
Chapter 22

The Probabilistic Method II
By Sariel Har-Peled, April 26, 2022①

“Today I know that everything watches, that nothing goes unseen, and that even wallpaper has a better memory
than ours. It isn’t God in His heaven that sees all. A kitchen chair, a coat-hanger a half-filled ash tray, or the wood
replica of a woman name Niobe, can perfectly well serve as an unforgetting witness to every one of our acts.”

Gunter Grass, The tin drum

22.1. Expanding Graphs
In this lecture, we are going to discuss expanding graphs.

Definition 22.1.1. An (𝑛, 𝑑, 𝛼, 𝑐) OR-concentrator is a bipartite multigraph G(𝐿, 𝑅, 𝐸), with the in-
dependent sets of vertices 𝐿 and 𝑅 each of cardinality 𝑛, such that

(i) Every vertex in 𝐿 has degree at most 𝑑.
(ii) Any subset 𝑆 of vertices of 𝐿, with |𝑆 | ≤ 𝛼𝑛 has at least 𝑐 |𝑆 | neighbors in 𝑅.

A good (𝑛, 𝑑, 𝛼, 𝑐) OR-concentrator should have 𝑑 as small as possible②, and 𝑐 as large as possible.

Theorem 22.1.2. There is an integer 𝑛0, such that for all 𝑛 ≥ 𝑛0, there is an (𝑛, 18, 1/3, 2) OR-
concentrator.

Proof: Let every vertex of 𝐿 choose neighbors by sampling (with replacement) 𝑑 vertices independently
and uniformly from 𝑅. We discard multiple parallel edges in the resulting graph.

Let E𝑠 be the event that a subset of 𝑠 vertices of 𝐿 has fewer than 𝑐𝑠 neighbors in 𝑅. Clearly,

P
[
E𝑠

]
≤

(
𝑛

𝑠

) (
𝑛

𝑐𝑠

) (𝑐𝑠
𝑛

)𝑑𝑠
≤

(𝑛𝑒
𝑠

) 𝑠 (𝑛𝑒
𝑐𝑠

)𝑐𝑠 (𝑐𝑠
𝑛

)𝑑𝑠
=

[( 𝑠
𝑛

)𝑑−𝑐−1
exp

(
1 + 𝑐

)
𝑐𝑑−𝑐

] 𝑠
,

since
(𝑛
𝑘

)
≤

(
𝑛𝑒
𝑘

) 𝑘 . Setting 𝛼 = 1/3 using 𝑠 ≤ 𝛼𝑛, and 𝑐 = 2, we have

P
[
E𝑠

]
≤

[(1
3

)𝑑−𝑐−1
𝑒1+𝑐𝑐𝑑−𝑐

] 𝑠
≤

[(1
3

)𝑑
31+𝑐𝑒1+𝑐𝑐𝑑−𝑐

] 𝑠
≤

[(1
3

)𝑑
31+𝑐𝑒1+𝑐𝑐𝑑

] 𝑠
≤

[( 𝑐
3

)𝑑
(3𝑒)1+𝑐

] 𝑠
≤

[(2
3

)18
(3𝑒)1+2

] 𝑠
≤

(
0.4

) 𝑠
,

as 𝑐 = 2 and 𝑑 = 18. Thus, ∑︁
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It thus follows that the random graph we generated has the required properties with positive probabil-
ity. ■

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

②Or smaller!
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22.1.1. An alternative construction
Theorem 22.1.3. Consider a bipartite graph over left and right sets 𝐿 and 𝑅, such that 𝑛 = |𝐿 | = |𝑅 |.
Consider a random graph G formed by the union of 𝑑 = 18 random perfect matchings between 𝐿 and 𝑅.
Let G be the resulting graph. Then, for 𝑑 ≥ 18, the resulting graph is (𝑛, 18, 1/3, 2) OR-concentrator.
Furthermore, G has maximum degree 𝑑.

Proof: Let E𝑠 be the event that a subset of 𝑠 vertices of 𝐿 has fewer than 𝑐𝑠 neighbors in 𝑅. For a choice
of such a set 𝑆 ⊆ 𝐿, and a set 𝑇 of size 𝑐𝑠 in 𝑅, we have that number of ways to chose a matching such
that all the vertices of 𝑆 has neighbors in 𝑇 is 𝑐𝑠 · (𝑐𝑠 − 1) · · · (𝑐𝑠 − 𝑠 + 1) – indeed, we fix an ordering of
the items in 𝑆, and assign them their match in 𝑇 one by one. As such, we have
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The quantity in the right, in the above inequality, is the same quantity bounded in the proof of Theo-
rem 22.1.2, and the result follows by the same argumentation. ■

22.1.2. An expander
Definition 22.1.4. An (𝑛, 𝑑, 𝑐)-expander is a graph G = (V, E) over 𝑛 vertices, 𝑛, such that

(i) Every vertex in G has degree at most 𝑑.
(ii) Any subset 𝑆 of vertices of V, with |𝑆 | ≤ 𝑛/3 has at least 𝑐 |𝑆 | neighbors.

Theorem 22.1.5. One can construct a (𝑛, 36, 2)-expander

Proof: Let G be a graph with the set of vertices being J𝑛K. Construction the graph of Theorem 22.1.3,
and let G′ be this graph. For every edge 𝑣𝑖𝑢 𝑗 in G′ create an edge 𝑖 𝑗 in G. Clearly, G has the desired
properties. ■

22.2. Probability Amplification
Let Alg be an algorithm in RP, such that given 𝑥, Alg picks a random number 𝑟 from the range
Z𝑛 = {0, . . . , 𝑛 − 1}, for a suitable choice of a prime 𝑛, and computes a binary value Alg(𝑥, 𝑟) with the
following properties:
(A) If 𝑥 ∈ 𝐿, then Alg(𝑥, 𝑟) = 1 for at least half the possible values of 𝑟.
(B) If 𝑥 ∉ 𝐿, then Alg(𝑥, 𝑟) = 0 for all possible choices of 𝑟.

Next, we show that using lg2 𝑛 bits③ one can achieve 1/𝑛lg 𝑛 confidence, compared with the naive 1/𝑛,
and the 1/𝑡 confidence achieved by 𝑡 (dependent) executions of the algorithm using two-point sampling.

Theorem 22.2.1. For 𝑛 large enough, there exists a bipartite graph G(𝑉, 𝑅, 𝐸) with |𝑉 | = 𝑛, |𝑅 | = 2lg2 𝑛

such that:
③Everybody knows that lg 𝑛 = log2 𝑛. Everybody knows that the captain lied.
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(i) Every subset of 𝑛/2 vertices of 𝑉 has at least 2lg2 𝑛 − 𝑛 neighbors in 𝑅.
(ii) No vertex of 𝑅 has more than 12 lg2 𝑛 neighbors.

Proof: Each vertex of 𝑉 chooses 𝑑 = 2lg2 𝑛 (4 lg2 𝑛)/𝑛 neighbors independently in 𝑅. We show that the
resulting graph violate the required properties with probability less than half.④

The probability for a set of 𝑛/2 vertices on the left to fail to have enough neighbors, is
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As for the second property, note that the expected number of neighbors of a vertex 𝑣 ∈ 𝑅 is 4 lg2 𝑛.
Indeed, the probability of a vertex on 𝑅 to become adjacent to a random edge is 𝜌 = 1/|𝑅 |, and
this “experiment” is repeated independently 𝑑𝑛 times. As such, the expected degree of a vertex is
𝜇 E

[
𝑌
]
= 𝑑𝑛/|𝑅 | = 4 lg2 𝑛. The Chernoff bound (Theorem 22.4.1p4) implies that
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Since there are 2lg2 𝑛 vertices in 𝑅, we have that the probability that any vertex in 𝑅 has a degree that
exceeds 12 lg2 𝑛, is, by the union bound, at most |𝑅 | 𝛼 ≤ 2lg2 𝑛 exp

(
−4 lg2 𝑛

)
≤ exp
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concluding our tedious calculations⑥.
Thus, with constant positive probability, the random graph has the required property, as the union

of the two bad events has probability ≪ 1/2. ■

We assume that given a vertex (of the above graph) we can compute its neighbors, without computing
the whole graph.

So, we are given an input 𝑥. Use lg2 𝑛 bits to pick a vertex 𝑣 ∈ 𝑅. We next identify the neighbors
of 𝑣 in 𝑉 : 𝑟1, . . . , 𝑟𝑘 . We then compute Alg(𝑥, 𝑟𝑖), for 𝑖 = 1, . . . 𝑘. Note that 𝑘 = 𝑂

(
lg2 𝑛

)
. If all 𝑘 calls

return 0, then we return that Alg is not in the language. Otherwise, we return that 𝑥 belongs to 𝑉 .

④Here, we keep parallel edges if they happen – which is unlikely. The reader can ignore this minor technicality, on her
way to ignore this whole write-up.

⑤The reader might want to verify that one can use significantly weaker upper bounds and the result still follows – we
are using the tighter bounds here for educational reasons, and because we can.

⑥Once again, our verbosity in applying the Chernoff inequality is for educational reasons – usually such calculations
would be swept under the rag. No wonder than that everybody is afraid to look under the rag.
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If 𝑥 is in the language, then consider the subset 𝑈 ⊆ 𝑉 , such that running Alg on any of the strings
of 𝑈 returns TRUE. We know that |𝑈 | ≥ 𝑛/2. The set 𝑈 is connected to all the vertices of 𝑅 except for
at most |𝑅 | −

(
2lg2 𝑛 − 𝑛

)
= 𝑛 of them. As such, the probability of a failure in this case, is

P
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𝑛
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We summarize the result.

Lemma 22.2.2. Given an algorithm Alg in RP that uses lg 𝑛 random bits, and an access explicit access
to the graph of Theorem 22.2.1, one can decide if an input word is in the language of Alg using lg2 𝑛

bits, and the probability of f failure is at most 𝑛/2lg2 𝑛.

Let us compare the various results we now have about running an algorithm in RP using lg2 𝑛 bits.
We have three options:
(A) Randomly run the algorithm lg 𝑛 times independently. The probability of failure is at most 1/2lg 𝑛 =

1/𝑛.
(B) Lemma 22.2.2, which as probability of failure at most 1/2lg 𝑛 = 1/𝑛.
(C) The third option is to use pairwise independent sampling (see Lemma 22.4.2p4). While it is not

directly comparable to the above two options, it is clearly inferior, and is thus less useful.

Unfortunately, there is no explicit construction of the expanders used here. However, there are
alternative techniques that achieve a similar result.

22.3. Oblivious routing revisited
Theorem 22.3.1. Consider any randomized oblivious algorithm for permutation routing on the hy-
percube with 𝑁 = 2𝑛 nodes. If this algorithm uses 𝑘 random bits, then its expected running time is
Ω

(
2−𝑘

√︁
𝑁/𝑛

)
.

Corollary 22.3.2. Any randomized oblivious algorithm for permutation routing on the hypercube with
𝑁 = 2𝑛 nodes must use Ω(𝑛) random bits in order to achieve expected running time 𝑂 (𝑛).

Theorem 22.3.3. For every 𝑛, there exists a randomized oblivious scheme for permutation routing on
a hypercube with 𝑛 = 2𝑛 nodes that uses 3𝑛 random bits and runs in expected time at most 15𝑛.

22.4. From previous lectures

Theorem 22.4.1. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent variables, where P
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[
𝑋
]
=

∑
𝑖 𝑝𝑖. For any 𝛿 > 0, we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
<
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/
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)𝜇
.

Lemma 22.4.2. Given an algorithm Alg in RP that uses lg 𝑛 random bits, one can run it 𝑡 times,
such that the runs results in a new algorithm that fails with probability at most 1/𝑡, and uses only 2 lg 𝑛
random bits.
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22.5. Bibliographical notes
As usual, we are following here [MR95].
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