Chapter 26

Approximating the Number of Distinct Elements in a Stream

"See? Genuine-sounding indignation. I programmed that myself. It's the first thing you need in a university environment: the ability to take offense at any slight, real or imagined."

Robert Sawyer, Factoring Humanity
By Sariel Har-Peled, April 26, 2022^{\circledR}

26.1. Counting number of distinct elements

26.1.1. First order statistic

Let X_{1}, \ldots, X_{u} be u random variables uniformly distributed in [0,1]. Let $Y=\min \left(X_{1}, \ldots, X_{u}\right)$. The value Y is the first order statistic of X_{1}, \ldots, X_{u}.

For a continuous variable X, the probability density function (i.e., pdf) is the "probability" of X having this value. Since this is not well defined, one looks on the cumulative distribution function $F(x)=\mathbb{P}[X \leq]$. The pdf is then the derivative of the cdf. Somewhat abusing notations, the pdf of the $X_{i} \mathrm{~S}$ is $\mathbb{P}\left[X_{i}=x\right]=1$.

The following proof is somewhat dense, check any standard text on probability for more details.
Lemma 26.1.1. The probability density function of Y is $f(x)=\binom{u}{1} 1(1-x)^{u-1}$.
Proof: Considering the pdf of X_{1} being x, and all other X_{i} s being bigger. We have that this pdf is

$$
g(x)=\mathbb{P}\left[\left(X_{1}=x\right) \cap \bigcap_{i=2}^{u}\left(X_{i}>X_{1}\right)\right]=\mathbb{P}\left[\bigcap_{i=2}^{u}\left(X_{i}>X_{1}\right) \mid X_{1}=x\right] \mathbb{P}\left[X_{1}=x\right]=(1-x)^{u-1} .
$$

Since every one of the X_{i} has equal probability to realize Y, we have $f(x)=u g(x)$.
Lemma 26.1.2. We have $\mathbb{E}[Y]=\frac{1}{u+1}, \mathbb{E}\left[Y^{2}\right]=\frac{2}{(u+1)(u+2)}$, and $\mathbb{V}[Y]=\frac{u}{(u+1)^{2}(u+2)}$.
Proof: Using integration by guessing, we have

$$
\begin{aligned}
\mathbb{E}[Y] & =\int_{y=0}^{1} y \mathbb{P}[Y=y] \mathrm{d} y=\int_{y=0}^{1} y \cdot\binom{u}{1} 1(1-y)^{u-1} \mathrm{~d} y=\int_{y=0}^{1} u y(1-y)^{u-1} \mathrm{~d} y \\
& =\left[-y(1-y)^{u}-\frac{(1-y)^{u+1}}{u+1}\right]_{y=0}^{1}=\frac{1}{u+1} .
\end{aligned}
$$

[^0]Using integration by guessing again, we have

$$
\begin{aligned}
\mathbb{E}\left[Y^{2}\right] & =\int_{y=0}^{1} y^{2} \mathbb{P}[Y=y] \mathrm{d} y=\int_{y=0}^{1} y^{2} \cdot\binom{u}{1} 1(1-y)^{u-1} \mathrm{~d} y=\int_{y=0}^{1} u y^{2}(1-y)^{u-1} \mathrm{~d} y \\
& =\left[-y^{2}(1-y)^{u}-\frac{2 y(1-y)^{u+1}}{u+1}-\frac{2(1-y)^{u+2}}{(u+1)(u+2)}\right]_{y=0}^{1}=\frac{2}{(u+1)(u+2)} .
\end{aligned}
$$

We conclude that

$$
\mathbb{V}[Y]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\frac{2}{(u+1)(u+2)}-\frac{1}{(u+1)^{2}}=\frac{1}{u+1}\left(\frac{2}{u+2}-\frac{1}{u+1}\right)=\frac{u}{(u+1)^{2}(u+2)}
$$

26.1.2. The algorithm

A single estimator. Assume that we have a perfectly random hash function h that randomly maps $N=\{1, \ldots, n\}$ to $[0,1]$. Assume that the stream has u unique numbers in N. Then the set $\left\{h\left(s_{1}\right), \ldots, h\left(s_{m}\right)\right\}$ contains u random numbers uniformly distributed in [0.1]. The algorithm as such, would compute $X=\min _{i} h\left(s_{i}\right)$.

Explanation. Note, that X is not an estimator for u-instead, as $\mathbb{E}[X]=1 /(u+1)$, we are estimating $1 /(u+1)$. The key observation is that an $1 \pm \varepsilon$ estimator for $1 /(u+1)$, is $1 \pm O(\varepsilon)$ estimator for $u+1$, which is in turn an $1 \pm O(\varepsilon)$ estimator for u.

Lemma 26.1.3. Let $\varepsilon, \varphi \in(0,1)$ be parameters. Given a stream \mathcal{S} of items from $\{1, \ldots, n\}$ one can return an estimate X, such that $\mathbb{P}\left[(1-\varepsilon / 4) \frac{1}{u+1} \leq X \leq(1+\varepsilon / 4) \frac{1}{u+1}\right] \geq 1-\varphi$, where u is the number of unique elements in \mathcal{S}. This requires $O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varphi}\right)$ space.
Proof: The basic estimator Y has $\mu=\mathbb{E}[Y]=\frac{1}{u+1}$ and $v=\mathbb{V}[Y]=\frac{u}{(u+1)^{2}(u+2)}$. We now plug this estimator into the mean/median framework. By Lemma 26.1.2, for c some absolute constant, this requires maintaining M estimators, where M is larger than

$$
c \frac{4 \cdot 16 v}{\varepsilon^{2} \mu^{2}} \log \frac{1}{\varphi}=O\left(\frac{u^{2}}{\varepsilon^{2} u^{2}} \log \frac{1}{\varphi}\right)=O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varphi}\right)
$$

Observe that if $(1-\varepsilon / 4) \frac{1}{u+1} \leq X \leq(1+\varepsilon / 4) \frac{1}{u+1}$ then

$$
\frac{u+1}{1-\varepsilon / 4}-1 \geq \frac{1}{X}-1 \geq \frac{u+1}{1+\varepsilon / 4}-1
$$

which implies

$$
(1+\varepsilon) u \geq \frac{(1+\varepsilon / 4) u}{1-\varepsilon / 4} \geq \frac{u+\varepsilon / 4}{1-\varepsilon / 4} \geq \frac{1}{X}-1 \geq \frac{u+1}{1+\varepsilon / 4}-1 \geq(1-\varepsilon) u
$$

Namely, $1 / X-1$ is a good estimator for the number of distinct elements.
The algorithm revisited. Compute X as above, and output the quantity $1 / X-1$.
This immediately implies the following.
Lemma 26.1.4. Under the unreasonable assumption that we can sample perfectly random functions from $\{1, \ldots, n\}$ to $[0,1]$, and storing such a function requires $O(1)$ words, then one can estimate the number of unique elements in a stream, using $O\left(\varepsilon^{-2} \log \varphi^{-1}\right)$ words.

26.2. Sampling from a stream with "low quality" randomness

Assume that we have a stream of elements $\mathcal{S}=s_{1}, \ldots, s_{m}$, all taken from the set $\{1, \ldots, n\}$. In the following, let $\operatorname{set}(S)$ denote the set of values that appear in S. That is

$$
F_{0}=F_{0}(\mathcal{S})=|\operatorname{set}(S)|
$$

is the number of distinct values in the stream \mathcal{S}.
Assume that we have a random sequence of bits $\mathcal{B} \equiv B_{1}, \ldots, B_{n}$, such that $\mathbb{P}\left[B_{i}=1\right]=p$, for some p. Furthermore, we can compute B_{i} efficiently. Assume that the bits of \mathcal{B} are pairwise independent.

The sampling algorithm. When the i th arrives s_{i}, we compute $B_{s_{i}}$. If this bit is 1 , then we insert s_{i} into the random sample R (if it is already in R , there is no need to store a second copy, naturally).

This defines a natural random sample

$$
R=\left\{i \mid B_{i}=1 \text { and } i \in S\right\} \subseteq S
$$

Lemma 26.2.1. For the above random sample R, let $X=|R|$. We have that $\mathbb{E}[X]=p v$ and $\mathbb{V}[X]=$ $p v-p^{2} v$, where $v=F_{0}(\mathcal{S})$ is the number of district elements in S.

Proof: Let $X=|R|$, and we have

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i \in S} B_{i}\right]=\sum_{i \in S} \mathbb{E}\left[B_{i}\right]=p v .
$$

As for the $\mathbb{E}\left[X^{2}\right]$, we have

$$
\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[\left(\sum_{i \in S} B_{i}\right)^{2}\right]=\sum_{i \in S} \mathbb{E}\left[B_{i}^{2}\right]+2 \sum_{i, j \in S, i<j} \mathbb{E}\left[B_{i} B_{j}\right]=p v+2 \sum_{i, j \in S, i<j} \mathbb{E}\left[B_{i}\right] \mathbb{E}\left[B_{j}\right]=p v+2 p^{2}\binom{v}{2} .
$$

As such, we have

$$
\begin{aligned}
\mathbb{V}[X] & =\mathbb{V}[|R|]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=p v+2 p^{2}\binom{v}{2}-p^{2} v^{2}=p v+2 p^{2} \frac{v(v-1)}{2}-p^{2} v^{2} \\
& =p v+p^{2} v(v-1)-p^{2} v^{2}=p v-p^{2} v .
\end{aligned}
$$

Lemma 26.2.2. Let $\varepsilon \in(0,1 / 4)$. Given $O\left(1 / \varepsilon^{2}\right)$ space, and a parameter N. Consider the task of estimating the size of $F_{0}=|\operatorname{set}(\mathcal{S})|$, where $F_{0}>N / 4$. Then, the algorithm described below outputs one of the following:
(A) $F_{0}>2 N$.
(B) Output a number ρ such that $(1-\varepsilon) F_{0} \leq \rho \leq(1+\varepsilon) F_{0}$.
(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability $\geq 7 / 8$.

Proof: We set $p=\frac{c}{N \varepsilon^{2}}$, where c is a constant to be determined shortly. Let $T=p N=O\left(1 / \varepsilon^{2}\right)$. We sample a random sample R from S, by scanning the elements of S, and adding $i \in S$ to R if $B_{i}=1$, If the random sample is larger than $8 T$, at any point, then the algorithm outputs that $|S|>2 N$.

In all other cases, the algorithm outputs $|R| / p$ as the estimate for the size of S, together with R.

To bound the failure probability, consider first the case that $N / 4<|\operatorname{set}(\mathcal{S})|$. In this case, we have by the above, that

$$
\mathbb{P}[|X-\mathbb{E}[X]|>\varepsilon \mathbb{E}[X]] \leq \mathbb{P}\left[|X-\mathbb{E}[X]|>\varepsilon \frac{\mathbb{E}[X]}{\sqrt{\mathbb{V}[X]}} \sqrt{\mathbb{V}[X]}\right] \leq \varepsilon^{2} \frac{\mathbb{V}[X]}{(\mathbb{E}[X])^{2}} \leq \frac{1}{8}
$$

if $\frac{\mathbb{V}[X]}{\left.\varepsilon^{2}(\mathbb{E} X X]\right)^{2}} \leq \frac{1}{8}$, For $v=F_{0} \geq N / 4$, this happens if $\frac{p v}{\varepsilon^{2} p^{2} v^{2}} \leq \frac{1}{8}$. This in turn is equivalent to $8 / \varepsilon^{2} \leq p v$. This is in turn happens if

$$
\frac{c}{N \varepsilon^{2}} \cdot \frac{N}{4} \geq \frac{8}{\varepsilon^{2}}
$$

which implies that this holds for $c=32$. Namely, the algorithm in this case would output a $(1 \pm \varepsilon)$ estimate for $|S|$.

If the sample get bigger than $8 T$, then the above readily implies that with probability at least $7 / 8$, the size of S is at least $(1-\varepsilon) 8 T / p>2 N$, Namely, the output of the algorithm is correct in this case.

Lemma 26.2.3. Let $\varepsilon \in(0,1 / 4)$ and $\varphi \in(0,1)$. Given $O\left(\varepsilon^{-2} \log \varphi^{-1}\right)$ space, and a parameter N, and the task is to estimate F_{0} of \mathcal{S}, given that $F_{0}>N / 4$. Then, there is an algorithm that would output one of the following:
(A) $F_{0}>2 N$.
(B) Output a number ρ such that $(1-\varepsilon) F_{0} \leq \rho \leq(1+\varepsilon) F_{0}$.
(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability $\geq 1-\varphi$.

Proof: We run $O\left(\log \varphi^{-1}\right)$ copies of the of Lemma 26.2.2. If half of them returns that $F_{0}>2 N$, then the algorithm returns that $F_{0}>2 N$. Otherwise, the algorithm returns the median of the estimates returned, and return it as the desired estimated. The correctness readily follows by a repeated application of Chernoff's inequality.
Lemma 26.2.4. Let $\varepsilon \in(0,1 / 4)$. Given $O\left(\varepsilon^{-2} \log ^{2} n\right)$ space, one can read the stream \mathcal{S} once, and output a number ρ, such that $(1-\varepsilon) F_{0} \leq \rho \leq(1+\varepsilon) F_{0}$. The estimate is correct with high probability (i.e., $\geq 1-1 / n^{O(1)}$).

Proof: Let $N_{i}=2^{i}$, for $i=1, \ldots, M=\lceil\lg n\rceil$. Run M copies of Lemma 26.2.3, for each value of N_{i}, with $\varphi=1 / n^{O(1)}$. Let Y_{1}, \ldots, Y_{M} be the outputs of these algorithms for the stream. A prefix of these outputs, are going to be " $F_{0}>2 N_{i}$ ", Let j be the first Y_{j} that is a number. Return this number as the desired estimate. The correctness is easy - the first estimate that is a number, is a correct estimate with high probability. Since $N_{M} \geq n$, it also follows that Y_{M} must be a number. As such, there is a first number in the sequence, and the algorithm would output an estimate.

More precisely, there is an index i, such that $N_{i} / 4 \leq F_{0} \leq 2 F_{0}$, and Y_{i} is a good estimate, with high probability. If any of the Y_{j}, for $j<i$, is an estimate, then it is correct (again) with high probability.

26.3. Bibliographical notes

26.4. From previous lectures

Theorem 26.4.1. Let \mathcal{D} be a non-negative distribution with $\mu=\mathbb{E}[\mathcal{D}]$ and $v=\mathbb{V}[\mathcal{D}]$, and let $\varepsilon, \varphi \in$ $(0,1)$ be parameters. For some absolute constant $c>0$, let $M \geq 24\left[\frac{4 v}{\varepsilon^{2} \mu^{2}}\right\rceil \ln \frac{1}{\varphi}$, and consider sampling
variables $X_{1}, \ldots, X_{M} \sim \mathcal{D}$. One can compute, in, $O(M)$ time, a quantity Z from the sampled variables, such that

$$
\mathbb{P}[(1-\varepsilon) \mu \leq Z \leq(1+\varepsilon) \mu] \geq 1-\varphi
$$

Theorem 26.4.2 (Chebyshev's inequality). Let X be a real random variable, with $\mu_{X}=\mathbb{E}[X]$, and $\sigma_{X}=\sqrt{\mathbb{V}[X]}$. Then, for any $t>0$, we have $\mathbb{P}\left[\left|X-\mu_{X}\right| \geq t \sigma_{X}\right] \leq 1 / t^{2}$.

Lemma 26.4.3. Let X_{1}, \ldots, X_{n} be n independent Bernoulli trials, where $\mathbb{P}\left[X_{i}=1\right]=p_{i}$, and $\mathbb{P}\left[X_{i}=0\right]=$ $1-p_{i}$, for $i=1, \ldots, n$. Let $X=\sum_{i=1}^{b} X_{i}$, and $\mu=\mathbb{E}[X]=\sum_{i} p_{i}$. For $\delta \in(0,4)$, we have

$$
\mathbb{P}[X>(1+\delta) \mu]<\exp \left(-\mu \delta^{2} / 4\right)
$$

Theorem 26.4.4. let p be a prime number, and pick independently and uniformly k values $b_{0} . b_{1}, \ldots, b_{k-1} \in$ \mathbb{Z}_{p}, and let $g(x)=\sum_{i=0}^{k-1} b_{i} x^{i} \bmod p$. Then the random variables

$$
Y_{0}=g(0), \ldots, Y_{p-1}=g(p-1)
$$

are uniformly distributed in \mathbb{Z}_{p} and are k-wise independent.

References

[MR95] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge, UK: Cambridge University Press, 1995.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

