
Chapter 19

Martingales II
By Sariel Har-Peled, April 26, 2022①

“The Electric Monk was a labor-saving device, like a dishwasher or a video recorder. Dishwashers washed tedious
dishes for you, thus saving you the bother of washing them yourself, video recorders watched tedious television for
you, thus saving you the bother of looking at it yourself; Electric Monks believed things for you, thus saving you
what was becoming an increasingly onerous task, that of believing all the things the world expected you to believe.”

Dirk Gently’s Holistic Detective Agency, Douglas Adams

19.1. Filters and Martingales

Definition 19.1.1. A 𝜎-field (Ω, F ) consists of a sample space Ω (i.e., the atomic events) and a collection
of subsets F satisfying the following conditions:
(A) ∅ ∈ F .
(B) 𝐶 ∈ F ⇒ 𝐶 ∈ F .
(C) 𝐶1, 𝐶2, . . . ∈ F ⇒ 𝐶1 ∪ 𝐶2 . . . ∈ F .

Definition 19.1.2. Given a 𝜎-field (Ω, F ), a probability measure P : F → R+ is a function that satisfies
the following conditions.
(A) ∀𝐴 ∈ F , 0 ≤ P[𝐴] ≤ 1.
(B) P

[
Ω

]
= 1.

(C) For mutually disjoint events 𝐶1, 𝐶2, . . . , we have P
[
∪𝑖𝐶𝑖

]
=

∑
𝑖 P

[
𝐶𝑖

]
.

Definition 19.1.3. A probability space (Ω, F , P) consists of a 𝜎-field (Ω, F ) with a probability measure
P defined on it.

Definition 19.1.4. Given a 𝜎-field (Ω, F ) with F = 2Ω, a filter (also filtration) is a nested sequence
F0 ⊆ F1 ⊆ · · · ⊆ F𝑛 of subsets of 2Ω, such that:
(A) F0 = {∅,Ω}.
(B) F𝑛 = 2Ω.
(C) For 0 ≤ 𝑖 ≤ 𝑛, (Ω, F𝑖) is a 𝜎-field.

Definition 19.1.5. An elementary event or atomic event is a subset of a sample space that contains
only one element of Ω.

Intuitively, when we consider a probability space, we usually consider a random variable 𝑋. The
value of 𝑋 is a function of the elementary event that happens in the probability space. Formally, a
random variable is a mapping 𝑋 : Ω → R. Thus, each F𝑖 defines a partition of Ω into atomic events.
This partition is getting more and more refined as we progress down the filter.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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Example 19.1.6. Consider an algorithm Alg that uses 𝑛 random bits. As such, the underlying sample
space is Ω =

{
𝑏1𝑏2 . . . 𝑏𝑛

�� 𝑏1, . . . , 𝑏𝑛 ∈ {0, 1}
}
. That is, the set of all binary strings of length 𝑛. Next,

let F𝑖 be the 𝜎-field generated by the partition of Ω into the atomic events 𝐵𝑤, where 𝑤 ∈ {0, 1}𝑖; here
𝑤 is the string encoding the first 𝑖 random bits used by the algorithm. Specifically,

𝐵𝑤 =
{
𝑤𝑥 ∈ Ω

�� 𝑥 ∈ {0, 1}𝑛−𝑖
}
,

and the set of atomic events in F𝑖 is A𝑖 =
{
𝐵𝑤

�� 𝑤 ∈ {0, 1}𝑖
}
. The set F𝑖 is the closure of this set of

atomic events under complement and union. In particular, we conclude that F0, F1, . . . , F𝑛 form a filter.
As a concrete example, for 𝑖 = 3, the set A3 contains 23 = 8 sets, and the set F3 would contain all

sets formed by finite unions of these sets (including the empty union). As such, the set F3 would have
223

= 256 sets.

Definition 19.1.7. A random variable 𝑋 is said to be F𝑖-measurable if for each 𝑥 ∈ R, the event 𝑋 ≤ 𝑥

is in F𝑖; that is, the set
{
𝜔 ∈ Ω

�� 𝑋 (𝜔) ≤ 𝑥
}

is in F𝑖.

Example 19.1.8. Let F0, . . . , F𝑛 be the filter defined in Example 19.1.6. Let 𝑋 be the parity of the 𝑛 bits.
Clearly, 𝑋 = 1 is a valid event only in F𝑛 (why?). Namely, it is only measurable in F𝑛, but not in F𝑖, for
𝑖 < 𝑛.

As such, a random variable 𝑋 is F𝑖-measurable, only if it is a constant on the elementary events of
F𝑖. This gives us a new interpretation of what a filter is – its a sequence of refinements of the underlying
probability space, that is achieved by splitting the atomic events of F𝑖 into smaller atomic events in F𝑖+1.
Putting it explicitly, an atomic event E of F𝑖, is a subset of 2Σ. As we move to F𝑖+1 the event E might
now be split into several atomic (and disjoint events) E1, . . . ,E𝑘 . Now, naturally, the atomic event that
really happens is an atomic event of F𝑛. As we progress down the filter, we “zoom” into this event.

Definition 19.1.9 (Conditional expectation in a filter). Let (Ω, F ) be any 𝜎-field, and 𝑌 any random vari-
able that takes on distinct values on the elementary events in F . Then E[𝑋 | F ] = E[𝑋 | 𝑌 ].

19.2. Martingales

Definition 19.2.1. A sequence of random variables 𝑌1, 𝑌2, . . . , is a martingale difference sequence if
for all 𝑖 ≥ 0, we have E

[
𝑌𝑖

��𝑌1, . . . , 𝑌𝑖−1
]
= 0.

Clearly, 𝑋1, . . . , is a martingale sequence if and only if 𝑌1, 𝑌2, . . . , is a martingale difference sequence
where 𝑌𝑖 = 𝑋𝑖 − 𝑋𝑖−1.

Definition 19.2.2. A sequence of random variables 𝑌1, 𝑌2, . . . , is

a super martingale sequence if ∀𝑖 E
[
𝑌𝑖

��𝑌1, . . . , 𝑌𝑖−1
]
≤ 𝑌𝑖−1,

and a sub martingale sequence if ∀𝑖 E
[
𝑌𝑖

��𝑌1, . . . , 𝑌𝑖−1
]
≥ 𝑌𝑖−1.
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19.2.1. Martingales – an alternative definition
Definition 19.2.3. Let (Ω, F , P) be a probability space with a filter F0, F1, . . . . Suppose that 𝑋0, 𝑋1, . . .,
are random variables such that, for all 𝑖 ≥ 0, 𝑋𝑖 is F𝑖-measurable. The sequence 𝑋0, . . . , 𝑋𝑛 is a mar-
tingale provided that, for all 𝑖 ≥ 0, we have E

[
𝑋𝑖+1 | F𝑖

]
= 𝑋𝑖 .

Lemma 19.2.4. Let (Ω, F ) and (Ω,G) be two 𝜎-fields such that F ⊆ G. Then, for any random variable
𝑋, we have E

[
E[𝑋 | G]

�� F ]
= E[𝑋 | F ] .

Proof: E
[
E
[
𝑋

��G ] ��F ]
= E

[
E
[
𝑋

��𝐺 = 𝑔
] �� 𝐹 = 𝑓

]
= E

[∑
𝑥 𝑥 P[𝑋 = 𝑥 ∩ 𝐺 = 𝑔]
P[𝐺 = 𝑔]

�� 𝐹 = 𝑓

]
=

∑︁
𝑔∈𝐺

∑
𝑥 𝑥P[𝑋=𝑥∩𝐺=𝑔]
P[𝐺=𝑔] · P[𝐺 = 𝑔 ∩ 𝐹 = 𝑓 ]

P[𝐹 = 𝑓 ]

=
∑︁

𝑔∈G,𝑔⊆ 𝑓

∑
𝑥 𝑥 P[𝑋=𝑥∩𝐺=𝑔]
P[𝐺=𝑔] · P[𝐺 = 𝑔 ∩ 𝐹 = 𝑓 ]

P[𝐹 = 𝑓 ] =
∑︁

𝑔∈G,𝑔⊆ 𝑓

∑
𝑥 𝑥 P[𝑋=𝑥∩𝐺=𝑔]
P[𝐺=𝑔] · P[𝐺 = 𝑔]
P[𝐹 = 𝑓 ]

=
∑︁

𝑔∈G,𝑔⊆ 𝑓

∑
𝑥 𝑥 P[𝑋 = 𝑥 ∩ 𝐺 = 𝑔]
P[𝐹 = 𝑓 ] =

∑
𝑥 𝑥

(∑
𝑔∈G,𝑔⊆ 𝑓 P[𝑋 = 𝑥 ∩ 𝐺 = 𝑔]

)
P[𝐹 = 𝑓 ]

=

∑
𝑥 𝑥 P[𝑋 = 𝑥 ∩ 𝐹 = 𝑓 ]
P[𝐹 = 𝑓 ] = E

[
𝑋

��F ]
. ■

Theorem 19.2.5. Let (Ω, F , P) be a probability space, and let F0, . . . , F𝑛 be a filter with respect to it.
Let 𝑋 be any random variable over this probability space and define 𝑋𝑖 = E

[
𝑋

��F𝑖 ] then, the sequence
𝑋0, . . . , 𝑋𝑛 is a martingale.

Proof: We need to show that E
[
𝑋𝑖+1

��F𝑖 ] = 𝑋𝑖. Namely,

E[𝑋𝑖+1 | F𝑖] = E
[
E
[
𝑋

��F𝑖+1
] ��F𝑖 ] = E[𝑋 ��F𝑖 ] = 𝑋𝑖,

by Lemma 19.2.4 and by definition of 𝑋𝑖. ■

Definition 19.2.6. Let 𝑓 : D1 × · · · × D𝑛 → R be a real-valued function with a arguments from possibly
distinct domains. The function 𝑓 is said to satisfy the Lipschitz condition if for any 𝑥1 ∈ D1, . . . , 𝑥𝑛 ∈
D𝑛, and 𝑖 ∈ {1, . . . , 𝑛} and any 𝑦𝑖 ∈ D𝑖, we have�� 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑦𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛)

�� ≤ 1.

Specifically, a function is 𝑐-Lipschitz, if the inequality holds with a constant 𝑐 (instead of 1).

Definition 19.2.7. Let 𝑋1, . . . , 𝑋𝑛 be a sequence of independent random variables, and a function 𝑓 =

𝑓 (𝑋1, . . . , 𝑋𝑛) defined over them, such that 𝑓 satisfies the Lipschitz condition. The Doob martingale
sequence 𝑌0, . . . , 𝑌𝑚 is defined by 𝑌0 = E

[
𝑓 (𝑋1, . . . , 𝑋𝑛)

]
and

𝑌𝑖 = E
[
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋1, . . . , 𝑋𝑖

]
, for 𝑖 = 1, . . . , 𝑛.

Clearly, a Doob martingale𝑌0, . . . , 𝑌𝑛 is a martingale, by Theorem 19.2.5. Furthermore, if |𝑋𝑖 − 𝑋𝑖−1 | ≤
1, for 𝑖 = 1, . . . , 𝑛, then |𝑌𝑖 − 𝑌𝑖−1 | ≤ 1. and we can use Azuma’s inequality on such a sequence.
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19.3. Occupancy Revisited
We have 𝑚 balls thrown independently and uniformly into 𝑛 bins. Let 𝑍 denote the number of bins
that remains empty in the end of the process. Let 𝑋𝑖 be the bin chosen in the 𝑖th trial, and let
𝑍 = 𝐹 (𝑋1, . . . , 𝑋𝑚), where 𝐹 returns the number of empty bins given that 𝑚 balls had thrown into bins
𝑋1, . . . , 𝑋𝑚. , By Azuma’s inequality we have that P

[��𝑍 − E[𝑍]
�� > 𝜆

√
𝑚

]
≤ 2 exp

(
−𝜆2/2

)
.

The following is an extension of Azuma’s inequality shown in class. We do not provide a proof but
it is similar to what we saw.
Theorem 19.3.1 (Azuma’s Inequality - Stronger Form). Let 𝑋0, 𝑋1, . . . , be a martingale sequence
such that for each 𝑘, |𝑋𝑘 − 𝑋𝑘−1 | ≤ 𝑐𝑘 , where 𝑐𝑘 may depend on 𝑘. Then, for all 𝑡 ≥ 0, and any 𝜆 > 0,
we have

P
[
|𝑋𝑡 − 𝑋0 | ≥ 𝜆

]
≤ 2 exp

(
− 𝜆2

2
∑𝑡

𝑘=1 𝑐
2
𝑘

)
.

Theorem 19.3.2. Let 𝑟 = 𝑚/𝑛, and 𝑍end be the number of empty bins when 𝑚 balls are thrown randomly
into 𝑛 bins. Then 𝜇 = E

[
𝑍end

]
= 𝑛

(
1 − 1

𝑛

)𝑚 ≈ 𝑛 exp(−𝑟), and for any 𝜆 > 0, we have

P
[��𝑍end − 𝜇

�� ≥ 𝜆

]
≤ 2 exp

(
−𝜆

2(𝑛 − 1/2)
𝑛2 − 𝜇2

)
.

Proof: Let 𝑧(𝑌, 𝑡) be the expected number of empty bins in the end, if there are 𝑌 empty bins in time
𝑡. The probability of an empty bin to remain empty is (1 − 1/𝑛)𝑚−𝑡 , and as such

𝑧(𝑌, 𝑡) = 𝑌

(
1 − 1

𝑛

)𝑚−𝑡
.

In particular, 𝜇 = 𝑧(𝑛, 0) = 𝑛(1 − 1/𝑛)𝑚.
Let F𝑡 be the 𝜎-field generated by the bins chosen in the first 𝑡 steps. Let 𝑍end be the number of

empty bins at time 𝑚, and let 𝑍𝑡 = E
[
𝑍end

��F𝑡

]
. Namely, 𝑍𝑡 is the expected number of empty bins after

we know where the first 𝑡 balls had been placed. The random variables 𝑍0, 𝑍1, . . . , 𝑍𝑚 form a martingale.
Let 𝑌𝑡 be the number of empty bins after 𝑡 balls where thrown. We have 𝑍𝑡−1 = 𝑧(𝑌𝑡−1, 𝑡 − 1). Consider
the ball thrown in the 𝑡-step. Clearly:
(A) With probability 1−𝑌𝑡−1/𝑛 the ball falls into a non-empty bin. Then 𝑌𝑡 = 𝑌𝑡−1, and 𝑍𝑡 = 𝑧(𝑌𝑡−1, 𝑡).

Thus,

Δ𝑡 = 𝑍𝑡 − 𝑍𝑡−1 = 𝑧(𝑌𝑡−1, 𝑡) − 𝑧(𝑌𝑡−1, 𝑡 − 1) = 𝑌𝑡−1

((
1 − 1

𝑛

)𝑚−𝑡
−

(
1 − 1

𝑛

)𝑚−𝑡+1
)

=
𝑌𝑡−1
𝑛

(
1 − 1

𝑛

)𝑚−𝑡
≤

(
1 − 1

𝑛

)𝑚−𝑡
.

(B) Otherwise, with probability 𝑌𝑡−1/𝑛 the ball falls into an empty bin, and 𝑌𝑡 = 𝑌𝑡−1 − 1. Namely,
𝑍𝑡 = 𝑧(𝑌𝑡 − 1, 𝑡). And we have that

Δ𝑡 = 𝑍𝑡 − 𝑍𝑡−1 = 𝑧(𝑌𝑡−1 − 1, 𝑡) − 𝑧(𝑌𝑡−1, 𝑡 − 1) = (𝑌𝑡−1 − 1)
(
1 − 1

𝑛

)𝑚−𝑡
− 𝑌𝑡−1

(
1 − 1

𝑛

)𝑚−𝑡+1

=

(
1 − 1

𝑛

)𝑚−𝑡 (
𝑌𝑡−1 − 1 − 𝑌𝑡−1

(
1 − 1

𝑛

))
=

(
1 − 1

𝑛

)𝑚−𝑡 (
−1 + 𝑌𝑡−1

𝑛

)
= −

(
1 − 1

𝑛

)𝑚−𝑡 (
1 − 𝑌𝑡−1

𝑛

)
≥ −

(
1 − 1

𝑛

)𝑚−𝑡
.
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Thus, 𝑍0, . . . , 𝑍𝑚 is a martingale sequence, where |𝑍𝑡 − 𝑍𝑡−1 | ≤ |Δ𝑡 | ≤ 𝑐𝑡 , where 𝑐𝑡 =
(
1 − 1

𝑛

)𝑚−𝑡 . We
have

𝑚∑︁
𝑡=1

𝑐2
𝑡 =

𝑚∑︁
𝑡=1

(
1 − 1

𝑛

)2(𝑚−𝑡)
=

𝑚−1∑︁
𝑡=0

(
1 − 1

𝑛

)2𝑡
=

1 − (1 − 1/𝑛)2𝑚

1 − (1 − 1/𝑛)2 =
𝑛2 (1 − (1 − 1/𝑛)2𝑚 )

2𝑛 − 1 =
𝑛2 − 𝜇2

2𝑛 − 1 .

Now, deploying Azuma’s inequality, yield the result. ■

19.3.1. Lets verify this is indeed an improvement

Consider the case where 𝑚 = 𝑛 ln 𝑛. Then, 𝜇 = 𝑛
(
1 − 1

𝑛

)𝑚 ≤ 1. And using the “weak” Azuma’s inequality
implies that

P
[��𝑍end − 𝜇

�� ≥ 𝜆
√
𝑛

]
= P

[��𝑍end − 𝜇
�� ≥ 𝜆

√︂
𝑛

𝑚

√
𝑚

]
≤ 2 exp

(
−𝜆

2𝑛

2𝑚

)
= 2 exp

(
− 𝜆2

2 ln 𝑛

)
,

which is interesting only if 𝜆 >
√

2 ln 𝑛. On the other hand, Theorem 19.3.2 implies that

P
[
|𝑍end − 𝜇 | ≥ 𝜆

√
𝑛
]
≤ 2 exp

(
−𝜆

2𝑛(𝑛 − 1/2)
𝑛2 − 𝜇2

)
≤ 2 exp

(
−𝜆2) ,

which is interesting for any 𝜆 ≥ 1 (say).
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