
Chapter 21

On 𝑘-wise independence
By Sariel Har-Peled, April 26, 2022①

21.1. Pairwise independence

21.1.1. Pairwise independence
Definition 21.1.1. A set of random variables 𝑋1, . . . , 𝑋𝑛 is pairwise independent, if for any pair of
values 𝛼, 𝛽, and any two indices 𝑖, 𝑗 , we have that

P
[
𝑋𝑖 = 𝛼 and 𝑌 𝑗 = 𝛽

]
= P[𝑋𝑖 = 𝛼] P

[
𝑌 𝑗 = 𝛽

]
.

Namely, the variables are independent if you look at pairs of variables. Compare this to the much
stronger property of independence.

Definition 21.1.2. A set of random variables 𝑋1, . . . , 𝑋𝑛 is independent, if for any 𝑡, and any 𝑡 values
𝛼1, . . . , 𝛼𝑡 , and any 𝑡 indices 𝑖1, . . . , 𝑖𝑡 , we have that

P
[
𝑋𝑖1 = 𝛼1, 𝑋𝑖2 = 𝛼2, . . . , and 𝑌𝑖𝑡 = 𝛼𝑖𝑡

]
=

𝑡∏
𝑗=1
P
[
𝑋𝑖 𝑗 = 𝛼 𝑗

]
.

21.1.2. A pairwise independent set of bits
Let 𝑛 be a number which is a power of two. As such, 𝑡 = log2 𝑛 = lg 𝑛 is an integer. Let 𝑋0, . . . , 𝑋𝑡−1 be
truly independent random bits, each one of them is 1 with probability 1/2.

For a non-negative integer number 𝑥, let bit(𝑥, 𝑗) ∈ {0, 1} be the 𝑗th bit in the binary representation
of 𝑥. That is, we have 𝑥 =

∑
𝑗 bit(𝑥, 𝑗)2 𝑗 .

For an index 𝑖 = 1, . . . , 2𝑡 − 1, we define 𝑌𝑖 =
⊗

𝑗 :bit(𝑖, 𝑗)=1 𝑋 𝑗 , where ⊗ is the xor operator.

Lemma 21.1.3. The random variables 𝑌1, 𝑌2, . . . , 𝑌𝑛−1 are pairwise independent.

Proof: We claim that, for any 𝑖, we have P[𝑌𝑖 = 1] = P[𝑌𝑖 = 0] = 1/2. So fix 𝑖, and let 𝛼 be an index such
that bit(𝑖, 𝛼) = 1, and observe that this follows readily if pick all the true random variables 𝑋0, . . . , 𝑋𝑡−1
in such an order such that 𝑋𝛼 is the last one to be set.

Next, consider two distinct indices 𝑖, 𝑖′, and two arbitrary values 𝑣, 𝑣′. We need to prove that

P[𝑌𝑖 = 𝑣 and 𝑌𝑖′ = 𝑣′] = P[𝑌𝑖 = 𝑣] P[𝑌𝑖′ = 𝑣′] = 1
4 .
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license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
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To this end, let 𝐵 = { 𝑗 | bit(𝑖, 𝑗) = 1} and 𝐵′ = { 𝑗 | bit(𝑖′, 𝑗) = 1}. If there is an index 𝛽 ∈ 𝐵 \ 𝐵′, then
we have

P[𝑌𝑖 = 𝑣 | 𝑌𝑖′ = 𝑣′] = P
[⊗

𝑗 :bit(𝑖, 𝑗)=1𝑋 𝑗 = 𝑣

��� 𝑌𝑖′ = 𝑣′
]
= P

[
𝑋𝛽 ⊗

⊗
𝑗 :bit(𝑖, 𝑗)=1

𝑋 𝑗 = 𝑣

��� 𝑌𝑖′ = 𝑣′
]

= P
[
𝑋𝛽 =

(
𝑣 ⊗

⊗
𝑗 :bit(𝑖, 𝑗)=1

𝑋 𝑗

) ��� 𝑌𝑖′ = 𝑣′
]
=

1
2 .

This implies that P[𝑌𝑖 = 𝑣 and 𝑌𝑖′ = 𝑣′] = P[𝑌𝑖 = 𝑣 | 𝑌𝑖′ = 𝑣′] P[𝑌𝑖′ = 𝑣′] = (1/2) (1/2) = 1/4, as claimed.
A similar argument implies that if there is an index 𝛽 ∈ 𝐵′ \ 𝐵, then P[𝑌𝑖′ = 𝑣′ | 𝑌𝑖 = 𝑣] = 1/2, which

implies the claim in this case.
Since 𝑖 ≠ 𝑖′, one of the two scenarios must happen, implying the claim. ■

21.1.3. An application: Max cut
Given a graph G = (V, E) with 𝑛 vertices and 𝑚 edges, consider the problem of computing the max-cut.
That is, computing the set of vertices 𝑆, such that the cut

(𝑆, 𝑆) = (𝑆,V \ 𝑆) = {𝑢𝑣 ∈ E | 𝑢 ∈ 𝑆, 𝑣 ∈ V \ 𝑆} .

is of maximum cardinality.

21.1.3.0.1. Algorithm. To this end, let 𝑌1, . . . , 𝑌𝑛 be the pairwise independent bits of Section 21.1.2.
Here, let 𝑆 be the set of all vertices 𝑣𝑖 ∈ V, such that 𝑌𝑖 = 1. The algorithm outputs (𝑆, 𝑆) as the
candidate cut.

21.1.4. Analysis
Lemma 21.1.4. The expected size of the cut computed by the above algorithm is 𝑚/2, where 𝑚 = |E(G) |.

Proof: Let 𝑍𝑢𝑣 be an indicator variable for the event that the edge 𝑢𝑣 ∈ E is in the cut (𝑆, 𝑆).
We have that

E
[��(𝑆, 𝑆)��] = E[∑︁

𝑢𝑣∈E
𝑍𝑢𝑣

]
=

∑︁
𝑢𝑣∈E
E[𝑍𝑢𝑣] =

∑︁
𝑢𝑣∈E
P[𝑌𝑢 ≠ 𝑌𝑣] = |E|/2,

using linearity of expectation and pairwise independence. ■

Lemma 21.1.5. Given a graph G with 𝑛 vertices and 𝑚 edges, say stored in a read only memory, one
can compute a max-cut of G, and the edges in it, using 𝑂 (log 𝑛) random bits, and 𝑂 (log 𝑛) RAM bits.
Furthermore, the expected size of the cut is ≥ 𝑚/2.

Proof: The algorithm description is above. The pairwise independence is also described above, and
requires only 𝑂 (log 𝑛) random bits, which needs to be stored. Otherwise, all we need is to scan the
edges of the graph, and for each one to decide if it is, or not in the cut. Clearly, this can be done using
𝑂 (log 𝑛) RAM bits. ■

Compare this to the natural randomized algorithm of computing a random subset 𝑆. This would
require using 𝑛 random bits, and 𝑛 bits of space to store it.
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Max cut in the streaming model. Imagine that the edges of the graph are given to you via
streaming: You are told the number of vertices in advance, but then edges arrive one by one. The above
enables you to compute the cut in a streaming fashion using 𝑂 (log 𝑛) bits. Alternatively, you can output
the edges in a streaming fashion.

Another way of thinking about it, is that given a set 𝑆 = {𝑠1, . . . , 𝑠𝑛} of 𝑛 elements, we can use the
above to select a random sample where every element is selected with probability half, and the samples
are pairwise independent. The kicker is that to specify the sample, or decide if an element is in the
sample, we can do it using 𝑂 (log 𝑛) bits. This is a huge save compared to the regular 𝑛 bits required to
maintain to remember the sample.

It is clear however that we want a stronger concept – where things are 𝑘-wise independent.

21.2. On 𝑘-wise independence

21.2.1. Definition
Definition 21.2.1. A set of variables 𝑋1, . . . , 𝑋𝑛 are 𝑘-wise independent if for any set 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑡}
of indices, for 𝑡 ≤ 𝑘, and any set of values 𝑣1, . . . , 𝑣𝑡 , we have that

P
[
𝑋𝑖1 = 𝑣1 and 𝑋𝑖2 = 𝑣2 and · · · and 𝑋𝑖𝑡 = 𝑣𝑡

]
=

𝑡∏
𝑗=1
P
[
𝑋𝑖 𝑗 = 𝑣 𝑗

]
.

Observe, that verifying the above property needs to be done only for 𝑡 = 𝑘.

21.2.2. On working modulo prime

Definition 21.2.2. For a number 𝑝, let Z𝑛 =
{
0, . . . , 𝑛 − 1

}
.

For two integer numbers 𝑥 and 𝑦, the quotient of 𝑥/𝑦 is 𝑥 div 𝑦 = ⌊𝑥/𝑦⌋. The remainder of 𝑥/𝑦 is
𝑥 mod 𝑦 = 𝑥 − 𝑦 ⌊𝑥/𝑦⌋. If the 𝑥 mod 𝑦 = 0, than 𝑦 divides 𝑥, denoted by 𝑦 | 𝑥. We use 𝛼 ≡ 𝛽 (mod 𝑝)
or 𝛼 ≡𝑝 𝛽 to denote that 𝛼 and 𝛽 are congruent modulo 𝑝; that is 𝛼 mod 𝑝 = 𝛽 mod 𝑝 – equivalently,
𝑝 | (𝛼 − 𝛽).

Lemma 21.2.3. Let 𝑝 be a prime number.
(A) For any 𝛼, 𝛽 ∈ {1, . . . , 𝑝 − 1}, we have that 𝛼𝛽 . 0 (mod 𝑝).
(B) For any 𝛼, 𝛽, 𝑖 ∈ {1, . . . , 𝑝 − 1}, such that 𝛼 ≠ 𝛽, we have that 𝛼𝑖 . 𝛽𝑖 (mod 𝑝).
(C) For any 𝑥 ∈ {1, . . . , 𝑝 − 1} there exists a unique 𝑦 such that 𝑥𝑦 ≡ 1 (mod 𝑝). The number 𝑦 is the

inverse of 𝑥, and is denoted by 𝑥−1 or 1/𝑥.

Proof: (A) If 𝛼𝛽 ≡ 0 (mod 𝑝), then 𝑝 must divide 𝛼𝛽, as it divides 0. But 𝛼, 𝛽 are smaller than 𝑝, and
𝑝 is prime. This implies that either 𝑝 | 𝛼 or 𝑝 | 𝛽, which is impossible.

(B) Assume that 𝛼 > 𝛽. Furthermore, for the sake of contradiction, assume that 𝛼𝑖 ≡ 𝛽𝑖 (mod 𝑝).
But then, (𝛼 − 𝛽)𝑖 ≡ 0 (mod 𝑝), which is impossible, by (A).

(C) For any 𝛼 ∈ {1, . . . , 𝑝 − 1}, consider the set 𝐿𝛼 = {𝛼∗1 mod 𝑝, 𝛼∗2 mod 𝑝, . . . , 𝛼∗(𝑝−1) mod 𝑝}.
By (A), zero is not in 𝐿𝛼, and by (B), 𝐿𝛼 must contain 𝑝 − 1 distinct values. It follows that 𝐿𝛼 =

{1, 2, . . . , 𝑝−1}. As such, there exists exactly one number 𝑦 ∈ {1, . . . , 𝑝 − 1}, such that 𝛼𝑦 ≡ 1 (mod 𝑝).
■
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Lemma 21.2.4. Consider a prime 𝑝, and any numbers 𝑥, 𝑦 ∈ Z𝑝. If 𝑥 ≠ 𝑦 then, for any 𝑎, 𝑏 ∈ Z𝑝,
such that 𝑎 ≠ 0, we have 𝑎𝑥 + 𝑏 . 𝑎𝑦 + 𝑏 (mod 𝑝).

Proof: Assume 𝑦 > 𝑥 (the other case is handled similarly). If 𝑎𝑥 + 𝑏 ≡ 𝑎𝑦 + 𝑏 (mod 𝑝) then 𝑎(𝑥 − 𝑦)
(mod 𝑝) = 0 and 𝑎 ≠ 0 and (𝑥 − 𝑦) ≠ 0. However, 𝑎 and 𝑥 − 𝑦 cannot divide 𝑝 since 𝑝 is prime and
𝑎 < 𝑝 and 0 < 𝑥 − 𝑦 < 𝑝. ■

Lemma 21.2.5. Consider a prime 𝑝, and any numbers 𝑥, 𝑦 ∈ Z𝑝. If 𝑥 ≠ 𝑦 then, for each pair of
numbers 𝑟, 𝑠 ∈ Z𝑝 = {0, 1, . . . , 𝑝 − 1}, such that 𝑟 ≠ 𝑠, there is exactly one unique choice of numbers
𝑎, 𝑏 ∈ Z𝑝 such that 𝑎𝑥 + 𝑏 (mod 𝑝) = 𝑟 and 𝑎𝑦 + 𝑏 (mod 𝑝) = 𝑠.

Proof: Solve the system of equations

𝑎𝑥 + 𝑏 ≡ 𝑟 (mod 𝑝) and 𝑎𝑦 + 𝑏 ≡ 𝑠 (mod 𝑝).

We get 𝑎 = 𝑟−𝑠
𝑥−𝑦 (mod 𝑝) and 𝑏 = 𝑟 − 𝑎𝑥 (mod 𝑝). ■

21.2.3. Construction of 𝑘-wise independence variables

21.2.4. Construction
Consider the following matrix, aka the Vandermonde matrix, defined by 𝑛 variables:

𝑉 =



1 𝑥1 𝑥2
1 . . . 𝑥𝑛−1

1
1 𝑥2 𝑥2

2 . . . 𝑥𝑛−1
2

1 𝑥3 𝑥2
3 . . . 𝑥𝑛−1

3
...

...
...

. . .
...

1 𝑥𝑛 𝑥2
𝑛 . . . 𝑥𝑛−1

𝑛


.

Claim 21.2.6. det(𝑉) = ∏
1≤𝑖< 𝑗≤𝑛 (𝑥 𝑗 − 𝑥𝑖).

Proof: One can prove this in several ways, and we include a proof via properties of polynomials. The
determinant det(𝑉) is a polynomial in the variables 𝑥1, 𝑥2, . . . , 𝑥𝑛. Formally, let Π be the set of all
permutations of J𝑛K = {1, . . . , 𝑛}. For a permutation 𝜋 ∈ Π, let sign(𝜋) ∈ {−1, +1} denote the sign of
this permutation. We have that

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = det(𝑉) =
∑︁
𝜋∈Π

sign(𝜋)𝑥𝜋(𝑖)
𝑖

.

Every monomial in this polynomial has total degree ∑𝑛
𝑖=1 𝜋(𝑖) = 1+2+ · · · +𝑛 = 𝑛(𝑛−1)/2. Observe, that

if we replace 𝑥 𝑗 by 𝑥𝑖, then we have 𝑓 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥 𝑗−1, 𝑥𝑖, 𝑥 𝑗+1, . . . , 𝑥𝑛) is the determinant of a matrix
with two identical rows, and such a matrix has a zero determinate. Namely, the polynomial 𝑓 is zero
if 𝑥𝑖 = 𝑥 𝑗 . This implies that 𝑥 𝑗 − 𝑥𝑖 divides 𝑓 . We conclude that the polynomial 𝑔 ≡ ∏

1≤𝑖< 𝑗≤𝑛 (𝑥 𝑗 − 𝑥𝑖)
divides 𝑓 . Namely, we can write 𝑓 = 𝑔 ∗ ℎ, where ℎ is some polynomial.

Consider the monomial 𝑥2𝑥
2
3 · · · 𝑥𝑛−1

𝑛 . It appears in 𝑓 with coefficient 1. Similarly, it generated in 𝑔

by selecting the first term in each sub-polynomial, that is ∏
1≤𝑖< 𝑗≤𝑛

(
𝑥 𝑗 − 𝑥𝑖

)
. It is to verify that this

is the only time this monomial appears in 𝑔. This implies that ℎ = 1. We conclude that 𝑓 = 𝑔, as
claimed. ■
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Claim 21.2.7. If 𝑥1, . . . , 𝑥𝑛 are distinct, then the Vandermonde matrix 𝑉 is invertible.

Proof: By Claim 21.2.6, the determinant of 𝑉 is det(𝑉) = ∏
1≤𝑖< 𝑗≤𝑛 (𝑥 𝑗 − 𝑥𝑖). This quantity is non-zero

if the 𝑥s are distinct, and a matrix is invertible in such a case. ■

Lemma 21.2.8. For a vector b = (𝑏0, . . . , 𝑏𝑘−1) ∈ Z𝑘𝑝, consider the associated polynomial 𝑓 (𝑥, b) =∑𝑘−1
𝑖=0 𝑏𝑖𝑥

𝑖 mod 𝑝. For any 𝑘 distinct values 𝛼1, . . . , 𝛼𝑘 ∈ Z𝑝, and 𝑘 values 𝑣1, . . . , 𝑣𝑘 ∈ Z𝑝, there is a
unique choice of b, such that 𝑓 (𝛼𝑖) = 𝑣𝑖 mod 𝑝, for 𝑖 = 1, . . . , 𝑘.

Proof: Let α𝑖 =
(
1, 𝛼𝑖, 𝛼2

𝑖
, · · · , 𝛼𝑘−1

𝑖

)
. We have that 𝑓 (𝛼𝑖, b) = ⟨α𝑖, b⟩ mod 𝑝. This translates into the

linear system

©«
α1
α2
...

α𝑘

ª®®®®¬
b𝑇 =

©«
𝑣1
𝑣2
...

𝑣𝑘

ª®®®®¬
⇐⇒ M b𝑇 =

©«
𝑣1
𝑣2
...

𝑣𝑘

ª®®®®¬
where M =



1 𝛼1 𝛼2
1 . . . 𝛼𝑛−1

1
1 𝛼2 𝛼2

2 . . . 𝛼𝑛−1
2

1 𝛼3 𝛼2
3 . . . 𝛼𝑛−1

3
...

...
...

. . .
...

1 𝛼𝑛 𝛼2
𝑛 . . . 𝛼𝑛−1

𝑛


.

The matrix M is the Vandermonde matrix, and by Claim 21.2.7 it is invertible. We thus get there exists
a unique solution to this system of linear equations (modulo 𝑝). ■

The construction. So, let us pick independently and uniformly 𝑘 values 𝑏0.𝑏1, . . . , 𝑏𝑘−1 ∈ Z𝑝, let
b = (𝑏0, 𝑏1, . . . , 𝑏𝑘−1). 𝑔(𝑥) = ∑𝑘−1

𝑖=0 𝑏𝑖𝑥
𝑖 mod 𝑝, and consider the random variables

𝑌𝑖 = 𝑔(𝑖), ∀𝑖 ∈ Z𝑝 .

Lemma 21.2.9. The variables 𝑌0, . . . , 𝑌𝑝−1 are uniformly distributed and 𝑘-wise independent.

Proof: The uniform distribution for each 𝑌𝑖 follows readily by picking 𝑏0 last, and observing that each
such choice corresponds to a different value of 𝑌𝑖.

As for the 𝑘-independence, observe that for any set 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑘 } of indices, for 𝑡 ≤ 𝑘, and any
set of values 𝑣1, . . . , 𝑣𝑘 ∈ Z𝑝, we have that the event

𝑌𝑖1 = 𝑣1 and 𝑌𝑖2 = 𝑣2 and · · · and 𝑌𝑖𝑘 = 𝑣𝑘

happens only for a unique choice of b, by Lemma 21.2.8. But there are 𝑝𝑘 such choices. We conclude
that the probability of the above event is 1/𝑝𝑘 = ∏𝑘

𝑗=1 P
[
𝑌𝑖 𝑗 = 𝑣 𝑗

]
, as desired. ■

We summarize the result for later use.

Theorem 21.2.10. let 𝑝 be a prime number, and pick independently and uniformly 𝑘 values 𝑏0.𝑏1, . . . , 𝑏𝑘−1 ∈
Z𝑝, and let 𝑔(𝑥) = ∑𝑘−1

𝑖=0 𝑏𝑖𝑥
𝑖 mod 𝑝. Then the random variables

𝑌0 = 𝑔(0), . . . , 𝑌𝑝−1 = 𝑔(𝑝 − 1).

are uniformly distributed in Z𝑝 and are 𝑘-wise independent.
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21.2.5. Applications of 𝑘-wide independent variables
21.2.5.1. Product of expectations

Lemma 21.2.11. If 𝑋1, . . . , 𝑋𝑘 are 𝑘-wise independent, then E[𝑋1 · · · 𝑋𝑘 ] = E[𝑋1] · · ·E[𝑋𝑘 ].

Proof: Immediate. ■

21.2.5.2. Application: Using less randomization for a randomized algorithm

We can consider a randomized algorithm, to be a deterministic algorithm Alg(𝑥, 𝑟) that receives together
with the input 𝑥, a random string 𝑟 of bits, that it uses to read random bits from. Let us redefine RP:
Definition 21.2.12. The class RP (for Randomized Polynomial time) consists of all languages 𝐿 that have
a deterministic algorithm Alg(𝑥, 𝑟) with worst case polynomial running time such that for any input
𝑥 ∈ Σ∗,

• 𝑥 ∈ 𝐿 =⇒ Alg(𝑥, 𝑟) = 1 for half the possible values of 𝑟.
• 𝑥 ∉ 𝐿 =⇒ Alg(𝑥, 𝑟) = 0 for all values of 𝑟.

Let assume that we now want to minimize the number of random bits we use in the execution of the
algorithm (Why?). If we run the algorithm 𝑡 times, we have confidence 2−𝑡 in our result, while using
𝑡 log 𝑛 random bits (assuming our random algorithm needs only log 𝑛 bits in each execution). Similarly,
let us choose two random numbers from Z𝑛, and run Alg(𝑥, 𝑎) and Alg(𝑥, 𝑏), gaining us only confidence
1/4 in the correctness of our results, while requiring 2 log 𝑛 bits.

Can we do better? Let us define 𝑟𝑖 = 𝑎𝑖 + 𝑏 mod 𝑛, where 𝑎, 𝑏 are random values as above (note,
that we assume that 𝑛 is prime), for 𝑖 = 1, . . . , 𝑡. Thus 𝑌 =

∑𝑡
𝑖=1 Alg(𝑥, 𝑟𝑖) is a sum of random variables

which are pairwise independent, as the 𝑟𝑖 are pairwise independent. Assume, that 𝑥 ∈ 𝐿, then we have
E[𝑌 ] = 𝑡/2, and 𝜎2

𝑌
= V[𝑌 ] =

∑𝑡
𝑖=1V[Alg(𝑥, 𝑟𝑖)] ≤ 𝑡/4, and 𝜎𝑌 ≤

√
𝑡/2. The probability that all those

executions failed, corresponds to the event that 𝑌 = 0, and

P
[
𝑌 = 0

]
≤ P

[��𝑌 − E[𝑌 ]
�� ≥ 𝑡

2

]
= P

[��𝑌 − E[𝑌 ]
�� ≥ √

𝑡

2 ·
√
𝑡

]
≤ 1

𝑡
,

by the Chebyshev inequality. Thus we were able to “extract” from our random bits, much more than
one would naturally suspect is possible. We thus get the following result.
Lemma 21.2.13. Given an algorithm Alg in RP that uses lg 𝑛 random bits, one can run it 𝑡 times,
such that the runs results in a new algorithm that fails with probability at most 1/𝑡, and uses only 2 lg 𝑛
random bits.

21.3. Higher moment inequalities
The following is the higher moment variant of Chebychev inequality.

Lemma 21.3.1. For a random variable 𝑋, we have that P
[
|𝑋 − E[𝑋] | ≥ 𝑡E

[
|𝑋 − E[𝑋] |𝑘

]1/𝑘 ] ≤ 1
𝑡𝑘

Proof: Setting 𝑍 = |𝑋 − E[𝑋] |𝑘 , and raising the inequality by a power of 𝑘, we have

P
[
|𝑋 − E[𝑋] | ≥ 𝑡E

[
|𝑋 − E[𝑋] |𝑘

]1/𝑘
]
= P

[
𝑍1/𝑘 ≥ 𝑡 E[𝑍]1/𝑘

]
= P

[
𝑍 ≥ 𝑡𝑘 E[𝑍]

]
≤ 1

𝑡𝑘
,

by Markov’s inequality. ■
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The problem is that computing (or even bounding) the 𝑘th moment 𝑀𝑘 (𝑋) = E
[
|𝑋 − E[𝑋] |𝑘

]
is

usually not easy. Let us do it for one interesting example.

Lemma 21.3.2. Consider 𝑘 be an even integer and let 𝑋1, . . . , 𝑋𝑛 be 𝑛 random independent variables
such that P[𝑋𝑖 = −1] = P[𝑋𝑖 = +1] = 1/2. Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖. Then, we have

P

[
|𝑋 | ≥ 𝑡𝑘

2
√
𝑛

]
≤ 1

𝑡𝑘
.

Proof: Observe that E[𝑋] = 𝑛E[𝑋1] = 0. We are interested in computing

𝑀𝑘 (𝑋) = E
[
𝑋 𝑘

]
= E

[(∑︁
𝑖

𝑋𝑖

) 𝑘 ]
= E

[ 𝑛∑︁
𝑖1=1

. . .

𝑛∑︁
𝑖𝑘=1

𝑋𝑖1𝑋𝑖2 · · · 𝑋𝑖𝑘

]
=

𝑛∑︁
𝑖1=1

. . .

𝑛∑︁
𝑖𝑘=1
E
[
𝑋𝑖1𝑋𝑖2 · · · 𝑋𝑖𝑘

]
(21.1)

Consider a term in the above summation, where one of the indices (say 𝑖1) has a unique value among
𝑖1, 𝑖2, . . . , 𝑖𝑘 . By independence, we have

E
[
𝑋𝑖1𝑋𝑖2 · · · 𝑋𝑖𝑘

]
= E

[
𝑋𝑖1

]
E
[
𝑋𝑖2 · · · 𝑋𝑖𝑘

]
= 0,

since E
[
𝑋𝑖1

]
= 0. As such, in the above all terms that have a unique index disappear. A term that does

not disappear is going to be of the form

E
[
𝑋
𝛼1
𝑖1
𝑋
𝛼2
𝑖2

. . . 𝑋
𝛼ℓ
𝑖ℓ

]
= E

[
𝑋
𝛼1
𝑖1

]
E
[
𝑋
𝛼2
𝑖2

]
. . . E

[
𝑋
𝛼ℓ
𝑖ℓ

]
where 𝛼𝑖 ≥ 2, and ∑

𝑖 𝛼𝑖 = 𝑘. Observe that

E
[
𝑋 𝑡

1
]
=

{
0 𝑡 is odd
1 𝑡 is even.

As such, all the terms in the summation of Eq. (21.1) that have value that is not zero, have value one.
These terms corresponds to tuples 𝑇 = (𝑖1, 𝑖2, . . . , 𝑖𝑘 ), such that the set of values 𝐼 (𝑇) = {𝑖1, . . . , 𝑖𝑘 } has
at most 𝑘/2 values, and furthermore, each such value appears an even number of times in 𝑇 (here 𝑘/2
is an integer as 𝑘 is even by assumption). We conclude that the total number of such tuples is at most

𝑛𝑘/2(𝑘/2)𝑘 .

Note, that this is a naive bound – indeed, we choose the 𝑘/2 values that are in 𝐼 (𝑇), and then we
generate the tuple 𝑇 , by choosing values for each coordinate separately. We thus conclude that

𝑀𝑘 (𝑋) = E
[
𝑋 𝑘

]
≤ 𝑛𝑘/2(𝑘/2)𝑘 .

Since 𝑘 is even, we have E
[
𝑋 𝑘

]
= E

[
|𝑋 |𝑘

]
, and by Lemma 21.3.1, we have

P

[
|𝑋 | ≥ 𝑡𝑘

2
√
𝑛

]
= P

[
|𝑋 | ≥ 𝑡

(
𝑛𝑘/2(𝑘/2)𝑘

)1/𝑘
]
≤ P

[
|𝑋 | ≥ 𝑡E

[
|𝑋 |𝑘

]1/𝑘 ] ≤ 1/𝑡𝑘 . ■

Corollary 21.3.3. Consider 𝑘 be an even integer and let 𝑋1, . . . , 𝑋𝑛 be 𝑛 random independent variables
such that P[𝑋𝑖 = −1] = P[𝑋𝑖 = +1] = 1/2. For 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖, and any 𝑘, we have P

[
|𝑋 | ≥ 𝑘

√
𝑛
]
≤ 1/2𝑘 .
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Observe, that the above proof did not require all the variables to be purely independent – it was
enough that they are 𝑘-wise independent. We readily get the following.

Definition 21.3.4. Given 𝑛 random variables 𝑋1, . . . , 𝑋𝑛 they are 𝑘-wise independent, if for any 𝑘 of
them (i.e., 𝑖1 < 𝑖2, . . . , 𝑖𝑘), and any 𝑘 values 𝑥1, . . . , 𝑥𝑘 , we have

P
[ 𝑘⋂
ℓ=1

(
𝑋𝑖ℓ = 𝑣ℓ

) ]
=

𝑘∏
ℓ=1
P
[
𝑋𝑖ℓ = 𝑣ℓ

]
.

Informally, variables are 𝑘-wise independent, if any 𝑘 of them (on their own) looks totally random.

Lemma 21.3.5. Let 𝑘 > 0 be an even integer, and let 𝑋1, . . . , 𝑋𝑛 be 𝑛 random independent variables,
that are 𝑘-wise independent, such that P[𝑋𝑖 = −1] = P[𝑋𝑖 = +1] = 1/2. Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖. Then, we have

P
[
|𝑋 | ≥ 𝑡𝑘

2
√
𝑛

]
≤ 1

𝑡𝑘
.
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