
Chapter 25

Frequency Estimation over a Stream

“See? Genuine-sounding indignation. I programmed that myself. It’s the first thing you need in a university
environment: the ability to take offense at any slight, real or imagined.”

Robert Sawyer, Factoring Humanity
By Sariel Har-Peled, April 26, 2022①

25.1. The art of estimation

25.1.1. The problem
Assume we would like to estimate well some quantity 𝜌 > 0 - specifically, for a fixed parameter 𝜀 ∈ (0, 1),
we would like to compute a quantity 𝜌′ such that 𝜌′ ∈ [(1− 𝜀)𝜌, (1+ 𝜀)𝜌] with good probability. To this
end, assume we have access to a distribution D, such that if we sample 𝑋 according to this distribution
(i.e., 𝑋 ∼ D), we have that E[𝑋] = 𝜌. We can use 𝑋 to estimate our desired quantity, how this might
not provide the desired estimation.

Example: Estimating 𝑝 for a coin. Assume we have a coin that is head with probability 𝑝. A
natural way to estimate 𝑝 is to flip the coin once and return 1 if it is head, and zero otherwise. Let 𝑋

be the result of the coin flip, and observe that E[𝑋] = 𝑝. But this is not very useful estimator.

25.1.2. Averaging estimator: Success with constant probability

25.1.2.1. The challenge

The basic problem is that 𝑋 might be much bigger than 𝜌. Or more specifically, its variance might be
huge. Let

𝜌 = E[D] and 𝜈 = V[D] .

We would to generate a variable 𝑍 , such that

E[𝑍] = 𝜌 and V[𝑍] ≤ (𝜀2/4)𝜌2. (25.1)

This would imply by Chebychev’s inequality that

P[|𝑍 − 𝜌 | ≥ 𝜀𝜌] = P
[
|𝑍 − E[𝑍] | ≥ 2

√︁
(𝜀2/4)𝜌2

]
≤ P

[
|𝑍 − E[𝑍] | ≥ 2

√︁
V[𝑍]

]
≤ 1

4 .

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

25.1.2.2. Taming of the variance

The basic idea is to take 𝛼 =

⌈
𝜈
𝜌

⌉
independent variables 𝑋1, . . . , 𝑋𝛼 ∼ D, and let 𝑌 =

∑
𝑖 𝑋𝑖/𝛼. We have

by linearity of expectation that

E[𝑌] =
∑︁
𝑖

E[𝑋𝑖] /𝛼 = E[𝑋] = 𝜌.

Using the independence of 𝑋1, . . . , 𝑋𝛼, we have

V[𝑌] = V

[∑︁
𝑖

𝑋𝑖/𝛼
]
=

1
𝛼2 V

[∑︁
𝑖

𝑋𝑖

]
=

1
𝛼2

∑︁
𝑖

V[𝑋𝑖] =
1
𝛼2𝛼𝜈 =

𝜈

𝛼
.

Guided by Eq. (25.1), we want this quantity to be smaller than ≤ (𝜀2/4)𝜌2. Thus,

𝜈

𝛼
≤ (𝜀2/4)𝜌2 ⇐= 𝛼 ≥

⌈
4
𝜀2 · 𝜈

𝜌2

⌉
=

⌈
4V[𝑋]
𝜀2 E[𝑋]2

⌉
.

We thus summarize the result.

Lemma 25.1.1. Let D be a non-negative distribution with 𝜌 = E[D] and 𝜈 = V[D], and let 𝜀 ∈ (0, 1)
be a parameter. For 𝛼 ≥

⌈ 4V[D]
𝜀2 E[D]2

⌉
, consider sampling variables 𝑋1, . . . , 𝑋𝛼 ∼ D, and let 𝑍 =

∑𝛼
𝑖=1 𝑋𝑖/𝛼.

Then 𝑍 is a “good” estimator for 𝜌. Formally, we have

P
[
(1 − 𝜀)𝜌 ≤ 𝑍 ≤ (1 + 𝜀)𝜌

]
≥ 3

4 .

25.1.3. Median estimator: Success with high probability
We would like to get a better estimator, where the probability of success is high probability. Formally, we
would have parameter 𝜑, and we would like the estimator to succeed with probability ≥ 1−𝜑. A natural
approach is to try and use Chernoff to bound the probability of failure for the averaging estimator.
This would work in some cases, but is limited to the case when 𝑍 lies in a small bounded range. This
would not work in general if sampling from D might return a huge value with tiny probability. Instead,
we are going to boost the averaging estimator. Assume, we generating 𝛽 = 𝑂 (log 1/𝜑) instances of the
averaging estimators: 𝑍1, . . . , 𝑍𝛽. The median estimator returns the median value of the 𝑍s as the
desired estimate.

Analysis. Let E𝑖 be the event that 𝑍𝑖 ∈ [(1− 𝜀)𝜌, (1+ 𝜀)𝜌]. Let 𝐺𝑖 be an indicator variable for E𝑖. By
Lemma 25.1.1, P[E𝑖] = P[𝐺𝑖 = 1] ≥ 3/4. The median estimator fails if

∑𝛽

𝑖=1 𝐺𝑖 < 𝛽/2. Using Chernoff
inequality, we get that this happens with probability ≤ 𝜑. We thus get the following.

Theorem 25.1.2. Let D be a non-negative distribution with 𝜇 = E[D] and 𝜈 = V[D], and let 𝜀, 𝜑 ∈
(0, 1) be parameters. For some absolute constant 𝑐 > 0, let 𝑀 ≥ 24

⌈ 4𝜈
𝜀2𝜇2

⌉
ln 1

𝜑
, and consider sampling

variables 𝑋1, . . . , 𝑋𝑀 ∼ D. One can compute, in, 𝑂 (𝑀) time, a quantity 𝑍 from the sampled variables,
such that

P
[
(1 − 𝜀)𝜇 ≤ 𝑍 ≤ (1 + 𝜀)𝜇

]
≥ 1 − 𝜑.

2

Proof: Let 𝑚 =
⌈
4𝜈/

(
𝜀2𝜇2)⌉ and 𝑀 =

⌈
24 ln 1

𝜑

⌉
. Build 𝑀 averaging estimators, each one using 𝑚 samples.

That is let 𝑍𝑖 be the average of 𝑚 samples 𝑠𝑖,1, . . . , 𝑠𝑖,𝑚 from D, for 𝑖 = 1, . . . , 𝑀. Formally,

𝑍𝑖 =
1
𝑚

𝑚∑︁
𝑗=1

𝑠𝑖, 𝑗 for 𝑖 = 1, . . . , 𝑀.

The estimate returned is the value median(𝑍1, . . . , 𝑍𝑀).
By Lemma 25.1.1 each one of the averaging estimator is in the “good” range with probability ≥ 3/4.

As such, let 𝑋𝑖, for 𝑖 = 1, . . . , 𝑀, be an indicator variable, that is 1 if the 𝑖th averaging estimator is in
the range [(1 − 𝜀)𝜇, (1 + 𝜀)𝜇]. Let 𝑌 =

∑𝑀
𝑖=1 𝑋𝑖. We have that E[𝑌] ≥ (3/4)𝑀. As such, by Lemma ??,

we have

P
[
bad output

]
= P

[
𝑌 < (1/2)𝑀

]
≤ P

[
𝑌 < (1 − 1/3) E[𝑌]

]
≤ exp

(
− (1/3)2

2 E[𝑌]
)
.

The later quantity is bounded by exp
(
− 1

18
3
4𝑀

)
= exp(−𝑀/24) = exp

(
−
⌈
24 ln 𝜑−1⌉ /24

)
≤ 𝜑. ■

25.2. Frequency estimation over a stream for the 𝑘th moment
Let S = (𝑠1, . . . , 𝑠𝑚) be a stream (i.e., sequence) of 𝑚 elements from 𝑁 = {1, . . . , 𝑛}. Let 𝑓𝑖 be the
number of times the number 𝑖 appears in S. For 𝑘 ≥ 0, let

𝐹𝑘 =

𝑛∑︁
𝑖=1

𝑓 𝑘𝑖

be the 𝑘th frequency moment of S. The quantity, 𝐹1 = 𝑚 is the length of the stream S. Similarly,
𝐹0 is the number of distinct elements (where we use the convention that 00 = 0 and any other quantity
to the power 0 is 1). It is natural to define 𝐹∞ = max𝑖 𝑓𝑖.

Here, we are interested in approximating up to a factor of 1 ± 𝜀 the quantity 𝐹𝑘 , for 𝑘 ≥ 1 using
small space, and reading the stream S only once.

25.2.1. An estimator for the 𝑘th moment
25.2.1.1. Basic estimator

One can pick a representative element from a stream uniformly at random by using reservoir sampling.
That is, sample the 𝑖th element 𝑠𝑖 to be the representative with probability 1/𝑖. Once sampled, the
algorithm counts how many times it see the representative value later on in the stream (the counter
is initialized to 1, to account for the chosen representative itself). In particular, if 𝑠𝑝 is the chosen
representative in the end of the stream (i.e., the algorithm might change the representative several
times), then the counter value is

𝑟 =

���{ 𝑗 �� 𝑗 ≥ 𝑝 and 𝑠 𝑗 = 𝑠𝑝
}��� .

The output of the algorithm is the quantity

𝑋 = 𝑚
(
𝑟 𝑘 − (𝑟 − 1)𝑘

)
,

where 𝑚 is the number of elements seen in the stream. Let 𝑉 be the random variable that is the value
of the representative in the end of the sequence.

3

25.2.1.2. Analysis

Lemma 25.2.1. We have E[𝑋] = 𝐹𝑘 .

Proof: Observe that since we choose the representative uniformly at random, we have

E[𝑋 | 𝑉 = 𝑖] =
𝑓𝑖∑︁
𝑗=1

1
𝑓𝑖
𝑚
(
𝑗 𝑘 − (𝑗 − 1)𝑘

)
=
𝑚

𝑓𝑖

𝑓𝑖∑︁
𝑗=1

(
𝑗 𝑘 − (𝑗 − 1)𝑘

)
=
𝑚

𝑓𝑖
𝑓 𝑘𝑖 .

As such, we have E[𝑋] = E
[
E[𝑋 | 𝑉]

]
=
∑

𝑖: 𝑓𝑖≠0
𝑓𝑖
𝑚

𝑚
𝑓𝑖
𝑓 𝑘
𝑖
=
∑

𝑖 𝑓
𝑘
𝑖
= 𝐹𝑘 . ■

Remark 25.2.2. In the above, we estimated the function 𝑔(𝑥) = 𝑥𝑘 , over the frequency numbers 𝑓1, . . . , 𝑓𝑘 ,
but the above argumentation, on the expectation of 𝑋, would work for any function 𝑔(𝑥) such that
𝑔(0) = 0, and 𝑔(𝑥) ≥ 0, for all 𝑥 ≥ 0.

Lemma 25.2.3. For 𝑘 > 1, we have
∑𝑛

𝑖=1
(
𝑖𝑘 − (𝑖 − 1)𝑘

)2 ≤ 𝑘𝑛2𝑘−1.

Proof: Observe that for 𝑥 ≥ 1, we have that 𝑥𝑘 − (𝑥 − 1)𝑘 ≤ 𝑘𝑥𝑘−1. As such, we have
𝑛∑︁
𝑖=1

(
𝑖𝑘 − (𝑖 − 1)𝑘

)2
≤

𝑛∑︁
𝑖=1

𝑘𝑖𝑘−1
(
𝑖𝑘 − (𝑖 − 1)𝑘

)
≤ 𝑘𝑛𝑘−1

𝑛∑︁
𝑖=1

(
𝑖𝑘 − (𝑖 − 1)𝑘

)
= 𝑘𝑛𝑘−1𝑛𝑘 = 𝑘𝑛2𝑘−1. ■

Lemma 25.2.4. We have E
[
𝑋2] ≤ 𝑘𝑚𝐹2𝑘−1.

Proof: By Lemma 25.2.3, we have

E
[
𝑋2 �� 𝑉 = 𝑖

]
=

𝑓𝑖∑︁
𝑗=1

1
𝑓𝑖
𝑚2 (𝑗 𝑘 − (𝑗 − 1)𝑘

)2 ≤ 𝑚2

𝑓𝑖
𝑘 𝑓 2𝑘−1

𝑖 = 𝑚2𝑘 𝑓 2𝑘−2
𝑖 ,

and thus E[𝑋2] = E
[
E[𝑋2 | 𝑉]

]
=

∑︁
𝑖: 𝑓𝑖≠0

𝑓𝑖

𝑚
· 𝑚2𝑘 𝑓 2𝑘−2

𝑖 = 𝑚𝑘𝐹2𝑘−1. ■

Lemma 25.2.5. For any non-negative numbers 𝑓1, . . . , 𝑓𝑛, and 𝑘 ≥ 1, we have

𝑛∑︁
𝑖=1

𝑓𝑖 ≤ 𝑛(𝑘−1)/𝑘
(𝑛∑︁
𝑖=1

𝑓 𝑘𝑖

)1/𝑘
.

Proof: This is immediate from Hölder inequality, but here is a self contained proof. The above is
equivalent to proving that

∑
𝑖 𝑓𝑖/𝑛 ≤

(∑𝑛
𝑖=1 𝑓 𝑘

𝑖
/𝑛
)1/𝑘

. Raising both sides to the power 𝑘, we need to show
that (∑𝑖 𝑓𝑖/𝑛)𝑘 ≤ ∑𝑛

𝑖=1 𝑓 𝑘
𝑖
/𝑛. Setting 𝑔(𝑥) = 𝑥𝑘 , we have 𝑔(∑𝑖 𝑓𝑖/𝑛) ≤

∑𝑛
𝑖=1 𝑔(𝑓𝑖)/𝑛. The last inequality

holds by the convexity of the function 𝑔(𝑥) (indeed, 𝑔′(𝑥) = 𝑘𝑥𝑘−1 and 𝑔′′(𝑥) = 𝑘 (𝑘 − 1)𝑥𝑘−2 ≥ 0, for
𝑥 ≥ 0). ■

Lemma 25.2.6. For any 𝑛 numbers 𝑓1, . . . , 𝑓𝑛 ≥ 0, we have
(∑

𝑖 𝑓𝑖

) (∑
𝑖 𝑓

2𝑘−1
𝑖

)
≤ 𝑛1−1/𝑘

(∑
𝑖 𝑓

𝑘
𝑖

)2
.

4

Proof: Let 𝑀 = max𝑖 𝑓𝑖 and 𝑚 =
∑

𝑖 𝑓𝑖. We have∑︁
𝑖

𝑓 2𝑘−1
𝑖 ≤ 𝑀 𝑘−1

∑︁
𝑖

𝑓 𝑘𝑖 ≤ 𝑀 𝑘 (𝑘−1)/𝑘
∑︁
𝑖

𝑓 𝑘𝑖 ≤
(∑︁

𝑖

𝑓 𝑘𝑖

) (𝑘−1)/𝑘 ∑︁
𝑖

𝑓 𝑘𝑖 ≤
(∑︁

𝑖

𝑓 𝑘𝑖

) (2𝑘−1)/𝑘
.

By Lemma 25.2.5, we have
∑𝑛

𝑖=1 𝑓𝑖 ≤ 𝑛(𝑘−1)/𝑘
(∑

𝑖 𝑓
𝑘
𝑖

)1/𝑘
. Multiplying the above two inequality implies

the claim. ■

Lemma 25.2.7. We have V[𝑋] ≤ 𝑘𝑛1−1/𝑘𝐹2
𝑘
.

Proof: Since 𝑚 =
∑

𝑖 𝑓𝑖, Lemma 25.2.4 and Lemma 25.2.6 together implies that

V[𝑋] = E
[
𝑋2] − (E[𝑋])2 ≤ E

[
𝑋2] L25.2.4︷︸︸︷

≤ 𝑘𝑚𝐹2𝑘−2 = 𝑘

(∑︁
𝑖

𝑓𝑖

) (∑︁
𝑖

𝑓 2𝑘−1
𝑖

) L25.2.6︷︸︸︷
≤ 𝑘𝑛1−1/𝑘𝐹2

𝑘 . ■

25.2.2. An improved estimator
Let 𝜑, 𝜀 ∈ (0, 1) be parameters. In the following, let

𝛼 =
8𝑘𝑛1−1/𝑘

𝜀2 and 𝛽 = 4 ln 1
𝜑
.

Let us use 𝛼 copies of the above estimator (running in parallel), and then take their average, which
results in a new estimator. Let repeat this 𝛽 times, as such, we get 𝛽 “average” estimators 𝑌1, . . . , 𝑌𝛽
(i.e., there are 𝛼𝛽 independent copies of the simple estimator being executed in parallel). Let 𝑍 be the
median value of 𝑌1, . . . , 𝑌𝛽, and we output 𝑍 as the new estimate.

25.2.2.1. Analysis

Lemma 25.2.8. For 𝑖 = 1, . . . , 𝑗 , we have P[|𝑌𝑖 − 𝐹𝑘 | > 𝜀𝐹𝑘] ≤ 1
8 . Here 𝑌𝑖 is the average of 𝛼 indepen-

dent basic estimators (see Section 25.2.1.1).

Proof: The variable 𝑋𝑖, 𝑗 is a basic estimator being computed, for 𝑖 = 1, . . . , 𝛽, and 𝑗 = 1, . . . , 𝛼. The
variable 𝑌𝑖 =

∑𝛼
𝑗=1 𝑋𝑖, 𝑗/𝛼, for all 𝑖. Since all the 𝑋𝑖, 𝑗s are independent, and have the same distribution

as 𝑋, we have

V
[
𝑌𝑖
]
= V

[1
𝛼

𝛼∑︁
𝑗=1

𝑋𝑖, 𝑗

]
=

1
𝛼2 V

[𝛼∑︁
𝑗=1

𝑋𝑖, 𝑗

]
=

1
𝛼2

𝛼∑︁
𝑗=1
V
[
𝑋𝑖, 𝑗

]
=

1
𝛼2𝛼V[𝑋] =

V[𝑋]
𝛼

.

Similarly, we have E[𝑌𝑖] = E
[∑𝛼

𝑗=1𝑋𝑖, 𝑗/𝛼
]
= E[𝑋]. Namely, the effect of averaging 𝛼 independent copies

of the same variable is to reduce the variance by a factor of 𝛼, while keeping the expectation the same.
Let 𝑡 = 𝜀𝐹𝑘/𝜎𝑖, where 𝜎𝑖 =

√︁
V[𝑌𝑖]. By Chebychev’s inequality (Theorem 25.5.1) and Lemma 25.2.7,

we have

P[|𝑌𝑖 − 𝐹𝑘 | > 𝜀𝐹𝑘] = P[|𝑌𝑖 − 𝐹𝑘 | > 𝑡𝜎𝑖] ≤
1
𝑡2

=
𝜎2
𝑖

𝜀2𝐹2
𝑘

=
V[𝑌𝑖]
𝜀2𝐹2

𝑘

=
V[𝑋]
𝛼

· 1
𝜀2𝐹2

𝑘

≤
𝑘𝑛1−1/𝑘𝐹2

𝑘

𝛼𝜀2𝐹2
𝑘

.

We want the last quantity to be smaller than 1/8, which requires that 𝑘𝑛1−1/𝑘

𝛼𝜀2 ≤ 1/8, which holds for
𝛼 = 8𝑘𝑛1−1/𝑘/𝜀2, which is (surprise, surprise) the value assigned to 𝛼. ■

5

Lemma 25.2.9. We have for the estimator 𝑍 that P[|𝑍 − 𝐹𝑘 | ≥ 𝜀𝐹𝑘] ≤ 𝜑.

Proof: The probability of an estimator 𝑌𝑖 to be bad, for 𝑖 = 1, . . . , 𝛽, is at most 1/8. Let 𝑈 be the random
variable that is the number of estimators that are bad. The variable 𝑈 has binomial distribution with
𝛽 coin tosses and probability 1/8. As such, we have

P[𝑍 is bad] ≤ P[𝑈 ≥ 𝛽/2] = P[𝑈 ≥ (1 + 3)𝛽/8] ≤ exp(−(𝛽/8)32/4) ≤ exp
(
− ln 1

𝜑

)
= 𝜑,

by Chernoff inequality (Lemma 25.5.2), and plugging in the value of 𝛽 = 4 ln 1
𝜑
. ■

In the following, we consider a computer word to be sufficiently large to contain lg 𝑛 or lg𝑚 bits.
This readily implies the following.

Theorem 25.2.10. Let S = (𝑠1, . . . , 𝑠𝑛) be a stream of numbers from the set {1, . . . , 𝑛}. Let 𝑘 ≥ 1 be a
parameter. Given 𝜀, 𝜑 ∈ (0, 1), one can build a data-structure using 𝑂 (𝑘𝑛1−1/𝑘𝜀−2 log 𝜑−1) words, such
that one can (1 ± 𝜀)-approximate the 𝑘th moment of the elements in the stream; that is, the algorithm
outs a number 𝑍, such that (1− 𝜀)𝐹𝑘 ≤ 𝑍 ≤ (1+ 𝜀)𝐹𝑘 , where 𝐹𝑘 =

∑𝑛
𝑖=1 𝑓 𝑘

𝑖
, and 𝑓𝑖 is the number of times

𝑖 appears in the stream S. The algorithm succeeds with probability ≥ 1 − 𝜑.

25.3. Better estimation for 𝐹2

25.3.1. Pseudo-random 𝑘-wide independent sequence of signed bits
In the following, assume that we sample 𝑂 (log 𝑛) bits, such that given an index 𝑖, one can compute
(quickly!) a random signed bit 𝑏(𝑖) ∈ {−1, +1}. We require that the resulting bits 𝑏(1), 𝑏(2), . . . , 𝑏(𝑛)
are 4-wise independent. To this end, pick a prime 𝑝, that is, say bigger than 𝑛10. This can easily be done
by sampling a number in the range [𝑛10, 𝑛11], and checking if it is prime (which can done in polynomial
time).

Once we have such a prime, we generate a random polynomial 𝑔(𝑖) = ∑5
𝑖=0 𝑐𝑖𝑥

𝑖 mod 𝑝, by choosing
𝑐0, . . . , 𝑐5 from Z𝑝 =

{
0, . . . , 𝑝 − 1

}
. We had seen that 𝑔(0), 𝑔(1), . . . , 𝑔(𝑛) are uniformly distributed in

Z𝑝, and they are, say, 6-wise independent (see Theorem 25.5.4).
We define

𝑏(𝑖) =


0 𝑔(𝑖) = 𝑝 − 1
+1 𝑔(𝑖) is odd
−1 𝑔(𝑖) is even.

Clearly, the sequence 𝑏(1), . . . , 𝑏(𝑛) are 6-wise independent. There is a chance that one of these bits
might be zero, but the probability for that is at most 𝑛/𝑝, which is so small, that we just assume it does
not happen. There are known constructions that do not have this issue at all (one of the bits is zero),
but they are more complicated.

Lemma 25.3.1. Given a parameter 𝜑 ∈ (0, 1), in polynomial time in 𝑂 (log(𝑛/𝜑)), one can construct a
function 𝑏(·), requiring 𝑂 (log(𝑛/𝜑)) bits of storage (or 𝑂 (1) words), such that 𝑏(1), . . . , 𝑏(𝑛) ∈ {−1, +1}
with equal probability, an they are 6-wise independent. Furthermore, given 𝑖, one can compute 𝑏(𝑖) in
𝑂 (1) time.

The probability of this sequence to fail having the desired properties is smaller than 𝜑.

Proof: We repeat the above construction, but picking a prime 𝑝 in the range, say, 𝑛10/𝜑 . . . 𝑛11/𝜑. ■

6

25.3.2. Estimator construction for 𝐹2

25.3.2.1. The basic estimator

As before we have the stream S = 𝑠1. . . . , 𝑠𝑚 of numbers from the set 1, . . . , 𝑛. We compute the 6-wise
independent sequence of random bits of Lemma 25.3.1, and in the following we assume this sequence is
good (i.e., has only −1 and +1 in it). We compute the quantity

𝑇 =

𝑚∑︁
𝑖=1

𝑏(𝑖) 𝑓𝑖 =
𝑚∑︁
𝑗=1

𝑏(𝑠 𝑗),

which can be computed on the fly using 𝑂 (1) words of memory, and 𝑂 (1) time per time in the stream.
The algorithm returns 𝑋 = 𝑇2 as the desired estimate.

Analysis.
Lemma 25.3.2. We have E[𝑋] =

∑
𝑖 𝑓

2
𝑖
= 𝐹2 and V[𝑋] ≤ 2𝐹2

2 .

Proof: We have that E[𝑋] = E
[(∑𝑛

𝑖=1 𝑏(𝑖) 𝑓𝑖
)2]

, and as such

E[𝑋] = E
[𝑛∑︁
𝑖=1

(𝑏(𝑖))2 𝑓 2
𝑖 + 2

∑︁
𝑖< 𝑗

𝑏(𝑖)𝑏(𝑗) 𝑓𝑖 𝑓 𝑗
]
=

𝑚∑︁
𝑖=1

𝑓 2
𝑖 + 2

∑︁
𝑖< 𝑗

𝑓𝑖 𝑓 𝑗 E[𝑏(𝑖)𝑏(𝑗)] =
𝑚∑︁
𝑖=1

𝑓 2
𝑖 = 𝐹2,

since E[𝑏(𝑖)] = 0, E
[
𝑏(𝑖)2] = 1, and E[𝑏(𝑖)𝑏(𝑗)] = E[𝑏(𝑖)] E[𝑏(𝑗)] = 0 (assuming the sequence

𝑏(1), . . . , 𝑏(𝑛) has not failed), by the 6-wise Independence of the sequence of signed bits.
We next compute E

[
𝑋2] . To this end, let 𝑁 = {1, . . . , 𝑛}, and Γ = 𝑁 × 𝑁 × 𝑁 × 𝑁. We split this set

into several sets, as follows:
(i) Γ0 =

{
(𝑖, 𝑖, 𝑖, 𝑖) ∈ 𝑁4}: All quadruples that are all the same value.

(ii) Γ1: Set of all quadruples (𝑖, 𝑗 , 𝑘, 𝑙) where there is at least one value that appears exactly once.
(iii) Γ2: Set of all (𝑖, 𝑗 , 𝑘, ℓ) with only two distinct values, each appearing exactly twice.

Clearly, we have 𝑁4 = Γ0 ∪ Γ1 ∪ Γ2.
For a tuple (𝑖, 𝑖, 𝑖, 𝑖) ∈ Γ0, we have E[𝑏(𝑖)𝑏(𝑖)𝑏(𝑖)𝑏(𝑖)] = E

[
𝑏(𝑖)4] = 1.

For a tuple (𝑖, 𝑗 , 𝑘, ℓ) ∈ Γ1 with 𝑖 being the unique value, we have that

E[𝑏(𝑖)𝑏(𝑗)𝑏(𝑘)𝑏(ℓ)] = E[𝑏(𝑖)] E[𝑏(𝑗)𝑏(𝑘)𝑏(ℓ)] = 0E[𝑏(𝑗)𝑏(𝑘)𝑏(ℓ)] = 0,
using that the signed bits are 4-wise independent. The same argumentation implies that E[𝑏(𝑖)𝑏(𝑗)𝑏(𝑘)𝑏(ℓ)] =
0 for any tuple (𝑖, 𝑗 , 𝑘, ℓ) ∈ Γ1.

For a tuple (𝑖, 𝑖, 𝑗 , 𝑗) ∈ Γ2, we have E[𝑏(𝑖)𝑏(𝑖)𝑏(𝑗)𝑏(𝑗)] = E
[
𝑏(𝑖)2𝑏(𝑗)2] = E

[
𝑏(𝑖)2] E[𝑏(𝑗)2] = 1,

and the same argumentation applies to any tuple of Γ2. Observe that for any 𝑖 < 𝑗 , there are
(4
2
)
= 6

different tuples in Γ2 that are made out of 𝑖 and 𝑗 . As such, we have

E
[
𝑋2] = E[(𝑛∑︁

𝑖=1
𝑏(𝑖) 𝑓𝑖

)4]
= E

[∑︁
(𝑖, 𝑗 ,𝑘,ℓ)∈Γ

𝑏(𝑖)𝑏(𝑗)𝑏(𝑘)𝑏(ℓ) 𝑓𝑖 𝑓 𝑗 𝑓𝑘 𝑓ℓ
]

=
∑︁

(𝑖,𝑖,𝑖,𝑖)∈Γ0

E
[
𝑏(𝑖)4] 𝑓 4

𝑖 +
∑︁

(𝑖, 𝑗 ,𝑘,ℓ)∈Γ1

𝑓𝑖 𝑓 𝑗 𝑓𝑘 𝑓ℓ E[𝑏(𝑖)𝑏(𝑗)𝑏(𝑘)𝑏(ℓ)] + 6
∑︁
𝑖< 𝑗

E
[
𝑏(𝑖)2𝑏(𝑗)2] 𝑓 2

𝑖 𝑓 2
𝑗

=

𝑛∑︁
𝑖=1

𝑓 4
𝑖 + 6

∑︁
𝑖< 𝑗

𝑓 2
𝑖 𝑓 2

𝑗 .

7

As such, we have

V[𝑋] = E
[
𝑋2] − (E[𝑋])2 =

𝑛∑︁
𝑖=1

𝑓 4
𝑖 + 6

∑︁
𝑖< 𝑗

𝑓 2
𝑖 𝑓 2

𝑗 −
(𝑚∑︁
𝑖=1

𝑓 2
𝑖

)2
= 4

∑︁
𝑖< 𝑗

𝑓 2
𝑖 𝑓 2

𝑗 ≤ 2𝐹2
2 . ■

25.3.3. Improving the estimator
We repeat the same scheme as above. Let 𝜑, 𝜀 ∈ (0, 1) be parameters. In the following, let

𝛼 = 16/𝜀2 and 𝛽 = 4 ln 1
𝜑
.

Let 𝑋𝑖, 𝑗 be a basic estimator for 𝐹2, using the estimator of Section 25.3.2.1, for 𝑖 = 1, . . . , 𝛽 and
𝑗 = 1, . . . , 𝛼. Let 𝑌𝑖 =

∑𝛼
𝑗=1 𝑋𝑖, 𝑗/𝛼, for 𝑖 = 1, . . . , 𝛽. Let 𝑍 be the median of 𝑌1, . . . , 𝑌𝛽, and the algorithm

returns 𝑍 as the estimator.

Theorem 25.3.3. Given a stream S = 𝑠1, . . . , 𝑠𝑚 of numbers from {1, . . . , 𝑛}, and parameters 𝜀, 𝜑 ∈
(0, 1), one can compute an estimate 𝑍 for 𝐹2(S), such that P[|𝑍 − 𝐹2 | > 𝜀𝐹2] ≤ 𝜑. This algorithm
requires 𝑂 (𝜀−2 log 𝜑−1) space (in words), and this is also the time to handle a new element in the
stream.

Proof: The scheme is described above. As before, using Chebychev’s inequality, we have that

P[|𝑌𝑖 − 𝐹2 | > 𝜀𝐹2] = P

[
|𝑌𝑖 − 𝐹2 | >

𝜀𝐹2√︁
V[𝑌𝑖]

√︁
V[𝑌𝑖]

]
≤ V[𝑌𝑖]

𝜀2𝐹2
2

=
V[𝑋] /𝛼
𝜀2𝐹2

2
≤

2𝐹2
2

𝛼𝜀2𝐹2
2
=

1
8 ,

by Lemma 25.3.2. Let 𝑈 be the number of estimators in 𝑌1, . . . , 𝑌𝛽 that are outside the acceptable range.
Arguing as in Lemma 25.2.9, we have

P[𝑍 is bad] ≤ P[𝑈 ≥ 𝛽/2] = P[𝑈 ≥ (1 + 3)𝛽/8] ≤ exp(−(𝛽/8)32/4) ≤ exp
(
− ln 1

𝜑

)
= 𝜑,

by Chernoff inequality (Lemma 25.5.2), and ■

25.4. Bibliographical notes
The beautiful results of this chapter are from a paper from Alon et al. [AMS99].

25.5. From previous lectures
Theorem 25.5.1 (Chebyshev’s inequality). Let 𝑋 be a real random variable, with 𝜇𝑋 = E[𝑋], and
𝜎𝑋 =

√︁
V[𝑋]. Then, for any 𝑡 > 0, we have P

[
|𝑋 − 𝜇𝑋 | ≥ 𝑡𝜎𝑋

]
≤ 1/𝑡2.

Lemma 25.5.2. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E

[
𝑋
]
=
∑

𝑖 𝑝𝑖. For 𝛿 ∈ (0, 4), we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
< exp

(
−𝜇𝛿2/4

)
,

8

Lemma 25.5.3. Let 𝑋1, . . . , 𝑋𝑛 ∈ {0, 1} be 𝑛 independent random variables, with 𝑝𝑖 = P
[
𝑋𝑖 = 1

]
, for all

𝑖. For 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖, and 𝜇 = E
[
𝑋
]
=
∑

𝑖 𝑝𝑖, we have that P
[
𝑋 < (1 − 𝛿)𝜇

]
< exp

(
−𝜇𝛿2/2

)
.

Theorem 25.5.4. let 𝑝 be a prime number, and pick independently and uniformly 𝑘 values 𝑏0.𝑏1, . . . , 𝑏𝑘−1 ∈
Z𝑝, and let 𝑔(𝑥) = ∑𝑘−1

𝑖=0 𝑏𝑖𝑥
𝑖 mod 𝑝. Then the random variables

𝑌0 = 𝑔(0), . . . , 𝑌𝑝−1 = 𝑔(𝑝 − 1).

are uniformly distributed in Z𝑝 and are 𝑘-wise independent.

References
[AMS99] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. J. Comput. Syst. Sci., 58(1): 137–147, 1999.
[MR95] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge, UK: Cambridge Univer-

sity Press, 1995.

9

http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1006/jcss.1997.1545
http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Frequency Estimation over a Stream
	The art of estimation
	The problem
	Averaging estimator: Success with constant probability
	Median estimator: Success with high probability

	Frequency estimation over a stream for the kth moment
	An estimator for the kth moment
	An improved estimator

	Better estimation for F2
	Pseudo-random k-wide independent sequence of signed bits
	Estimator construction for F2
	Improving the estimator

	Bibliographical notes
	From previous lectures

