Chapter 25

Frequency Estimation over a Stream

"See? Genuine-sounding indignation. I programmed that myself. It's the first thing you need in a university environment: the ability to take offense at any slight, real or imagined."

Robert Sawyer, Factoring Humanity
By Sariel Har-Peled, April 26, $2022^{(1)}$

25.1. The art of estimation

25.1.1. The problem

Assume we would like to estimate well some quantity $\rho>0$ - specifically, for a fixed parameter $\varepsilon \in(0,1)$, we would like to compute a quantity ρ^{\prime} such that $\rho^{\prime} \in[(1-\varepsilon) \rho,(1+\varepsilon) \rho]$ with good probability. To this end, assume we have access to a distribution \mathcal{D}, such that if we sample X according to this distribution (i.e., $X \sim \mathcal{D}$), we have that $\mathbb{E}[X]=\rho$. We can use X to estimate our desired quantity, how this might not provide the desired estimation.

Example: Estimating p for a coin. Assume we have a coin that is head with probability p. A natural way to estimate p is to flip the coin once and return 1 if it is head, and zero otherwise. Let X be the result of the coin flip, and observe that $\mathbb{E}[X]=p$. But this is not very useful estimator.

25.1.2. Averaging estimator: Success with constant probability

25.1.2.1. The challenge

The basic problem is that X might be much bigger than ρ. Or more specifically, its variance might be huge. Let

$$
\rho=\mathbb{E}[\mathcal{D}] \quad \text { and } \quad v=\mathbb{V}[\mathcal{D}] .
$$

We would to generate a variable Z, such that

$$
\begin{equation*}
\mathbb{E}[Z]=\rho \quad \text { and } \quad \mathbb{V}[Z] \leq\left(\varepsilon^{2} / 4\right) \rho^{2} \tag{25.1}
\end{equation*}
$$

This would imply by Chebychev's inequality that

$$
\mathbb{P}[|Z-\rho| \geq \varepsilon \rho]=\mathbb{P}\left[|Z-\mathbb{E}[Z]| \geq 2 \sqrt{\left(\varepsilon^{2} / 4\right) \rho^{2}}\right] \leq \mathbb{P}[|Z-\mathbb{E}[Z]| \geq 2 \sqrt{\mathbb{V}[Z]}] \leq \frac{1}{4}
$$

[^0]
25.1.2.2. Taming of the variance

The basic idea is to take $\alpha=\left\lceil\frac{\nu}{\rho}\right\rceil$ independent variables $X_{1}, \ldots, X_{\alpha} \sim \mathcal{D}$, and let $Y=\sum_{i} X_{i} / \alpha$. We have by linearity of expectation that

$$
\mathbb{E}[Y]=\sum_{i} \mathbb{E}\left[X_{i}\right] / \alpha=\mathbb{E}[X]=\rho
$$

Using the independence of $X_{1}, \ldots, X_{\alpha}$, we have

$$
\mathbb{V}[Y]=\mathbb{V}\left[\sum_{i} X_{i} / \alpha\right]=\frac{1}{\alpha^{2}} \mathbb{V}\left[\sum_{i} X_{i}\right]=\frac{1}{\alpha^{2}} \sum_{i} \mathbb{V}\left[X_{i}\right]=\frac{1}{\alpha^{2}} \alpha v=\frac{v}{\alpha}
$$

Guided by Eq. (25.1), we want this quantity to be smaller than $\leq\left(\varepsilon^{2} / 4\right) \rho^{2}$. Thus,

$$
\frac{v}{\alpha} \leq\left(\varepsilon^{2} / 4\right) \rho^{2} \quad \Longleftarrow \quad \alpha \geq\left\lceil\frac{4}{\varepsilon^{2}} \cdot \frac{v}{\rho^{2}}\right\rceil=\left\lceil\frac{4 \mathbb{V}[X]}{\varepsilon^{2} \mathbb{E}[X]^{2}}\right\rceil
$$

We thus summarize the result.
Lemma 25.1.1. Let \mathcal{D} be a non-negative distribution with $\rho=\mathbb{E}[\mathcal{D}]$ and $v=\mathbb{V}[\mathcal{D}]$, and let $\varepsilon \in(0,1)$ be a parameter. For $\alpha \geq\left[\frac{4 \mathbb{V}[\mathcal{D}]}{\varepsilon^{2} \mathbb{E}[\mathcal{D}]^{2}}\right\rceil$, consider sampling variables $X_{1}, \ldots, X_{\alpha} \sim \mathcal{D}$, and let $Z=\sum_{i=1}^{\alpha} X_{i} / \alpha$. Then Z is a "good" estimator for ρ. Formally, we have

$$
\mathbb{P}[(1-\varepsilon) \rho \leq Z \leq(1+\varepsilon) \rho] \geq \frac{3}{4}
$$

25.1.3. Median estimator: Success with high probability

We would like to get a better estimator, where the probability of success is high probability. Formally, we would have parameter φ, and we would like the estimator to succeed with probability $\geq 1-\varphi$. A natural approach is to try and use Chernoff to bound the probability of failure for the averaging estimator. This would work in some cases, but is limited to the case when Z lies in a small bounded range. This would not work in general if sampling from \mathcal{D} might return a huge value with tiny probability. Instead, we are going to boost the averaging estimator. Assume, we generating $\beta=O(\log 1 / \varphi)$ instances of the averaging estimators: Z_{1}, \ldots, Z_{β}. The median estimator returns the median value of the $Z \mathrm{~s}$ as the desired estimate.

Analysis. Let \mathcal{E}_{i} be the event that $Z_{i} \in[(1-\varepsilon) \rho,(1+\varepsilon) \rho]$. Let G_{i} be an indicator variable for \mathcal{E}_{i}. By Lemma 25.1.1, $\mathbb{P}\left[\mathcal{E}_{i}\right]=\mathbb{P}\left[G_{i}=1\right] \geq 3 / 4$. The median estimator fails if $\sum_{i=1}^{\beta} G_{i}<\beta / 2$. Using Chernoff inequality, we get that this happens with probability $\leq \varphi$. We thus get the following.

Theorem 25.1.2. Let \mathcal{D} be a non-negative distribution with $\mu=\mathbb{E}[\mathcal{D}]$ and $v=\mathbb{V}[\mathcal{D}]$, and let $\varepsilon, \varphi \in$ $(0,1)$ be parameters. For some absolute constant $c>0$, let $M \geq 24\left\lceil\frac{4 v}{\varepsilon^{2} \mu^{2}}\right\rceil \ln \frac{1}{\varphi}$, and consider sampling variables $X_{1}, \ldots, X_{M} \sim \mathcal{D}$. One can compute, in, $O(M)$ time, a quantity Z from the sampled variables, such that

$$
\mathbb{P}[(1-\varepsilon) \mu \leq Z \leq(1+\varepsilon) \mu] \geq 1-\varphi
$$

Proof: Let $m=\left\lceil 4 v /\left(\varepsilon^{2} \mu^{2}\right)\right\rceil$ and $M=\left\lceil 24 \ln \frac{1}{\varphi}\right\rceil$. Build M averaging estimators, each one using m samples. That is let Z_{i} be the average of m samples $s_{i, 1}, \ldots, s_{i, m}$ from \mathcal{D}, for $i=1, \ldots, M$. Formally,

$$
Z_{i}=\frac{1}{m} \sum_{j=1}^{m} s_{i, j} \quad \text { for } \quad i=1, \ldots, M
$$

The estimate returned is the value median $\left(Z_{1}, \ldots, Z_{M}\right)$.
By Lemma 25.1.1 each one of the averaging estimator is in the "good" range with probability $\geq 3 / 4$. As such, let X_{i}, for $i=1, \ldots, M$, be an indicator variable, that is 1 if the i th averaging estimator is in the range $[(1-\varepsilon) \mu,(1+\varepsilon) \mu]$. Let $Y=\sum_{i=1}^{M} X_{i}$. We have that $\mathbb{E}[Y] \geq(3 / 4) M$. As such, by Lemma ??, we have

$$
\mathbb{P}[\text { bad output }]=\mathbb{P}[Y<(1 / 2) M] \leq \mathbb{P}[Y<(1-1 / 3) \mathbb{E}[Y]] \leq \exp \left(-\frac{(1 / 3)^{2}}{2} \mathbb{E}[Y]\right)
$$

The later quantity is bounded by $\exp \left(-\frac{1}{18} \frac{3}{4} M\right)=\exp (-M / 24)=\exp \left(-\left\lceil 24 \ln \varphi^{-1}\right\rceil / 24\right) \leq \varphi$.

25.2. Frequency estimation over a stream for the k th moment

Let $\mathcal{S}=\left(s_{1}, \ldots, s_{m}\right)$ be a stream (i.e., sequence) of m elements from $N=\{1, \ldots, n\}$. Let f_{i} be the number of times the number i appears in \mathcal{S}. For $k \geq 0$, let

$$
F_{k}=\sum_{i=1}^{n} f_{i}^{k}
$$

be the k th frequency moment of \mathcal{S}. The quantity, $F_{1}=m$ is the length of the stream \mathcal{S}. Similarly, F_{0} is the number of distinct elements (where we use the convention that $0^{0}=0$ and any other quantity to the power 0 is 1). It is natural to define $F_{\infty}=\max _{i} f_{i}$.

Here, we are interested in approximating up to a factor of $1 \pm \varepsilon$ the quantity F_{k}, for $k \geq 1$ using small space, and reading the stream \mathcal{S} only once.

25.2.1. An estimator for the k th moment

25.2.1.1. Basic estimator

One can pick a representative element from a stream uniformly at random by using reservoir sampling. That is, sample the i th element s_{i} to be the representative with probability $1 / i$. Once sampled, the algorithm counts how many times it see the representative value later on in the stream (the counter is initialized to 1 , to account for the chosen representative itself). In particular, if s_{p} is the chosen representative in the end of the stream (i.e., the algorithm might change the representative several times), then the counter value is

$$
r=\mid\left\{j \mid j \geq p \text { and } s_{j}=s_{p}\right\} \mid .
$$

The output of the algorithm is the quantity

$$
X=m\left(r^{k}-(r-1)^{k}\right)
$$

where m is the number of elements seen in the stream. Let V be the random variable that is the value of the representative in the end of the sequence.

25.2.1.2. Analysis

Lemma 25.2.1. We have $\mathbb{E}[X]=F_{k}$.
Proof: Observe that since we choose the representative uniformly at random, we have

$$
\mathbb{E}[X \mid V=i]=\sum_{j=1}^{f_{i}} \frac{1}{f_{i}} m\left(j^{k}-(j-1)^{k}\right)=\frac{m}{f_{i}} \sum_{j=1}^{f_{i}}\left(j^{k}-(j-1)^{k}\right)=\frac{m}{f_{i}} f_{i}^{k}
$$

As such, we have $\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid V]]=\sum_{i: f_{i} \neq 0} \frac{f_{i}}{m} \frac{m}{f_{i}} f_{i}^{k}=\sum_{i} f_{i}^{k}=F_{k}$.
Remark 25.2.2. In the above, we estimated the function $g(x)=x^{k}$, over the frequency numbers f_{1}, \ldots, f_{k}, but the above argumentation, on the expectation of X, would work for any function $g(x)$ such that $g(0)=0$, and $g(x) \geq 0$, for all $x \geq 0$.

Lemma 25.2.3. For $k>1$, we have $\sum_{i=1}^{n}\left(i^{k}-(i-1)^{k}\right)^{2} \leq k n^{2 k-1}$.
Proof: Observe that for $x \geq 1$, we have that $x^{k}-(x-1)^{k} \leq k x^{k-1}$. As such, we have

$$
\sum_{i=1}^{n}\left(i^{k}-(i-1)^{k}\right)^{2} \leq \sum_{i=1}^{n} k i^{k-1}\left(i^{k}-(i-1)^{k}\right) \leq k n^{k-1} \sum_{i=1}^{n}\left(i^{k}-(i-1)^{k}\right)=k n^{k-1} n^{k}=k n^{2 k-1}
$$

Lemma 25.2.4. We have $\mathbb{E}\left[X^{2}\right] \leq k m F_{2 k-1}$.
Proof: By Lemma 25.2.3, we have

$$
\mathbb{E}\left[X^{2} \mid V=i\right]=\sum_{j=1}^{f_{i}} \frac{1}{f_{i}} m^{2}\left(j^{k}-(j-1)^{k}\right)^{2} \leq \frac{m^{2}}{f_{i}} k f_{i}^{2 k-1}=m^{2} k f_{i}^{2 k-2}
$$

and thus $\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[X^{2} \mid V\right]\right]=\sum_{i: f_{i} \neq 0} \frac{f_{i}}{m} \cdot m^{2} k f_{i}^{2 k-2}=m k F_{2 k-1}$.
Lemma 25.2.5. For any non-negative numbers f_{1}, \ldots, f_{n}, and $k \geq 1$, we have

$$
\sum_{i=1}^{n} f_{i} \leq n^{(k-1) / k}\left(\sum_{i=1}^{n} f_{i}^{k}\right)^{1 / k}
$$

Proof: This is immediate from Hölder inequality, but here is a self contained proof. The above is equivalent to proving that $\sum_{i} f_{i} / n \leq\left(\sum_{i=1}^{n} f_{i}^{k} / n\right)^{1 / k}$. Raising both sides to the power k, we need to show that $\left(\sum_{i} f_{i} / n\right)^{k} \leq \sum_{i=1}^{n} f_{i}^{k} / n$. Setting $g(x)=x^{k}$, we have $g\left(\sum_{i} f_{i} / n\right) \leq \sum_{i=1}^{n} g\left(f_{i}\right) / n$. The last inequality holds by the convexity of the function $g(x)$ (indeed, $g^{\prime}(x)=k x^{k-1}$ and $g^{\prime \prime}(x)=k(k-1) x^{k-2} \geq 0$, for $x \geq 0$).

Lemma 25.2.6. For any n numbers $f_{1}, \ldots, f_{n} \geq 0$, we have $\left(\sum_{i} f_{i}\right)\left(\sum_{i} f_{i}^{2 k-1}\right) \leq n^{1-1 / k}\left(\sum_{i} f_{i}^{k}\right)^{2}$.

Proof: Let $M=\max _{i} f_{i}$ and $m=\sum_{i} f_{i}$. We have

$$
\sum_{i} f_{i}^{2 k-1} \leq M^{k-1} \sum_{i} f_{i}^{k} \leq M^{k(k-1) / k} \sum_{i} f_{i}^{k} \leq\left(\sum_{i} f_{i}^{k}\right)^{(k-1) / k} \sum_{i} f_{i}^{k} \leq\left(\sum_{i} f_{i}^{k}\right)^{(2 k-1) / k}
$$

By Lemma 25.2.5, we have $\sum_{i=1}^{n} f_{i} \leq n^{(k-1) / k}\left(\sum_{i} f_{i}^{k}\right)^{1 / k}$. Multiplying the above two inequality implies the claim.
Lemma 25.2.7. We have $\mathbb{V}[X] \leq k n^{1-1 / k} F_{k}^{2}$.
Proof: Since $m=\sum_{i} f_{i}$, Lemma 25.2.4 and Lemma 25.2.6 together implies that

$$
\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2} \leq \mathbb{E}\left[X^{2}\right] \overbrace{\leq}^{\mathrm{L} 25.2 .4} k m F_{2 k-2}=k\left(\sum_{i} f_{i}\right)\left(\sum_{i} f_{i}^{2 k-1}\right) \overbrace{\leq}^{\mathrm{L} 25.2 .6} k n^{1-1 / k} F_{k}^{2} .
$$

25.2.2. An improved estimator

Let $\varphi, \varepsilon \in(0,1)$ be parameters. In the following, let

$$
\alpha=\frac{8 k n^{1-1 / k}}{\varepsilon^{2}} \quad \text { and } \quad \beta=4 \ln \frac{1}{\varphi} .
$$

Let us use α copies of the above estimator (running in parallel), and then take their average, which results in a new estimator. Let repeat this β times, as such, we get β "average" estimators Y_{1}, \ldots, Y_{β} (i.e., there are $\alpha \beta$ independent copies of the simple estimator being executed in parallel). Let Z be the median value of Y_{1}, \ldots, Y_{β}, and we output Z as the new estimate.

25.2.2.1. Analysis

Lemma 25.2.8. For $i=1, \ldots, j$, we have $\mathbb{P}\left[\left|Y_{i}-F_{k}\right|>\varepsilon F_{k}\right] \leq \frac{1}{8}$. Here Y_{i} is the average of α independent basic estimators (see Section 25.2.1.1).

Proof: The variable $X_{i, j}$ is a basic estimator being computed, for $i=1, \ldots, \beta$, and $j=1, \ldots, \alpha$. The variable $Y_{i}=\sum_{j=1}^{\alpha} X_{i, j} / \alpha$, for all i. Since all the $X_{i, j}$ s are independent, and have the same distribution as X, we have

$$
\mathbb{V}\left[Y_{i}\right]=\mathbb{V}\left[\frac{1}{\alpha} \sum_{j=1}^{\alpha} X_{i, j}\right]=\frac{1}{\alpha^{2}} \mathbb{V}\left[\sum_{j=1}^{\alpha} X_{i, j}\right]=\frac{1}{\alpha^{2}} \sum_{j=1}^{\alpha} \mathbb{V}\left[X_{i, j}\right]=\frac{1}{\alpha^{2}} \alpha \mathbb{V}[X]=\frac{\mathbb{V}[X]}{\alpha}
$$

Similarly, we have $\mathbb{E}\left[Y_{i}\right]=\mathbb{E}\left[\sum_{j=1}^{\alpha} X_{i, j} / \alpha\right]=\mathbb{E}[X]$. Namely, the effect of averaging α independent copies of the same variable is to reduce the variance by a factor of α, while keeping the expectation the same.

Let $t=\varepsilon F_{k} / \sigma_{i}$, where $\sigma_{i}=\sqrt{\mathbb{V}\left[Y_{i}\right]}$. By Chebychev's inequality (Theorem 25.5.1) and Lemma 25.2.7, we have

$$
\mathbb{P}\left[\left|Y_{i}-F_{k}\right|>\varepsilon F_{k}\right]=\mathbb{P}\left[\left|Y_{i}-F_{k}\right|>t \sigma_{i}\right] \leq \frac{1}{t^{2}}=\frac{\sigma_{i}^{2}}{\varepsilon^{2} F_{k}^{2}}=\frac{\mathbb{V}\left[Y_{i}\right]}{\varepsilon^{2} F_{k}^{2}}=\frac{\mathbb{V}[X]}{\alpha} \cdot \frac{1}{\varepsilon^{2} F_{k}^{2}} \leq \frac{k n^{1-1 / k} F_{k}^{2}}{\alpha \varepsilon^{2} F_{k}^{2}}
$$

We want the last quantity to be smaller than $1 / 8$, which requires that $\frac{k n^{1-1 / k}}{\alpha \varepsilon^{2}} \leq 1 / 8$, which holds for $\alpha=8 k n^{1-1 / k} / \varepsilon^{2}$, which is (surprise, surprise) the value assigned to α.

Lemma 25.2.9. We have for the estimator Z that $\mathbb{P}\left[\left|Z-F_{k}\right| \geq \varepsilon F_{k}\right] \leq \varphi$.
Proof: The probability of an estimator Y_{i} to be bad, for $i=1, \ldots, \beta$, is at most $1 / 8$. Let U be the random variable that is the number of estimators that are bad. The variable U has binomial distribution with β coin tosses and probability $1 / 8$. As such, we have

$$
\mathbb{P}[Z \text { is bad }] \leq \mathbb{P}[U \geq \beta / 2]=\mathbb{P}[U \geq(1+3) \beta / 8] \leq \exp \left(-(\beta / 8) 3^{2} / 4\right) \leq \exp \left(-\ln \frac{1}{\varphi}\right)=\varphi
$$

by Chernoff inequality (Lemma 25.5.2), and plugging in the value of $\beta=4 \ln \frac{1}{\varphi}$.
In the following, we consider a computer word to be sufficiently large to contain $\lg n$ or $\lg m$ bits. This readily implies the following.

Theorem 25.2.10. Let $\mathcal{S}=\left(s_{1}, \ldots, s_{n}\right)$ be a stream of numbers from the set $\{1, \ldots, n\}$. Let $k \geq 1$ be a parameter. Given $\varepsilon, \varphi \in(0,1)$, one can build a data-structure using $O\left(k n^{1-1 / k} \varepsilon^{-2} \log \varphi^{-1}\right)$ words, such that one can $(1 \pm \varepsilon)$-approximate the k th moment of the elements in the stream; that is, the algorithm outs a number Z, such that $(1-\varepsilon) F_{k} \leq Z \leq(1+\varepsilon) F_{k}$, where $F_{k}=\sum_{i=1}^{n} f_{i}^{k}$, and f_{i} is the number of times i appears in the stream \mathcal{S}. The algorithm succeeds with probability $\geq 1-\varphi$.

25.3. Better estimation for F_{2}

25.3.1. Pseudo-random k-wide independent sequence of signed bits

In the following, assume that we sample $O(\log n)$ bits, such that given an index i, one can compute (quickly!) a random signed bit $b(i) \in\{-1,+1\}$. We require that the resulting bits $b(1), b(2), \ldots, b(n)$ are 4 -wise independent. To this end, pick a prime p, that is, say bigger than n^{10}. This can easily be done by sampling a number in the range $\left[n^{10}, n^{11}\right.$], and checking if it is prime (which can done in polynomial time).

Once we have such a prime, we generate a random polynomial $g(i)=\sum_{i=0}^{5} c_{i} x^{i} \bmod p$, by choosing c_{0}, \ldots, c_{5} from $\mathbb{Z}_{p}=\{0, \ldots, p-1\}$. We had seen that $g(0), g(1), \ldots, g(n)$ are uniformly distributed in \mathbb{Z}_{p}, and they are, say, 6 -wise independent (see Theorem 25.5.4).

We define

$$
b(i)= \begin{cases}0 & g(i)=p-1 \\ +1 & g(i) \text { is odd } \\ -1 & g(i) \text { is even }\end{cases}
$$

Clearly, the sequence $b(1), \ldots, b(n)$ are 6 -wise independent. There is a chance that one of these bits might be zero, but the probability for that is at most n / p, which is so small, that we just assume it does not happen. There are known constructions that do not have this issue at all (one of the bits is zero), but they are more complicated.

Lemma 25.3.1. Given a parameter $\varphi \in(0,1)$, in polynomial time in $O(\log (n / \varphi))$, one can construct a function $b(\cdot)$, requiring $O(\log (n / \varphi))$ bits of storage (or $O(1)$ words), such that $b(1), \ldots, b(n) \in\{-1,+1\}$ with equal probability, an they are 6-wise independent. Furthermore, given i, one can compute $b(i)$ in $O(1)$ time.

The probability of this sequence to fail having the desired properties is smaller than φ.
Proof: We repeat the above construction, but picking a prime p in the range, say, $n^{10} / \varphi \ldots n^{11} / \varphi$.

25.3.2. Estimator construction for F_{2}

25.3.2.1. The basic estimator

As before we have the stream $\mathcal{S}=s_{1} \ldots, s_{m}$ of numbers from the set $1, \ldots, n$. We compute the 6 -wise independent sequence of random bits of Lemma 25.3.1, and in the following we assume this sequence is good (i.e., has only -1 and +1 in it). We compute the quantity

$$
T=\sum_{i=1}^{m} b(i) f_{i}=\sum_{j=1}^{m} b\left(s_{j}\right),
$$

which can be computed on the fly using $O(1)$ words of memory, and $O(1)$ time per time in the stream.
The algorithm returns $X=T^{2}$ as the desired estimate.

Analysis.

Lemma 25.3.2. We have $\mathbb{E}[X]=\sum_{i} f_{i}^{2}=F_{2}$ and $\mathbb{V}[X] \leq 2 F_{2}^{2}$.
Proof: We have that $\mathbb{E}[X]=\mathbb{E}\left[\left(\sum_{i=1}^{n} b(i) f_{i}\right)^{2}\right]$, and as such

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n}(b(i))^{2} f_{i}^{2}+2 \sum_{i<j} b(i) b(j) f_{i} f_{j}\right]=\sum_{i=1}^{m} f_{i}^{2}+2 \sum_{i<j} f_{i} f_{j} \mathbb{E}[b(i) b(j)]=\sum_{i=1}^{m} f_{i}^{2}=F_{2},
$$

since $\mathbb{E}[b(i)]=0, \mathbb{E}\left[b(i)^{2}\right]=1$, and $\mathbb{E}[b(i) b(j)]=\mathbb{E}[b(i)] \mathbb{E}[b(j)]=0$ (assuming the sequence $b(1), \ldots, b(n)$ has not failed), by the 6 -wise Independence of the sequence of signed bits.

We next compute $\mathbb{E}\left[X^{2}\right]$. To this end, let $N=\{1, \ldots, n\}$, and $\Gamma=N \times N \times N \times N$. We split this set into several sets, as follows:
(i) $\Gamma_{0}=\left\{(i, i, i, i) \in N^{4}\right\}$: All quadruples that are all the same value.
(ii) Γ_{1} : Set of all quadruples (i, j, k, l) where there is at least one value that appears exactly once.
(iii) Γ_{2} : Set of all (i, j, k, ℓ) with only two distinct values, each appearing exactly twice.

Clearly, we have $N^{4}=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$.
For a tuple $(i, i, i, i) \in \Gamma_{0}$, we have $\mathbb{E}[b(i) b(i) b(i) b(i)]=\mathbb{E}\left[b(i)^{4}\right]=1$.
For a tuple $(i, j, k, \ell) \in \Gamma_{1}$ with i being the unique value, we have that

$$
\mathbb{E}[b(i) b(j) b(k) b(\ell)]=\mathbb{E}[b(i)] \mathbb{E}[b(j) b(k) b(\ell)]=0 \mathbb{E}[b(j) b(k) b(\ell)]=0,
$$

using that the signed bits are 4 -wise independent. The same argumentation implies that $\mathbb{E}[b(i) b(j) b(k) b(\ell)]=$ 0 for any tuple $(i, j, k, \ell) \in \Gamma_{1}$.

For a tuple $(i, i, j, j) \in \Gamma_{2}$, we have $\mathbb{E}[b(i) b(i) b(j) b(j)]=\mathbb{E}\left[b(i)^{2} b(j)^{2}\right]=\mathbb{E}\left[b(i)^{2}\right] \mathbb{E}\left[b(j)^{2}\right]=1$, and the same argumentation applies to any tuple of Γ_{2}. Observe that for any $i<j$, there are $\binom{4}{2}=6$ different tuples in Γ_{2} that are made out of i and j. As such, we have

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\mathbb{E}\left[\left(\sum_{i=1}^{n} b(i) f_{i}\right)^{4}\right]=\mathbb{E}\left[\sum_{(i, j, k, \ell) \in \Gamma} b(i) b(j) b(k) b(\ell) f_{i} f_{j} f_{k} f_{\ell}\right] \\
& =\sum_{(i, i, i, i) \in \Gamma_{0}} \mathbb{E}\left[b(i)^{4}\right] f_{i}^{4}+\sum_{(i, j, k, \ell) \in \Gamma_{1}} f_{i} f_{j} f_{k} f_{\ell} \mathbb{E}[b(i) b(j) b(k) b(\ell)]+6 \sum_{i<j} \mathbb{E}\left[b(i)^{2} b(j)^{2}\right] f_{i}^{2} f_{j}^{2} \\
& =\sum_{i=1}^{n} f_{i}^{4}+6 \sum_{i<j} f_{i}^{2} f_{j}^{2} .
\end{aligned}
$$

As such, we have

$$
\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\sum_{i=1}^{n} f_{i}^{4}+6 \sum_{i<j} f_{i}^{2} f_{j}^{2}-\left(\sum_{i=1}^{m} f_{i}^{2}\right)^{2}=4 \sum_{i<j} f_{i}^{2} f_{j}^{2} \leq 2 F_{2}^{2}
$$

25.3.3. Improving the estimator

We repeat the same scheme as above. Let $\varphi, \varepsilon \in(0,1)$ be parameters. In the following, let

$$
\alpha=16 / \varepsilon^{2} \quad \text { and } \quad \beta=4 \ln \frac{1}{\varphi}
$$

Let $X_{i, j}$ be a basic estimator for F_{2}, using the estimator of Section 25.3.2.1, for $i=1, \ldots, \beta$ and $j=1, \ldots, \alpha$. Let $Y_{i}=\sum_{j=1}^{\alpha} X_{i, j} / \alpha$, for $i=1, \ldots, \beta$. Let Z be the median of Y_{1}, \ldots, Y_{β}, and the algorithm returns Z as the estimator.

Theorem 25.3.3. Given a stream $\mathcal{S}=s_{1}, \ldots, s_{m}$ of numbers from $\{1, \ldots, n\}$, and parameters $\varepsilon, \varphi \in$ $(0,1)$, one can compute an estimate Z for $F_{2}(\mathcal{S})$, such that $\mathbb{P}\left[\left|Z-F_{2}\right|>\varepsilon F_{2}\right] \leq \varphi$. This algorithm requires $O\left(\varepsilon^{-2} \log \varphi^{-1}\right)$ space (in words), and this is also the time to handle a new element in the stream.

Proof: The scheme is described above. As before, using Chebychev's inequality, we have that

$$
\mathbb{P}\left[\left|Y_{i}-F_{2}\right|>\varepsilon F_{2}\right]=\mathbb{P}\left[\left|Y_{i}-F_{2}\right|>\frac{\varepsilon F_{2}}{\sqrt{\mathbb{V}\left[Y_{i}\right]}} \sqrt{\mathbb{V}\left[Y_{i}\right]}\right] \leq \frac{\mathbb{V}\left[Y_{i}\right]}{\varepsilon^{2} F_{2}^{2}}=\frac{\mathbb{V}[X] / \alpha}{\varepsilon^{2} F_{2}^{2}} \leq \frac{2 F_{2}^{2}}{\alpha \varepsilon^{2} F_{2}^{2}}=\frac{1}{8},
$$

by Lemma 25.3.2. Let U be the number of estimators in Y_{1}, \ldots, Y_{β} that are outside the acceptable range. Arguing as in Lemma 25.2.9, we have

$$
\mathbb{P}[Z \text { is bad }] \leq \mathbb{P}[U \geq \beta / 2]=\mathbb{P}[U \geq(1+3) \beta / 8] \leq \exp \left(-(\beta / 8) 3^{2} / 4\right) \leq \exp \left(-\ln \frac{1}{\varphi}\right)=\varphi
$$

by Chernoff inequality (Lemma 25.5.2), and

25.4. Bibliographical notes

The beautiful results of this chapter are from a paper from Alon et al. [AMS99].

25.5. From previous lectures

Theorem 25.5.1 (Chebyshev's inequality). Let X be a real random variable, with $\mu_{X}=\mathbb{E}[X]$, and $\sigma_{X}=\sqrt{\mathbb{V}[X]}$. Then, for any $t>0$, we have $\mathbb{P}\left[\left|X-\mu_{X}\right| \geq t \sigma_{X}\right] \leq 1 / t^{2}$.

Lemma 25.5.2. Let X_{1}, \ldots, X_{n} be n independent Bernoulli trials, where $\mathbb{P}\left[X_{i}=1\right]=p_{i}$, and $\mathbb{P}\left[X_{i}=0\right]=$ $1-p_{i}$, for $i=1, \ldots, n$. Let $X=\sum_{i=1}^{b} X_{i}$, and $\mu=\mathbb{E}[X]=\sum_{i} p_{i}$. For $\delta \in(0,4)$, we have

$$
\mathbb{P}[X>(1+\delta) \mu]<\exp \left(-\mu \delta^{2} / 4\right)
$$

Lemma 25.5.3. Let $X_{1}, \ldots, X_{n} \in\{0,1\}$ be n independent random variables, with $p_{i}=\mathbb{P}\left[X_{i}=1\right]$, for all i. For $X=\sum_{i=1}^{n} X_{i}$, and $\mu=\mathbb{E}[X]=\sum_{i} p_{i}$, we have that $\mathbb{P}[X<(1-\delta) \mu]<\exp \left(-\mu \delta^{2} / 2\right)$.

Theorem 25.5.4. let p be a prime number, and pick independently and uniformly k values $b_{0} . b_{1}, \ldots, b_{k-1} \in$ \mathbb{Z}_{p}, and let $g(x)=\sum_{i=0}^{k-1} b_{i} x^{i} \bmod p$. Then the random variables

$$
Y_{0}=g(0), \ldots, Y_{p-1}=g(p-1) .
$$

are uniformly distributed in \mathbb{Z}_{p} and are k-wise independent.

References

[AMS99] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. J. Comput. Syst. Sci., 58(1): 137-147, 1999.
[MR95] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge, UK: Cambridge University Press, 1995.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

