Chapter 17

Derandomization using Conditional Expectations

Yes, my guard stood hard when abstract threats Too noble to neglect Deceived me into thinking I had something to protect Good and bad, I define these terms Quite clear, no doubt, somehow Ah, but I was so much older then I'm younger than that now

By Sariel Har-Peled, April 26, 2022¹

My Back Pages, Bob Dylan

17.1. Method of conditional expectations

Imagine that we have a randomized algorithm that uses as randomized input n bits X_1, \ldots, X_n , and outputs a solution of quality $f(X_1, \ldots, X_n)$. Assume that given values $v_1, \ldots, v_k \in \{0, 1\}$, one can compute, efficiently and deterministicly, the quantity

$$\mathbb{E}f(v_1,...,v_k) = \mathbb{E}[f(v_1,...,v_k,X_{k+1},...,X_n)] = \mathbb{E}[f(X_1,...,X_n) \mid X_1 = v_1,...,X_k = v_k]$$

by a given procedure $eval_{\mathbb{E}f}$. In such settings, one can compute efficiently and deterministicly an assignment v_1, \ldots, v_n , such that

$$f(v_1,\ldots,v_n) \ge \mathbb{E}f$$
, where $\mathbb{E}f = \mathbb{E}[f(X_1,\ldots,X_n)]$.

Or alternatively, one can find an assignment u_1, \ldots, u_n such that $f(u_1, \ldots, u_n) \leq \mathbb{E}[f(X_1, \ldots, X_n)]$.

The algorithm. Assume the algorithm had computed a partial assignment for v_1, \ldots, v_k , such that $\alpha_k = \mathbb{E}f(v_1, \ldots, v_k) \ge \mathbb{E}f$. The algorithm then would compute the two values

$$\alpha_{k,0} = \mathbb{E}f(v_1, \dots, v_k, 0)$$
 and $\alpha_{k,1} = \mathbb{E}f(v_1, \dots, v_k, 1).$

Observe that

$$\alpha_k = \mathbb{E}f(v_1, \dots, v_k) = \mathbb{P}[X_{k+1} = 0]\mathbb{E}f(v_1, \dots, v_k, 0) + \mathbb{P}[X_{k+1} = 1]\mathbb{E}f(v_1, \dots, v_k, 1) = \frac{\alpha_{k,0} + \alpha_{k,1}}{2}$$

As such, there is an i, such that $\alpha_{k,i} \ge \alpha_k$. The algorithm sets $v_{k+1} = i$, and continues to the next iteration.

Correctness. This is hopefully clear. Initially, $\alpha_0 = \mathbb{E}f$. In each iteration, the algorithm makes a choice, such that $\alpha_k \ge \alpha_{k-1}$. Thus,

$$\alpha_n = \mathbb{E}f(v_1, \ldots, v_n) = f(v_1, \ldots, v_n) \ge \alpha_{n-1} \ge \cdots \ge \alpha_0 = \mathbb{E}f.$$

[®]This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Running time. The algorithm performs 2n invocations of $eval_{\mathbb{E}f}$.

Result.

Theorem 17.1.1. Given a function $f(X_1, ..., X_n)$ over n random binary variables, such that one can compute determinedly $\mathbb{E}f(v_1, ..., v_k) = \mathbb{E}[f(X_1, ..., X_n) | X_1 = v_1, ..., X_k = v_k]$ in T(n) time. Then, one can compute an assignment $v_1, ..., v_n$, such that $f(v_1, ..., v_n) \ge \mathbb{E}f = \mathbb{E}[f(X_1, ..., X_n)]$. The running time of the algorithm is O(n + nT(n)).

17.1.1. Applications

17.1.1.1. Max kSAT

Given a boolean formula F with n variables and m clauses, where each clause has exactly k literals, let $f(X_1, \ldots, X_n)$ be the number of clauses the assignment X_1, \ldots, X_n satisfies. Clearly, one can compute f in O(mk) time. More generally, given a partial assignment v_1, \ldots, v_k , one can compute $\alpha_k = \mathbb{E}f(v_1, \ldots, v_k)$. Indeed, scan F and assign all the literals that depends on the variables X_1, \ldots, X_k their values. A literal evaluating to one satisfies its clause, and we count it as such. What remains are clauses with at most k literals. A literal with i literals, have probability *exactly* $1 - 1/2^i$ to be satisfied. Thus, summing these probabilities on these leftover clauses given use the desired value. This takes O(mk) time. Using Theorem 17.1.1 we get the following.

Lemma 17.1.2. Let F be a kSAT formula with n variables and m clauses. One can compute deterministicly an assignment that satisfies at least $(1 - 1/2^k)m$ clauses of F. This takes O(mnk) time.

17.1.1.2. Max cut

17.1.1.3. Turán theorem

Lemma 17.1.3 (Turán's theorem). Let G = (V, E) be a graph with *n* vertices and *m* edges. One can compute determinedly, in O(nm) time, an independent set of size at least $\frac{n}{1+2m/n}$.

Proof: Exercise.

References

[MR95] R. Motwani and P. Raghavan. *Randomized algorithms*. Cambridge, UK: Cambridge University Press, 1995.