[𝑋])2 = 𝑝𝜈 + 2𝑝2

(
𝜈

2

)
− 𝑝2𝜈2 = 𝑝𝜈 + 2𝑝2 𝜈(𝜈 − 1)

2 − 𝑝2𝜈2

= 𝑝𝜈 + 𝑝2𝜈(𝜈 − 1) − 𝑝2𝜈2 = 𝑝𝜈 − 𝑝2𝜈. ■

Lemma 26.2.2. Let 𝜀 ∈ (0, 1/4). Given 𝑂 (1/𝜀2) space, and a parameter 𝑁. Consider the task of
estimating the size of 𝐹0 = |set(S)|, where 𝐹0 > 𝑁/4. Then, the algorithm described below outputs one
of the following:
(A) 𝐹0 > 2𝑁.
(B) Output a number 𝜌 such that (1 − 𝜀)𝐹0 ≤ 𝜌 ≤ (1 + 𝜀)𝐹0.

(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability
≥ 7/8.

Proof: We set 𝑝 = 𝑐
𝑁𝜀2 , where 𝑐 is a constant to be determined shortly. Let 𝑇 = 𝑝𝑁 = 𝑂 (1/𝜀2). We

sample a random sample 𝑅 from 𝑆, by scanning the elements of 𝑆, and adding 𝑖 ∈ 𝑆 to 𝑅 if 𝐵𝑖 = 1, If
the random sample is larger than 8𝑇 , at any point, then the algorithm outputs that |𝑆 | > 2𝑁.

In all other cases, the algorithm outputs |𝑅 | /𝑝 as the estimate for the size of 𝑆, together with 𝑅.

3

To bound the failure probability, consider first the case that 𝑁/4 < |set(S)|. In this case, we have
by the above, that

P[|𝑋 − E[𝑋] | > 𝜀 E[𝑋]] ≤ P

[
|𝑋 − E[𝑋] | > 𝜀

E[𝑋]√︁
V[𝑋]

√︁
V[𝑋]

]
≤ 𝜀2 V[𝑋]

(E[𝑋])2 ≤ 1
8 ,

if V[𝑋]
𝜀2 (E[𝑋])2 ≤ 1

8 , For 𝜈 = 𝐹0 ≥ 𝑁/4, this happens if 𝑝𝜈

𝜀2𝑝2𝜈2 ≤ 1
8 . This in turn is equivalent to 8/𝜀2 ≤ 𝑝𝜈.

This is in turn happens if
𝑐

𝑁𝜀2 · 𝑁4 ≥ 8
𝜀2 ,

which implies that this holds for 𝑐 = 32. Namely, the algorithm in this case would output a (1 ± 𝜀)-
estimate for |𝑆 |.

If the sample get bigger than 8𝑇 , then the above readily implies that with probability at least 7/8,
the size of 𝑆 is at least (1 − 𝜀)8𝑇/𝑝 > 2𝑁, Namely, the output of the algorithm is correct in this case. ■

Lemma 26.2.3. Let 𝜀 ∈ (0, 1/4) and 𝜑 ∈ (0, 1). Given 𝑂 (𝜀−2 log 𝜑−1) space, and a parameter 𝑁, and
the task is to estimate 𝐹0 of S, given that 𝐹0 > 𝑁/4. Then, there is an algorithm that would output one
of the following:
(A) 𝐹0 > 2𝑁.
(B) Output a number 𝜌 such that (1 − 𝜀)𝐹0 ≤ 𝜌 ≤ (1 + 𝜀)𝐹0.

(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability
≥ 1 − 𝜑.

Proof: We run 𝑂 (log 𝜑−1) copies of the of Lemma 26.2.2. If half of them returns that 𝐹0 > 2𝑁, then the
algorithm returns that 𝐹0 > 2𝑁. Otherwise, the algorithm returns the median of the estimates returned,
and return it as the desired estimated. The correctness readily follows by a repeated application of
Chernoff’s inequality. ■

Lemma 26.2.4. Let 𝜀 ∈ (0, 1/4). Given 𝑂 (𝜀−2 log2 𝑛) space, one can read the stream S once, and
output a number 𝜌, such that (1 − 𝜀)𝐹0 ≤ 𝜌 ≤ (1 + 𝜀)𝐹0. The estimate is correct with high probability
(i.e., ≥ 1 − 1/𝑛𝑂 (1)).

Proof: Let 𝑁𝑖 = 2𝑖, for 𝑖 = 1, . . . , 𝑀 = ⌈lg 𝑛⌉. Run 𝑀 copies of Lemma 26.2.3, for each value of 𝑁𝑖, with
𝜑 = 1/𝑛𝑂 (1). Let 𝑌1, . . . , 𝑌𝑀 be the outputs of these algorithms for the stream. A prefix of these outputs,
are going to be “𝐹0 > 2𝑁𝑖”, Let 𝑗 be the first 𝑌 𝑗 that is a number. Return this number as the desired
estimate. The correctness is easy – the first estimate that is a number, is a correct estimate with high
probability. Since 𝑁𝑀 ≥ 𝑛, it also follows that 𝑌𝑀 must be a number. As such, there is a first number
in the sequence, and the algorithm would output an estimate.

More precisely, there is an index 𝑖, such that 𝑁𝑖/4 ≤ 𝐹0 ≤ 2𝐹0, and 𝑌𝑖 is a good estimate, with high
probability. If any of the 𝑌 𝑗 , for 𝑗 < 𝑖, is an estimate, then it is correct (again) with high probability. ■

26.3. Bibliographical notes

26.4. From previous lectures
Theorem 26.4.1. Let D be a non-negative distribution with 𝜇 = E[D] and 𝜈 = V[D], and let 𝜀, 𝜑 ∈
(0, 1) be parameters. For some absolute constant 𝑐 > 0, let 𝑀 ≥ 24

⌈ 4𝜈
𝜀2𝜇2

⌉
ln 1

𝜑
, and consider sampling

4

variables 𝑋1, . . . , 𝑋𝑀 ∼ D. One can compute, in, 𝑂 (𝑀) time, a quantity 𝑍 from the sampled variables,
such that

P
[
(1 − 𝜀)𝜇 ≤ 𝑍 ≤ (1 + 𝜀)𝜇

]
≥ 1 − 𝜑.

Theorem 26.4.2 (Chebyshev’s inequality). Let 𝑋 be a real random variable, with 𝜇𝑋 = E[𝑋], and
𝜎𝑋 =

√︁
V[𝑋]. Then, for any 𝑡 > 0, we have P

[
|𝑋 − 𝜇𝑋 | ≥ 𝑡𝜎𝑋

]
≤ 1/𝑡2.

Lemma 26.4.3. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E

[
𝑋
]
=
∑

𝑖 𝑝𝑖. For 𝛿 ∈ (0, 4), we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
< exp

(
−𝜇𝛿2/4

)
,

Theorem 26.4.4. let 𝑝 be a prime number, and pick independently and uniformly 𝑘 values 𝑏0.𝑏1, . . . , 𝑏𝑘−1 ∈
Z𝑝, and let 𝑔(𝑥) = ∑𝑘−1

𝑖=0 𝑏𝑖𝑥
𝑖 mod 𝑝. Then the random variables

𝑌0 = 𝑔(0), . . . , 𝑌𝑝−1 = 𝑔(𝑝 − 1).

are uniformly distributed in Z𝑝 and are 𝑘-wise independent.

References
[MR95] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge, UK: Cambridge University

Press, 1995.

5

http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Approximating the Number of Distinct Elements in a Stream
	Counting number of distinct elements
	First order statistic
	The algorithm

	Sampling from a stream with ``low quality'' randomness
	Bibliographical notes
	From previous lectures

