Chapter 16

Independent set - Turán's theorem

I don't know why it should be, I am sure; but the sight of another man asleep in bed when I am up, maddens me. It seems to me so shocking to see the precious hours of a man's life - the priceless moments that will never come back to him again - being wasted in mere brutish sleep.

Jerome K. Jerome, Three men in a boat
By Sariel Har-Peled, April 26, $2022^{(1)}$

16.1. Turán's theorem

16.1.1. Some silly helper lemmas

We will need the following well-known inequality.
Lemma 16.1.1 (AM-GM inequality: Arithmetic and geometric means inequality.). For any $x_{1}, \ldots, x_{n} \geq 0$ we have $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} x_{2} \cdots x_{n}}$.

This inequality readily implies the "inverse" inequality: $\frac{1}{\sqrt[n]{x_{1} x_{2} \cdots x_{n}}} \geq \frac{n}{x_{1}+x_{2}+\cdots+x_{n}}$
Lemma 16.1.2. Let $x_{1}, \ldots, x_{n} \geq 0$ be n numbers. We have that $\sum_{i=1}^{n} \frac{1}{x_{i}} \geq \frac{n}{\left(\sum_{i} x_{i}\right) / n}$.
Proof: By the SM-GM inequality and then its "inverse" form, we have

$$
\frac{\sum_{i=1}^{n} \frac{1}{x_{i}}}{n}=\frac{1 / x_{1}+1 / x_{2}+\cdots+1 / x_{n}}{n} \geq \sqrt[n]{\left(1 / x_{1}\right)\left(1 / x_{2}\right) \cdots\left(1 / x_{n}\right)}=\frac{1}{\sqrt[n]{x_{1} x_{2} \cdots x_{n}}} \geq \frac{n}{x_{1}+x_{2}+\cdots+x_{n}}
$$

Lemma 16.1.3. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices, and let d_{G} be the average degree in the graph. We have that $\sum_{v \in \mathrm{~V}} \frac{1}{1+d(v)} \geq \frac{n}{1+d_{\mathrm{G}}}$.

Proof: Let the i th vertex in G be v_{i}. Set $x_{i}=1+d\left(v_{i}\right)$, for all i. By Lemma 16.1.2, we have

$$
\sum_{i=1}^{n} \frac{1}{1+d\left(v_{i}\right)}=\sum_{i=1}^{n} \frac{1}{x_{i}} \geq \frac{n}{\left(\sum_{i} x_{i}\right) / n}=\frac{n}{\left[\sum_{i}\left(1+d\left(v_{i}\right)\right)\right] / n}=\frac{n}{1+d_{\mathrm{G}}}
$$

[^0]
16.1.2. Statement and proof

Theorem 16.1.4 (Turán's theorem). Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices. The graph G has an independent set of size at least $\frac{n}{1+d_{G}}$, where d_{G} is the average vertex degree in G.

Proof: Let $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ be a random permutation of the vertices of G. Pick the vertex π_{i} into the independent set if none of its neighbors appear before it in π. Clearly, v appears in the independent set if and only if it appears in the permutation before all its $d(v)$ neighbors. The probability for this is $1 /(1+d(v))$. Thus, the expected size of the independent set is (exactly)

$$
\begin{equation*}
\tau=\sum_{v \in V} \frac{1}{1+d(v)} \tag{16.1}
\end{equation*}
$$

by linearity of expectations. Thus, by the probabilistic method, there exists an independent set in G of size at least τ. The claim now readily follows from Lemma 16.1.3.

16.1.3. An alternative proof of Turán's theorem

Following a post of this write-up on my blog, readers suggested two modifications. We present an alternative proof incorporating both suggestions.

Alternative proof of Theorem 16.1.4: We associate a charge of size $1 /(d(v)+1)$ with each vertex of G. Let $\gamma(G)$ denote the total charge of the vertices of G. We prove, using induction, that there is always an independent set in G of size at least $\gamma(G)$. If G is the empty graph, then the claim trivially holds. Otherwise, assume that it holds if the graph has at most $n-1$ vertices, and consider the vertex v of lowest degree in G. The total charge of v and its neighbors is

$$
\frac{1}{d(v)+1}+\sum_{u v \in E} \frac{1}{d(u)+1} \leq \frac{1}{d(v)+1}+\sum_{u v \in E} \frac{1}{d(v)+1}=\frac{d(v)+1}{d(v)+1}=1
$$

since $d(u) \geq d(v)$, for all $u v \in E$. Now, consider the graph H resulting from removing v and its neighbors from G. Clearly, $\gamma(H)$ is larger (or equal) to the total charge of the vertices of $V(H)$ in G, as their degree had either decreased (or remained the same). As such, by induction, we have an independent set in H of size at least $\gamma(H)$. Together with v this forms an independent set in G of size at least $\gamma(H)+1 \geq \gamma(G)$. Implying that there exists an independent set in G of size

$$
\begin{equation*}
\tau=\sum_{v \in V} \frac{1}{1+d(v)} \tag{16.2}
\end{equation*}
$$

Now, set $x_{v}=1+d(v)$, and observe that

$$
(n+2|E|) \tau=\left(\sum_{v \in V} x_{v}\right)\left(\sum_{v \in V} \frac{1}{x_{v}}\right) \geq\left(\sum_{v \in V} \sqrt{x_{v}} \frac{1}{\sqrt{x_{v}}}\right)^{2}=n^{2}
$$

using Cauchy-Schwartz inequality. Namely, $\tau \geq \frac{n^{2}}{n+2|E|}=\frac{n}{1+2|E| / n}=\frac{n}{1+d_{G}}$.
Lemma 16.1.5 (Cauchy-Schwartz inequality). For positive numbers $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}$, we have

$$
\sum_{i} \alpha_{i} \beta_{i} \leq \sqrt{\sum_{i} \alpha_{i}^{2}} \sqrt{\sum_{i} \beta_{i}^{2}}
$$

16.1.4. An algorithm for the weighted case

In the weighted case, we associate weight $w(v)$ with each vertex of G, and we are interested in the maximum weight independent set in G. Deploying the algorithm described in the first proof of Theorem 16.1.4, implies the following.

Lemma 16.1.6. The graph $G=(V, E)$ has an independent set of size $\geq \sum_{v \in V} \frac{w(v)}{1+d(v)}$.
Proof: By linearity of expectations, we have that the expected weight of the independent set computed is equal to

$$
\sum_{v \in V} w(v) \cdot \mathbb{P}[v \text { in the independent set }]=\sum_{v \in V} \frac{w(v)}{1+d(v)}
$$

References

[MR95] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge, UK: Cambridge University Press, 1995.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

