Chapter 15

Discrepancy and Derandomization

By Sariel Har-Peled, April 26, 2022⁽¹⁾

"Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible discovered Gustible's planet. The discovery turned out to be a tragic mistake.

Gustible's planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They immediately mind-read Angary J. Gustible's entire mind and life history, and embarrassed him very deeply by making up an opera concerning his recent divorce."

Gustible's Planet, Cordwainer Smith

15.1. Discrepancy

Consider a set system (X, \mathcal{R}) , where n = |X|, and $\mathcal{R} \subseteq 2^X$. A natural task is to partition X into two sets S, T, such that for any range $\mathbf{r} \in \mathcal{R}$, we have that $\chi(\mathbf{r}) = ||S \cap \mathbf{r}| - |T \cap \mathbf{r}||$ is minimized. In a perfect partition, we would have that $\chi(\mathbf{r}) = 0$ – the two sets S, T partition every range perfectly in half. A natural way to do so, is to consider this as a coloring problem – an element of X is colored by +1 if it is in S, and -1 if it is in T.

Definition 15.1.1. Consider a set system $S = (X, \mathcal{R})$, and let $\chi : X \to \{-1, +1\}$ be a function (i.e., a coloring). The *discrepancy* of $\mathbf{r} \in \mathcal{R}$ is $\chi(\mathbf{r}) = |\sum_{x \in \mathbf{r}} \chi(x)|$. The *discrepancy of* χ is the maximum discrepancy over all the ranges – that is

$$\operatorname{disc}(\chi) = \max_{\mathbf{r} \in \mathcal{R}} \chi(\mathbf{r}).$$

The *discrepancy* of S is

$$\operatorname{disc}(\mathsf{S}) = \min_{\chi: \mathsf{X} \to \{-1, +1\}} \operatorname{disc}(\chi).$$

Bounding the discrepancy of a set system is quite important, as it provides a way to shrink the size of the set system, while introducing small error. Computing the discrepancy of a set system is generally quite challenging. A rather decent bound follows by using random coloring.

Definition 15.1.2. For a vector $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$, $\|\mathbf{v}\|_{\infty} = \max_i |v_i|$.

For technical reasons, it is easy to think about the set system as an incidence matrix.

Definition 15.1.3. For a $m \times n$ a binary matrix M (i.e., each entry is either 0 or 1), consider a vector $\mathbf{b} \in \{-1, +1\}^n$. The *discrepancy* of **b** is $\|\mathsf{Mb}\|_{\infty}$.

Theorem 15.1.4. Let M be an $n \times n$ binary matrix (i.e., each entry is either 0 or 1), then there always exists a vector $\mathbf{b} \in \{-1, +1\}^n$, such that $\|\mathsf{M}\mathbf{b}\|_{\infty} \leq 4\sqrt{n \log n}$. Specifically, a random coloring provides such a coloring with high probability.

[®]This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Proof: Let $v = (v_1, \ldots, v_n)$ be a row of M. Chose a random $\mathbf{b} = (b_1, \ldots, b_n) \in \{-1, +1\}^n$. Let i_1, \ldots, i_τ be the indices such that $v_{i_i} = 1$, and let

$$Y = \langle \mathbf{v}, \mathbf{b} \rangle = \sum_{i=1}^{n} v_i b_i = \sum_{j=1}^{\tau} v_{i_j} b_{i_j} = \sum_{j=1}^{\tau} b_{i_j}.$$

As such Y is the sum of m independent random variables that accept values in $\{-1, +1\}$. Clearly,

$$\mathbb{E}[Y] = \mathbb{E}[\langle v, \mathbf{b} \rangle] = \mathbb{E}\left[\sum_{i} v_{i} b_{i}\right] = \sum_{i} \mathbb{E}[v_{i} b_{i}] = \sum_{i} v_{i} \mathbb{E}[b_{i}] = 0.$$

By Chernoff inequality and the symmetry of Y, we have that, for $\Delta = 4\sqrt{n \ln m}$, it holds

$$\mathbb{P}\big[|Y| \ge \Delta\big] = 2\mathbb{P}\big[\langle v, \mathbf{b} \rangle \ge \Delta\big] = 2\mathbb{P}\Big[\sum_{j=1}^{\tau} b_{i_j} \ge \Delta\Big] \le 2\exp\left(-\frac{\Delta^2}{2\tau}\right) = 2\exp\left(-8\frac{n\ln m}{\tau}\right) \le \frac{2}{m^8},$$

since $\tau \leq n$. In words, the probability that any entry in Mb exceeds (in absolute values) $4\sqrt{n \ln}$, is smaller than $2/m^7$. Thus, with probability at least $1 - 2/m^7$, all the entries of Mb have absolute value smaller than $4\sqrt{n \ln m}$.

In particular, there exists a vector $\mathbf{b} \in \{-1, +1\}^n$ such that $\|\mathsf{M}\mathbf{b}\|_{\infty} \leq 4\sqrt{n \ln m}$.

We might spend more time on discrepancy later on - it is a fascinating topic, well worth its own course.

15.2. The Method of Conditional Probabilities

In previous lectures, we encountered the following problem.

Problem 15.2.1 (Set Balancing/Discrepancy). Given a binary matrix M of size $n \times n$, find a vector $\mathbf{v} \in \{-1, +1\}^n$, such that $\|\mathbf{M}\mathbf{v}\|_{\infty}$ is minimized.

Using random assignment and the Chernoff inequality, we showed that there exists \mathbf{v} , such that $\|\mathbf{M}\mathbf{v}\|_{\infty} \leq 4\sqrt{n \ln n}$. Can we derandomize this algorithm? Namely, can we come up with an efficient *deterministic* algorithm that has low discrepancy?

To derandomize our algorithm, construct a computation tree of depth n, where in the *i*th level we expose the *i*th coordinate of \mathbf{v} . This tree T has depth n. The root represents all possible random choices, while a node at depth i, represents all computations when the first i bits are fixed. For a node $v \in T$, let P(v) be the probability that a random computation starting from v succeeds – here randomly assigning the remaining bits can be interpreted as a random walk down the tree to a leaf.

Formally, the algorithm is *successful* if ends up with a vector **v**, such that $\|\mathbf{M}\mathbf{v}\|_{\infty} \leq 4\sqrt{n \ln n}$.

Let v_l and v_r be the two children of v. Clearly, $P(v) = (P(v_l) + P(v_r))/2$. In particular, $\max(P(v_l), P(v_r)) \ge P(v)$. Thus, if we could compute $P(\cdot)$ quickly (and deterministically), then we could derandomize the algorithm.

Let C_m^+ be the bad event that $\mathbf{r}_m \cdot \mathbf{v} > 4\sqrt{n \log n}$, where \mathbf{r}_m is the *m*th row of M. Similarly, C_m^- is the bad event that $\mathbf{r}_m \cdot \mathbf{v} < -4\sqrt{n \log n}$, and let $C_m = C_m^+ \cup C_m^-$. Consider the probability, $\mathbb{P}[C_m^+ | \mathbf{v}_1, \dots, \mathbf{v}_k]$ (namely, the first *k* coordinates of **v** are specified). Let $\mathbf{r}_m = (r_1, \dots, r_n)$. We have that

$$\mathbb{P}\left[C_m^+ \mid \mathbf{v}_1, \dots, \mathbf{v}_k\right] = \mathbb{P}\left[\sum_{i=k+1}^n \mathbf{v}_i r_i > 4\sqrt{n \log n} - \sum_{i=1}^k \mathbf{v}_i r_i\right] = \mathbb{P}\left[\sum_{i\geq k+1, r_i\neq 0} \mathbf{v}_i r_i > L\right] = \mathbb{P}\left[\sum_{i\geq k+1, r_i=1} \mathbf{v}_i > L\right],$$

where $L = 4\sqrt{n \log n} - \sum_{i=1}^{k} \mathbf{v}_i r_i$ is a known quantity (since $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are known). Let $V = \sum_{i \ge k+1, r_i=1} 1$. We have,

$$\mathbb{P}\left[C_m^+ \mid \mathbf{v}_1, \dots, \mathbf{v}_k\right] = \mathbb{P}\left[\sum_{i \ge k+1} (\mathbf{v}_i + 1) > L + V\right] = \mathbb{P}\left[\sum_{i \ge k+1} \frac{\mathbf{v}_i + 1}{2} > \frac{L + V}{2}\right],$$

The last quantity is the probability that ${}^{\alpha}h\bar{n} V$ flips of a fair $0/1 \cosh^{\alpha}b\bar{n}$ gets more than (L+V)/2 heads. Thus,

$$P_m^+ = \mathbb{P}\left[C_m^+ \mid \mathbf{v}_1, \dots, \mathbf{v}_k\right] = \sum_{i=\lceil (L+V)/2 \rceil}^{\mathsf{V}} \binom{\mathsf{V}}{i} \frac{1}{2^n} = \frac{1}{2^n} \sum_{i=\lceil (L+V)/2 \rceil}^{\mathsf{V}} \binom{\mathsf{V}}{i}.$$

This implies, that we can compute P_m^+ in polynomial time! Indeed, we are adding $V \leq n$ numbers, each one of them is a binomial coefficient that has polynomial size representation in n, and can be computed in polynomial time (why?). One can define in similar fashion P_m^- , and let $P_m = P_m^+ + P_m^-$. Clearly, P_m can be computed in polynomial time, by applying a similar argument to the computation of $P_m^- = \mathbb{P}[C_m^- | \mathbf{v}_1, \dots, \mathbf{v}_k]$.

For a node $v \in T$, let \mathbf{v}_v denote the portion of \mathbf{v} that was fixed when traversing from the root of T to v. Let $P(v) = \sum_{m=1}^{n} \mathbb{P}[C_m | \mathbf{v}_v]$. By the above discussion P(v) can be computed in polynomial time. Furthermore, we know, by the previous result on discrepancy that P(r) < 1 (that was the bound used to show that there exist a good assignment).

As before, for any $v \in T$, we have $P(v) \ge \min(P(v_l), P(v_r))$. Thus, we have a polynomial deterministic algorithm for computing a set balancing with discrepancy smaller than $4\sqrt{n\log n}$. Indeed, set v = root(T). And start traversing down the tree. At each stage, compute $P(v_l)$ and $P(v_r)$ (in polynomial time), and set v to the child with lower value of $P(\cdot)$. Clearly, after n steps, we reach a leaf, that corresponds to a vector \mathbf{v}' such that $||A\mathbf{v}'||_{\infty} \le 4\sqrt{n\log n}$.

Theorem 15.2.2. Using the method of conditional probabilities, one can compute in polynomial time in n, a vector $\mathbf{v} \in \{-1, 1\}^n$, such that $\|A\mathbf{v}\|_{\infty} \leq 4\sqrt{n \log n}$.

Note, that this method might fail to find the best assignment.

15.3. Bibliographical Notes

There is a lot of nice work on discrepancy in geometric settings. See the books [Cha01, Mat99].

15.4. From previous lectures

Theorem 15.4.1. Let X_1, \ldots, X_n be *n* independent random variables, such that $\mathbb{P}[X_i = 1] = \mathbb{P}[X_i = -1] = \frac{1}{2}$, for $i = 1, \ldots, n$. Let $Y = \sum_{i=1}^{n} X_i$. Then, for any $\Delta > 0$, we have

$$\mathbb{P}\Big[Y \ge \Delta\Big] \le \exp(-\Delta^2/2n).$$

References

- [Cha01] B. Chazelle. *The discrepancy method: randomness and complexity*. New York: Cambridge University Press, 2001.
- [Mat99] J. Matoušek. *Geometric discrepancy*. Vol. 18. Algorithms and Combinatorics. Springer, 1999.