
Chapter 23

Dimension Reduction
By Sariel Har-Peled, April 26, 2022①

23.1. Introduction to dimension reduction

Given a set 𝑃 of 𝑛 points in R𝑑, we need 𝑛𝑑 numbers to describe them. In many scenarios, 𝑑 might
be quite large, or even larger than 𝑛 (in some applications, where the access to the points is given only
through dot-product, it is useful to think about the dimension as being unbounded). If we care only
about the distances between any pairs of points, then all we need to store are the pairwise distances
between the points. This would require roughly 𝑛2 numbers, if we just write down the distance matrix.

But can we do better? (I.e., use less space.) A natural idea is to reduce the dimension of the points.
Namely, replace the 𝑖th point p𝑖 ∈ 𝑃, by a point u𝑖 ∈ R𝑘 , where 𝑘 ≪ 𝑑 and 𝑘 ≪ 𝑛. We would like 𝑘 to
be small. If we can do that, then we compress the data from size 𝑑𝑛 to size 𝑘𝑛, which might be a large
compression.

Of course, one can do such compression of information without losing some information. In particular,
we are willing to let the distances to be a bit off. Formally, we would like to have the property that
(1 − 𝜀)∥p𝑖 − p 𝑗 ∥ ≤ ∥u𝑖 − u 𝑗 ∥ ≤ (1 + 𝜀)∥p𝑖 − p 𝑗 ∥, for all 𝑖, 𝑗 , where u𝑖 is the image of p𝑖 ∈ 𝑃 after the
dimension reduction.

To this end, we generate a random matrix M of dimensions 𝑑 × 𝑘, where 𝑘 = Θ(𝜀−2 log 𝑛) (the exact
details of how to generate this matrix are below, but informally every entry is going to be picked from
a normal distribution and scaled appropriately). We then set u𝑖 = Mp𝑖, for all p𝑖 ∈ 𝑃.

Before dwelling on the details, we need to better understand the normal distribution.

23.2. Normal distribution
The standard normal distribution has

𝑓 (𝑥) = 1
√

2𝜋
exp

(
−𝑥2/2

)
(23.1)

as its density function. We denote that 𝑋 is distributed according to such distribution, using 𝑋 ∼ N(0, 1).
It is depicted in Figure 23.1.

Somewhat strangely, it would be convenient to consider two such independent variables 𝑋 and 𝑌

together. Their probability space (𝑋,𝑌 ) is the plane, and it defines a two dimensional density function

𝑔(𝑥, 𝑦) = 𝑓 (𝑥) 𝑓 (𝑦) = 1
2𝜋 exp

(
−(𝑥2 + 𝑦2)/2

)
. (23.2)

The key property of this function is that 𝑔(𝑥, 𝑦) = 𝑔(𝑥′, 𝑦′) ⇐⇒ ∥(𝑥, 𝑦)∥2 = 𝑥2 + 𝑦2 = ∥(𝑥′, 𝑦′)∥2.
Namely, 𝑔(𝑥, 𝑦) is symmetric around the origin (i.e., all the points in the same distance from the origin
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Figure 23.1

have the same density). We next use this property in verifying that 𝑓 (·) it is indeed a valid density
function.
Lemma 23.2.1. We have 𝐼 =

∫ ∞
−∞ 𝑓 (𝑥) d𝑥 = 1, where 𝑓 (𝑥) = 1√

2𝜋
exp

(
−𝑥2/2

)
.

Proof: Observe that

𝐼2 =

(∫ ∞

𝑥=−∞
𝑓 (𝑥) d𝑥

)2
=

(∫ ∞

𝑥=−∞
𝑓 (𝑥) d𝑥

) (∫ ∞

𝑦=−∞
𝑓 (𝑦) d𝑦

)
=

∫ ∞

𝑥=−∞

∫ ∞

𝑦=−∞
𝑓 (𝑥) 𝑓 (𝑦) 𝑑𝑥 𝑑𝑦

=

∫ ∞

𝑥=−∞

∫ ∞

𝑦=−∞
𝑔(𝑥, 𝑦) d𝑥 d𝑦.

Change the variables to 𝑥 = 𝑟 cos𝛼, 𝑦 = 𝑟 sin 𝛼, and observe that the determinant of the Jacobian is

𝐽 = det

����� 𝜕𝑥𝜕𝑟 𝜕𝑥
𝜕𝛼

𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝛼

����� = det
����cos𝛼 −𝑟 sin 𝛼

sin 𝛼 𝑟 cos𝛼

���� = 𝑟
(
cos2 𝛼 + sin2 𝛼

)
= 𝑟.

As such,

𝐼2 =
1

2𝜋

∫ ∞

𝑟=0

∫ 2𝜋

𝛼=0
exp

(
−𝑟

2

2

)
|𝐽 | 𝑑𝛼 𝑑𝑟 =

1
2𝜋

∫ ∞

𝑟=0

∫ 2𝜋

𝛼=0
exp

(
−𝑟

2

2

)
𝑟 𝑑𝛼 𝑑𝑟

=

∫ ∞

𝑟=0
exp

(
−𝑟

2

2

)
𝑟 𝑑𝑟 =

[
− exp

(
−𝑟

2

2

)]𝑟=∞
𝑟=0

= − exp(−∞) − (− exp(0)) = 1. ■

Lemma 23.2.2. For 𝑋 ∼ N(0, 1), we have that E[𝑋] = 0 and V[𝑋] = 1.

Proof: The density function of 𝑋, see Eq. (23.2) is symmetric around 0, which implies that E[𝑋] = 0.
As for the variance, we have

V[𝑋] = E
[
𝑋2] − (E[𝑋])2 = E

[
𝑋2] = ∫ ∞

𝑥=−∞
𝑥2 P[𝑋 = 𝑥] d𝑥 =

1
√

2𝜋

∫ ∞

𝑥=−∞
𝑥2 exp(−𝑥2/2) d𝑥.

Observing that
𝑥2 exp

(
−𝑥2/2

)
=

(
−𝑥 exp(−𝑥2/2)

)′
+ exp

(
−𝑥2/2

)
,

implies (using integration by guessing) that

V[𝑋] =
1

√
2𝜋

[
−𝑥 exp(−𝑥2/2)

]∞
𝑥=−∞

+ 1
√

2𝜋

∫ ∞

−∞
exp(−𝑥2/2) d𝑥 = 0 + 1 = 1. ■
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23.2.1. The standard multi-dimensional normal distribution
The multi-dimensional normal distribution, denoted by N𝑑, is the distribution in R𝑑 that assigns

a point p = (p1, . . . , p𝑑) the density 𝑔(p) = 1
(2𝜋)𝑑/2

exp
(
−1

2

𝑑∑︁
𝑖=1

p2
𝑖

)
.

It is easy to verify, using the above, that
∫
R𝑑

𝑔(p)𝑑p = 1. Furthermore, we have the following useful
but easy properties.②

Lemma 23.2.3. We have the following properties:
(A) Consider 𝑑 independent variables 𝑋1, . . . , 𝑋𝑑 ∼ N(0, 1), the point u = (𝑋1, . . . , 𝑋𝑑) has the multi-

dimensional normal distribution N𝑑.
(B) The multi-dimensional normal distribution is symmetric. For any two points p, u ∈ R𝑑 such that

∥p∥ = ∥u∥, we have that 𝑔(p) = 𝑔(u), where 𝑔(·) is the density function of the multi-dimensional
normal distribution N𝑑.

(C) The projection of the normal distribution on any direction (i.e., any vector of length 1) is a one-
dimensional normal distribution.

Proof: (A) Let 𝑓 (·) denote the density function of N(0, 1), and observe that the density function of u is
𝑓 (𝑋1) 𝑓 (𝑋2) · · · 𝑓 (𝑋𝑑),= 1√

2𝜋
exp

(
−𝑋2

1/2
)
· · · 1√

2𝜋
exp

(
−𝑋2

𝑑
/2

)
, which readily implies the claim.

(B) Readily follows from observing that 𝑔(p) = 1
(2𝜋)𝑑/2

exp
(
− ∥p∥2 /2

)
.

(C) Let p = (𝑋1, . . . , 𝑋𝑑), where 𝑋1, . . . , 𝑋𝑑 ∼ N(0, 1). Let 𝑣 be any unit vector in R𝑑, and observe
that by the symmetry of the density function, we can (rigidly) rotate the space around the origin in any
way we want, and the measure of sets does not change. In particular rotate space so that 𝑣 becomes
the unit vector (1, 0, . . . , 0). We have that

P[⟨𝑣, p⟩ ≤ 𝛼] = P[⟨(1, 0, . . . , 0), p⟩ ≤ 𝛼] = P[𝑋1 ≤ 𝛼],

which implies that ⟨𝑣, p⟩ ∼ 𝑋1 ∼ N(0, 1). ■

The generalized multi-dimensional distribution is a Gaussian. Fortunately, we only need the simpler
notion.

23.3. Dimension reduction

23.3.1. The construction
The input is a set 𝑃 ⊆ R𝑑 of 𝑛 points (where 𝑑 is potentially very large), and let 𝜀 > 0 be an approxi-
mation parameter. For

𝑘 =
⌈
24𝜀−2 ln 𝑛

⌉
(23.3)

we pick 𝑘 vectors 𝑢1, . . . , 𝑢𝑘 independently from the 𝑑-dimensional normal distribution N𝑑. Given a
point p ∈ R𝑑, its image is

ℎ(𝑣) = 1
√
𝑘

(
⟨𝑢1, p⟩ , · · · , ⟨𝑢𝑘 , p⟩

)
.

②The normal distribution has such useful properties that it seems that the only thing normal about it is its name.
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In matrix notation, let

M =
1
√
𝑘

©­­­­«
𝑢1
𝑢2
...

𝑢𝑘

ª®®®®¬
.

For every point p𝑖 ∈ 𝑃, we set u𝑖 = ℎ(p𝑖) = Mp𝑖.

23.3.2. Analysis

23.3.2.1. A single unit vector is preserved

Consider a vector 𝑣 of length one in R𝑑. The natural question is what is the value of 𝑘 needed, so that
the length of ℎ(𝑣) is a good approximation to 𝑣. Since ⟨𝑢𝑖, 𝑣⟩ ∼ N(0, 1), by Lemma 23.2.3, this question
can boil down to the following: Given 𝑘 variables 𝑋1, . . . , 𝑋𝑘 ∼ N(0, 1), sampled independently, how
concentrated is the random variable

𝑌 = ∥(𝑋1, . . . , 𝑋𝑘 )∥2 =

𝑘∑︁
𝑖=1

𝑋2
𝑖 .

We have that E[𝑌 ] = 𝑘 E
[
𝑋2
𝑖

]
= 𝑘 V[𝑋𝑖] = 𝑘, since 𝑋𝑖 ∼ N(0, 1), for any 𝑖. The distribution of 𝑌 is

known as the chi-square distribution with 𝑘 degrees of freedom.

Lemma 23.3.1. Let 𝜑 ∈ (0, 1), and 𝜀 ∈ (0, 1/2) be parameters, and let 𝑘 ≥
⌈16
𝜀2 ln 2

𝜑

⌉
be an integer.

Then, for 𝑘 independent random variables 𝑋1, . . . , 𝑋𝑘 ∼ N(0, 1), we have that 𝑍 =
∑

𝑖 𝑋
2
𝑖
/𝑘 is strongly

concentrated. Formally, we have that P[𝑍 ≤ 1 + 𝜀] ≥ 1 − 𝜑.

Proof: Arguing as in the proof of Chernoff’s inequality, using 𝑡 = 𝜀/4 < 1/2, we have

P[𝑍 ≥ 1 + 𝜀] ≤ P
[
exp(𝑡𝑘𝑍) ≥ exp

(
𝑡𝑘 (1 + 𝜀)

) ]
≤ E[exp(𝑡𝑘𝑍)]

exp
(
𝑡𝑘 (1 + 𝜀)

) =

𝑘∏
𝑖=1

E
[
exp(𝑡𝑋2

𝑖
)
]

exp
(
𝑡 (1 + 𝜀)

) .
Using the substitution 𝑥 =

𝑦√
1−2𝑡

and d𝑥 = 1√
1−2𝑡

d𝑦, we have

E
[
exp(𝑡𝑋2

𝑖 )
]
=

∫ ∞

𝑥=−∞

exp(𝑡𝑥2)
√

2𝜋
exp

(
−𝑥

2

2

)
d𝑥 =

1
√

2𝜋

∫ ∞

𝑥=−∞
exp

(
−(1 − 2𝑡) 𝑥

2

2

)
d𝑥

=
1

√
2𝜋

∫ ∞

𝑦=−∞
exp

(
−1 − 2𝑡

2

(
𝑦

√
1 − 2𝑡

)2
)

1
√

1 − 2𝑡
d𝑦 =

1
√

1 − 2𝑡
· 1
√

2𝜋

∫ ∞

𝑦=−∞
exp

(
− 𝑦2

2

)
d𝑦

=
1

√
1 − 2𝑡

.

We have that 1
1−𝑧 =

∑∞
𝑖=0 𝑧

𝑖, for 0 ≤ 𝑧 < 1, and thus

1
1−𝜀/2 =

∑︁
𝑖

(𝜀
2

) 𝑖
≤

[
1 + 1

2

∞∑︁
𝑖=1

(𝜀
2

) 𝑖 ]2
≤ exp

[1
2

∞∑︁
𝑖=1

(𝜀
2

) 𝑖 ]2
.
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Since 𝑡 = 𝜀/4, we have

E
[
exp(𝑡𝑋2

𝑖 )
]
=

1
√

1 − 2𝑡
=

1√︁
1 − 𝜀/2

≤ exp
(
1
2

∞∑︁
𝑖=1

(𝜀
2

) 𝑖)
.

As such, we have

P[𝑍 ≥ 1 + 𝜀] ≤ exp
(
1
2

∞∑︁
𝑖=1

(𝜀
2

) 𝑖
− 𝜀

4 (1 + 𝜀)
) 𝑘

= exp
(
−𝜀

2

8 + 1
2

∞∑︁
𝑖=3

(𝜀
2

) 𝑖) 𝑘
≤ exp

(
− 𝑘𝜀2

16

)
≤ 𝜑

2 ,

since, for 𝜀 < 1/2, we have 1
2
∑∞

𝑖=3(𝜀/2)𝑖 ≤ (𝜀/2)3 ≤ 𝜀2/16. The last step in the above inequality follows
by substituting in the lower bound on the value of 𝑘. ■

The other direction we need follows in a similar fashion. We state the needed result without proof
[LM00, Lemma 1] (which also yields better constants):

Lemma 23.3.2. Let 𝑌1, . . . , 𝑌𝑘 be 𝑘 independent random variables with 𝑌𝑖 ∼ N(0, 1). Let 𝑍 =
∑𝑘

𝑖=1𝑌
2
𝑖
/𝑘.

For any 𝑥 > 0, we have that

P
[
𝑍 ≤ 1 − 2

√︁
𝑥/𝑘

]
≤ exp(−𝑥) and P

[
𝑍 ≥ 1 + 2

√︁
𝑥/𝑘 + 2𝑥/𝑘

]
≤ exp(−𝑥).

For our purposes, we require that exp(−𝑥) ≤ 𝜑/2, which implies 𝑥 = ln(2/𝜑). We further require that
2
√︁
𝑥/𝑘 ≤ 𝜀 and 2

√︁
𝑥/𝑘 + 2𝑥/𝑘 ≤ 𝜀, which hold for 𝑘 = 8𝜀−2 ln 2

𝜑
, for 𝜀 ≤ 1. We thus get the following

result.

Corollary 23.3.3. Let 𝜑 ∈ (0, 1), and 𝜀 ∈ (0, 1/2) be parameters, and let 𝑘 ≥
⌈ 8
𝜀2 ln 2

𝜑

⌉
be an integer.

Then, for 𝑘 independent random variables 𝑋1, . . . , 𝑋𝑘 ∼ N(0, 1), we have for 𝑍 =
∑

𝑖 𝑋
2
𝑖
/𝑘 that that

P[1 − 𝜀 ≤ 𝑍 ≤ 1 + 𝜀] ≥ 1 − 𝜑.

Remark 23.3.4. The result of Corollary 23.3.3 is surprising. It says that if we pick a point according to
the 𝑘-dimensional normal distribution, then its distance to the origin is strongly concentrated around√
𝑘. Namely, the normal distribution “converges” to a sphere, as the dimension increases. The mind

boggles.

Lemma 23.3.5. Let 𝑣 be a unit vector in R𝑑, then

P
[
1 − 𝜀 ≤ ∥M𝑣∥ ≤ 1 + 𝜀

]
≥ 1 − 1

𝑛2 .

Proof: Observe that if for a number 𝑥, if 1 − 𝜀 ≤ 𝑥2 ≤ 1 + 𝜀, then 1 − 𝜀 ≤ 𝑥 ≤ 1 + 𝜀. As such, the claim
holds if 1 − 𝜀 ≤ ∥M𝑣∥2 ≤ 1 + 𝜀. By Corollary 23.3.3, setting 𝜑 = 1/𝑛2, we need

𝑘 ≥ 8𝜀−2 ln(2/𝜑) = 8𝜀−2 ln(2𝑛2) = 24𝜀−2 ln 𝑛,

which holds for the value picked for 𝑘 in Eq. (23.3). ■
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23.3.3. All pairwise distances are preserved
Lemma 23.3.6. With probability at least half, for all points p, p′ ∈ 𝑃, we have that

(1 − 𝜀) ∥p − p′∥ ≤ ∥Mp − Mu∥ ≤ (1 + 𝜀) ∥p − u∥ .

Proof: The key observation is that M is a linear operator. As such, let 𝑣 = (p − p′)/∥p − p′∥ be a unit
vector, and observe that

(1 − 𝜀) ∥p − p′∥ ≤ ∥Mp − Mp′∥ = ∥M(p − p′)∥ ≤ (1 + 𝜀) ∥p − p′∥

⇐⇒ 1 − 𝜀 ≤




M p − p′

∥p − p′∥





 ≤ 1 + 𝜀

⇐⇒ (1 − 𝜀) ∥𝑣∥ ≤ ∥M𝑣∥ ≤ (1 + 𝜀) ∥𝑣∥ .

The probability the later condition does not hold is at most 1/𝑛2, by Lemma 23.3.5. As such, for all
possible pairs of points, the probability of failure is

(𝑛
2
)
· 1
𝑛2 ≤ 1/2, as claimed. ■

We thus got the famous JL-Lemma.

Theorem 23.3.7 (The Johnson-Lindenstrauss Lemma). Given a set 𝑃 of 𝑛 points in R𝑑, and a
parameter 𝜀, one can reduce the dimension of 𝑃 to 𝑘 = 𝑂 (𝜀−2 log 𝑛) dimensions, such that all pairwise
distances are 1 ± 𝜀 preserved.

23.4. Even more on the normal distribution
The following is not used anywhere in the above, and is provided as additional information about the
normal distribution.

Lemma 23.4.1. Let 𝑋 ∼ N(0, 1), and let 𝜎 > 0 and 𝜇 be two real numbers. The random variable
𝑌 = 𝜎𝑋 + 𝜇 has the density function

𝑓𝜇,𝜎 (𝑥) =
1

√
2𝜋𝜎

exp
(
− (𝑥 − 𝜇)2

2𝜎2

)
. (23.4)

The variable 𝑌 has the normal distribution with variance 𝜎2, and expectation 𝜇, denoted by 𝑌 ∼
N

(
𝜇, 𝜎2).

Proof: We have P[𝑌 ≤ 𝛼] = P[𝜎𝑋 + 𝜇 ≤ 𝛼] = P
[
𝑋 ≤ 𝛼−𝜇

𝜎

]
=

∫ (𝛼−𝜇)/𝜎
𝑦=−∞ 𝑓 (𝑦) d𝑦, where 𝑓 (𝑥) = 1√

2𝜋
exp

(
−𝑥2/2

)
.

Substituting 𝑦 = (𝑥 − 𝜇)/𝜎, and observing that d𝑦/d𝑥 = 1/𝜎, we have

P[𝑌 ≤ 𝛼] =
∫ 𝛼

𝑥=−∞
𝑓

(𝑥 − 𝜇

𝜎

) 1
𝜎

d𝑥 =
1

√
2𝜋𝜎

∫ 𝛼

𝑥=−∞
exp

(
− (𝑥 − 𝜇)2

2𝜎2

)
d𝑥,

as claimed.
As for the second part, observe that E[𝑌 ] = E[𝜎𝑋 + 𝜇] = 𝜎 E[𝑋] + 𝜇 = 𝜇 and V[𝑌 ] = V[𝜎𝑋 + 𝜇] =

V[𝜎𝑋] = 𝜎2V[𝑋] = 𝜎2. ■

Lemma 23.4.2. Consider two independent variables 𝑋 ∼ N(0, 1) and 𝑌 ∼ N(0, 1). For 𝛼, 𝛽 > 0, we
have 𝑍 = 𝛼𝑋 + 𝛽𝑌 ∼ N

(
0, 𝜎2) , where 𝜎 =

√︁
𝛼2 + 𝛽2.
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Proof: Consider the region in the plane 𝐻− =
{
(𝑥, 𝑦) ∈ R2 �� 𝛼𝑥 + 𝛽𝑦 ≤ 𝑧

}
– this is a halfspace bounded

by the line ℓ ≡ 𝛼𝑥 + 𝛽𝑦 = 𝑧. This line is orthogonal to the vector (−𝛽, 𝛼). We have that ℓ ≡ 𝛼
𝜎
𝑥 + 𝛽

𝜎
𝑦 = 𝑧

𝜎
.

Observe that


( 𝛼

𝜎
,
𝛽

𝜎

)

 = 1, which implies that the distance of ℓ from the origin is 𝑑 = 𝑧/𝜎.
Now, we have

P[𝑍 ≤ 𝑧] = P[𝛼𝑋 + 𝛽𝑌 ≤ 𝑧] = P[𝐻−] =
∫
𝑝=(𝑥,𝑦)∈𝐻−

𝑔(𝑥, 𝑦) d𝑝,

see Eq. (23.2). Since, the two dimensional density function 𝑔 is symmetric around the origin. any
halfspace containing the origin, which its boundary is in distance 𝑑 from the origin, has the same
probability. In particular, consider the halfspace 𝑇 =

{
(𝑥, 𝑦) ∈ R2 �� 𝑥 ≤ 𝑑

}
. We have that

P[𝑍 ≤ 𝑧] = P[𝐻−] = P[𝑇] = P[𝑋 ≤ 𝑑] = 1
√

2𝜋

∫ 𝑑

−∞
exp

(
−𝑥

2

2

)
d𝑥 =

1
√

2𝜋

∫ 𝑧

𝑦=−∞
exp

(
− 𝑦2

2𝜎2

)
d𝑥
d𝑦 d𝑦,

=
1

√
2𝜋𝜎

∫ 𝑧

𝑦=−∞
exp

(
− 𝑦2

2𝜎2

)
d𝑦,

by change of variables 𝑥 = 𝑦/𝜎, and observing that d𝑥/d𝑦 = 1/𝜎. By Eq. (23.4), the above integral is
the probability of a variable distributed N

(
0, 𝜎2) to be smaller than 𝑧, establishing the claim. ■

Lemma 23.4.3. Consider two independent variables 𝑋 ∼ N
(
𝜇1, 𝜎

2
1
)

and 𝑌 ∼ N
(
𝜇2, 𝜎

2
2
)
. We have

𝑍 = 𝑋 + 𝑌 ∼ N
(
𝜇1 + 𝜇2, 𝜎

2
1 + 𝜎2

2
)
,

Proof: Let 𝑋 ∼ N(0, 1) and 𝑌 ∼ N(0, 1), and observe that we can write 𝑋 = 𝜎1𝑋 + 𝜇1 and 𝑌 = 𝜎2𝑌 + 𝜇2.
As such, we have

𝑍 = 𝑋 + 𝑌 = 𝜎1𝑋 + 𝜎2𝑌 + 𝜇1 + 𝜇2.

The variable 𝑊 = 𝜎1𝑋 + 𝜎2𝑌 ∼ N
(
0, 𝜎2

1 + 𝜎2
2
)
, by Lemma 23.4.2. Adding 𝜇1 + 𝜇2 to 𝑊 , just shifts its

expectation, implying the claim. ■

23.5. Bibliographical notes
The original result is due to Johnson and Lindenstrauss [JL84]. By now there are many proofs of this
lemma. Our proof follows class notes of Anupam Gupta, which in turn follows Indyk and Motwani
[IM98],
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