Chapter 15

Discrepancy and Derandomization

By Sariel Har-Peled, April 26, $2022^{(1)}$

"Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible discovered Gustible's planet. The discovery turned out to be a tragic mistake.
Gustible's planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They immediately mind-read Angary J. Gustible's entire mind and life history, and embarrassed him very deeply by making up an opera concerning his recent divorce."

Gustible's Planet, Cordwainer Smith

15.1. Discrepancy

Consider a set system $(\mathrm{X}, \mathcal{R})$, where $n=|\mathrm{X}|$, and $\mathcal{R} \subseteq 2^{\mathrm{X}}$. A natural task is to partition X into two sets S, T, such that for any range $\mathbf{r} \in \mathcal{R}$, we have that $\chi(\mathbf{r})=||S \cap \mathbf{r}|-|T \cap \mathbf{r}||$ is minimized. In a perfect partition, we would have that $\chi(\mathbf{r})=0$ - the two sets S, T partition every range perfectly in half. A natural way to do so, is to consider this as a coloring problem - an element of X is colored by +1 if it is in S, and -1 if it is in T.

Definition 15.1.1. Consider a set system $S=(X, \mathcal{R})$, and let $\chi: X \rightarrow\{-1,+1\}$ be a function (i.e., a coloring). The discrepancy of $\mathbf{r} \in \mathcal{R}$ is $\chi(\mathbf{r})=\left|\sum_{x \in \mathbf{r}} \chi(x)\right|$. The discrepancy of χ is the maximum discrepancy over all the ranges - that is

$$
\operatorname{disc}(\chi)=\max _{\mathbf{r} \in \mathcal{R}} \chi(\mathbf{r})
$$

The discrepancy of S is

$$
\operatorname{disc}(S)=\min _{\chi: X \rightarrow\{-1,+1\}} \operatorname{disc}(\chi)
$$

Bounding the discrepancy of a set system is quite important, as it provides a way to shrink the size of the set system, while introducing small error. Computing the discrepancy of a set system is generally quite challenging. A rather decent bound follows by using random coloring.

Definition 15.1.2. For a vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n},\|\mathbf{v}\|_{\infty}=\max _{i}\left|v_{i}\right|$.
For technical reasons, it is easy to think about the set system as an incidence matrix.
Definition 15.1.3. For a $m \times n$ a binary matrix M (i.e., each entry is either 0 or 1), consider a vector $\mathbf{b} \in\{-1,+1\}^{n}$. The discrepancy of \mathbf{b} is $\|\mathrm{Mb}\|_{\infty}$.

Theorem 15.1.4. Let M be an $n \times n$ binary matrix (i.e., each entry is either 0 or 1), then there always exists a vector $\mathbf{b} \in\{-1,+1\}^{n}$, such that $\|\mathbf{M b}\|_{\infty} \leq 4 \sqrt{n \log n}$. Specifically, a random coloring provides such a coloring with high probability.

[^0]Proof: Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be a row of M. Chose a random $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in\{-1,+1\}^{n}$. Let i_{1}, \ldots, i_{τ} be the indices such that $v_{i_{j}}=1$, and let

$$
Y=\langle v, \mathbf{b}\rangle=\sum_{i=1}^{n} v_{i} b_{i}=\sum_{j=1}^{\tau} v_{i_{j}} b_{i_{j}}=\sum_{j=1}^{\tau} b_{i_{j}} .
$$

As such Y is the sum of m independent random variables that accept values in $\{-1,+1\}$. Clearly,

$$
\mathbb{E}[Y]=\mathbb{E}[\langle v, \mathbf{b}\rangle]=\mathbb{E}\left[\sum_{i} v_{i} b_{i}\right]=\sum_{i} \mathbb{E}\left[v_{i} b_{i}\right]=\sum_{i} v_{i} \mathbb{E}\left[b_{i}\right]=0 .
$$

By Chernoff inequality and the symmetry of Y, we have that, for $\Delta=4 \sqrt{n \ln m}$, it holds

$$
\mathbb{P}[|Y| \geq \Delta]=2 \mathbb{P}[\langle v, \mathbf{b}\rangle \geq \Delta]=2 \mathbb{P}\left[\sum_{j=1}^{\tau} b_{i_{j}} \geq \Delta\right] \leq 2 \exp \left(-\frac{\Delta^{2}}{2 \tau}\right)=2 \exp \left(-8 \frac{n \ln m}{\tau}\right) \leq \frac{2}{m^{8}}
$$

since $\tau \leq n$. In words, the probability that any entry in $\mathrm{M} b$ exceeds (in absolute values) $4 \sqrt{n \ln }$, is smaller than $2 / m^{7}$. Thus, with probability at least $1-2 / m^{7}$, all the entries of $\mathrm{M} b$ have absolute value smaller than $4 \sqrt{n \ln m}$.

In particular, there exists a vector $\mathbf{b} \in\{-1,+1\}^{n}$ such that $\|\mathbf{M b}\|_{\infty} \leq 4 \sqrt{n \ln m}$.
We might spend more time on discrepancy later on - it is a fascinating topic, well worth its own course.

15.2. The Method of Conditional Probabilities

In previous lectures, we encountered the following problem.
Problem 15.2.1 (Set Balancing/Discrepancy). Given a binary matrix M of size $n \times n$, find a vector $\mathbf{v} \in$ $\{-1,+1\}^{n}$, such that $\|\mathrm{Mv}\|_{\infty}$ is minimized.

Using random assignment and the Chernoff inequality, we showed that there exists \mathbf{v}, such that $\|\mathrm{Mv}\|_{\infty} \leq 4 \sqrt{n \ln n}$. Can we derandomize this algorithm? Namely, can we come up with an efficient deterministic algorithm that has low discrepancy?

To derandomize our algorithm, construct a computation tree of depth n, where in the i th level we expose the i th coordinate of \mathbf{v}. This tree T has depth n. The root represents all possible random choices, while a node at depth i, represents all computations when the first i bits are fixed. For a node $v \in T$, let $P(v)$ be the probability that a random computation starting from v succeeds - here randomly assigning the remaining bits can be interpreted as a random walk down the tree to a leaf.

Formally, the algorithm is successful if ends up with a vector \mathbf{v}, such that $\|\mathrm{Mv}\|_{\infty} \leq 4 \sqrt{n \ln n}$.
Let v_{l} and v_{r} be the two children of v. Clearly, $P(v)=\left(P\left(v_{l}\right)+P\left(v_{r}\right)\right) / 2$. In particular, max $\left(P\left(v_{l}\right), P\left(v_{r}\right)\right) \geq$ $P(v)$. Thus, if we could compute $P(\cdot)$ quickly (and deterministically), then we could derandomize the algorithm.

Let C_{m}^{+}be the bad event that $\mathbf{r}_{m} \cdot \mathbf{v}>4 \sqrt{n \log n}$, where \mathbf{r}_{m} is the m th row of M. Similarly, C_{m}^{-}is the bad event that $\mathbf{r}_{m} \cdot \mathbf{v}<-4 \sqrt{n \log n}$, and let $C_{m}=C_{m}^{+} \cup C_{m}^{-}$. Consider the probability, $\mathbb{P}\left[C_{m}^{+} \mid \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$ (namely, the first k coordinates of \mathbf{v} are specified). Let $\mathbf{r}_{m}=\left(r_{1}, \ldots, r_{n}\right)$. We have that

$$
\mathbb{P}\left[C_{m}^{+} \mid \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]=\mathbb{P}\left[\sum_{i=k+1}^{n} \mathbf{v}_{i} r_{i}>4 \sqrt{n \log n}-\sum_{i=1}^{k} \mathbf{v}_{i} r_{i}\right]=\mathbb{P}\left[\sum_{i \geq k+1, r_{i} \neq 0} \mathbf{v}_{i} r_{i}>L\right]=\mathbb{P}\left[\sum_{i \geq k+1, r_{i}=1} \mathbf{v}_{i}>L\right]
$$

where $L=4 \sqrt{n \log n}-\sum_{i=1}^{k} \mathbf{v}_{i} r_{i}$ is a known quantity (since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are known). Let $V=\sum_{i \geq k+1, r_{i}=1} 1$. We have,

$$
\mathbb{P}\left[C_{m}^{+} \mid \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]=\mathbb{P}\left[\sum_{i \geq k+1}\left(\mathbf{v}_{i}+1\right)>L+V\right]=\mathbb{P}\left[\sum_{i \geq k+1} \frac{\mathbf{v}_{i}+1}{2}>\frac{L+V}{2}\right],
$$

The last quantity is the probability that ${ }^{\alpha}{ }_{i n}=1 / V$ flips of a fair $0 / 1 \operatorname{coin}^{\alpha}{ }^{\alpha} \bar{i}=1$ gets more than $(L+V) / 2$ heads. Thus,

$$
P_{m}^{+}=\mathbb{P}\left[C_{m}^{+} \mid \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]=\sum_{i=\lceil(L+V) / 2\rceil}^{\mathrm{V}}\binom{\mathrm{~V}}{i} \frac{1}{2^{n}}=\frac{1}{2^{n}} \sum_{i=\lceil(L+V) / 2\rceil}^{\mathrm{V}}\binom{\mathrm{~V}}{i} .
$$

This implies, that we can compute P_{m}^{+}in polynomial time! Indeed, we are adding $V \leq n$ numbers, each one of them is a binomial coefficient that has polynomial size representation in n, and can be computed in polynomial time (why?). One can define in similar fashion P_{m}^{-}, and let $P_{m}=P_{m}^{+}+P_{m}^{-}$. Clearly, P_{m} can be computed in polynomial time, by applying a similar argument to the computation of $P_{m}^{-}=\mathbb{P}\left[C_{m}^{-} \mid \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$.

For a node $v \in T$, let \mathbf{v}_{v} denote the portion of \mathbf{v} that was fixed when traversing from the root of T to v. Let $P(v)=\sum_{m=1}^{n} \mathbb{P}\left[C_{m} \mid \mathbf{v}_{v}\right]$. By the above discussion $P(v)$ can be computed in polynomial time. Furthermore, we know, by the previous result on discrepancy that $P(r)<1$ (that was the bound used to show that there exist a good assignment).

As before, for any $v \in T$, we have $P(v) \geq \min \left(P\left(v_{l}\right), P\left(v_{r}\right)\right)$. Thus, we have a polynomial deterministic algorithm for computing a set balancing with discrepancy smaller than $4 \sqrt{n \log n}$. Indeed, set $v=$ $\operatorname{root}(T)$. And start traversing down the tree. At each stage, compute $P\left(v_{l}\right)$ and $P\left(v_{r}\right)$ (in polynomial time), and set v to the child with lower value of $P(\cdot)$. Clearly, after n steps, we reach a leaf, that corresponds to a vector \mathbf{v}^{\prime} such that $\left\|A \mathbf{v}^{\prime}\right\|_{\infty} \leq 4 \sqrt{n \log n}$.
Theorem 15.2.2. Using the method of conditional probabilities, one can compute in polynomial time in n, a vector $\mathbf{v} \in\{-1,1\}^{n}$, such that $\|A \mathbf{v}\|_{\infty} \leq 4 \sqrt{n \log n}$.

Note, that this method might fail to find the best assignment.

15.3. Bibliographical Notes

There is a lot of nice work on discrepancy in geometric settings. See the books [Cha01, Mat99].

15.4. From previous lectures

Theorem 15.4.1. Let X_{1}, \ldots, X_{n} be n independent random variables, such that $\mathbb{P}\left[X_{i}=1\right]=\mathbb{P}\left[X_{i}=-1\right]=$ $\frac{1}{2}$, for $i=1, \ldots, n$. Let $Y=\sum_{i=1}^{n} X_{i}$. Then, for any $\Delta>0$, we have

$$
\mathbb{P}[Y \geq \Delta] \leq \exp \left(-\Delta^{2} / 2 n\right)
$$

References

[Cha01] B. Chazelle. The discrepancy method: randomness and complexity. New York: Cambridge University Press, 2001.
[Mat99] J. Matoušek. Geometric discrepancy. Vol. 18. Algorithms and Combinatorics. Springer, 1999.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

