Chapter 15

Discrepancy and Derandomization

By Sariel Har-Peled, April 26, 20227

“Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible
discovered Gustible’s planet. The discovery turned out to be a tragic mistake.

Gustible’s planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They
immediately mind-read Angary J. Gustible’s entire mind and life history, and embarrassed him very deeply by
making up an opera concerning his recent divorce.”

Gustible’s Planet, Cordwainer Smith

15.1. Discrepancy

Consider a set system (X, R), where n = |X|, and R C 2%. A natural task is to partition X into two sets
S,T, such that for any range r € R, we have that y(r) = ||S Nnr|—|TN r|| is minimized. In a perfect
partition, we would have that y(r) = 0 — the two sets S,T partition every range perfectly in half. A
natural way to do so, is to consider this as a coloring problem — an element of X is colored by +1 if it is
in §, and —1 if it is in 7.

Definition 15.1.1. Consider a set system S = (X,R), and let y : X — {-1,+1} be a function (i.e., a
coloring). The discrepancy of r € R is y(r) = |X e x(x)|. The discrepancy of y is the maximum
discrepancy over all the ranges — that is

disc(y) = max y(r).
reR

The discrepancy of S is
disc(S) = X:X—r&i—%,ﬂ} disc(y).

Bounding the discrepancy of a set system is quite important, as it provides a way to shrink the size
of the set system, while introducing small error. Computing the discrepancy of a set system is generally
quite challenging. A rather decent bound follows by using random coloring.

Definition 15.1.2. For a vector v = (vi,...,v,) € R, ||v||, = max; |v;|.

For technical reasons, it is easy to think about the set system as an incidence matrix.

Definition 15.1.3. For a m X n a binary matrix M (i.e., each entry is either 0 or 1), consider a vector
b € {-1,+1}". The discrepancy of b is ||Mb]||..

Theorem 15.1.4. Let M be an nxn binary matriz (i.e., each entry is either 0 or 1), then there always
exists a vector b € {=1,+1}", such that ||Mb|| < 4+/nlogn. Specifically, a random coloring provides
such a coloring with high probability.
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Proof: Let v = (v1,...,v,) be a row of M. Chose a random b = (by,...,b,) € {-1,+1}". Let i1,...,i;
be the indices such that v;; =1, and let

n

Y = (V,b) = Zvibi = ZT:V,'jbij = ZT:bij.
Jj=1

i=1 j=1

As such Y is the sum of m independent random variables that accept values in {-1,+1}. Clearly,

EIY] =E[(v,b)] =E| D vibi| = Y Elvibi] = ) viBlbi] =0.
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By Chernoff inequality and the symmetry of Y, we have that, for A = 4Vnlnm, it holds

d 2
P[IY] > A] =2P[(v,b) > A] = 2P[Z b, > A] < 2exp(—§—T) = 26Xp(—8nlnm) < 2

—
= T m

since 7 < n. In words, the probability that any entry in Mb exceeds (in absolute values) 4vnln, is
smaller than 2/m”. Thus, with probability at least 1 — 2/m7, all the entries of Mb have absolute value
smaller than 4VnlInm.

In particular, there exists a vector b € {—1,+1}" such that || Mb||, < 4VnInm. [

We might spend more time on discrepancy later on — it is a fascinating topic, well worth its own
course.

15.2. The Method of Conditional Probabilities

In previous lectures, we encountered the following problem.

Problem 15.2.1 (Set Balancing/Discrepancy). Given a binary matrix M of size n X n, find a vector v €
{-1,+41}", such that ||[Mv]||,, is minimized.

Using random assignment and the Chernoff inequality, we showed that there exists v, such that
IMv||, < 4VrnInn. Can we derandomize this algorithm? Namely, can we come up with an efficient
deterministic algorithm that has low discrepancy?

To derandomize our algorithm, construct a computation tree of depth n, where in the ith level we
expose the ith coordinate of v. This tree T has depth n. The root represents all possible random choices,
while a node at depth i, represents all computations when the first i bits are fixed. For a node v € T, let
P(v) be the probability that a random computation starting from v succeeds — here randomly assigning
the remaining bits can be interpreted as a random walk down the tree to a leaf.

Formally, the algorithm is successful if ends up with a vector v, such that ||[Mv|| < 4Vrlnn.

Let v; and v, be the two children of v. Clearly, P(v) = (P(v;)+P(v,))/2. In particular, max(P(v;), P(v,)) >
P(v). Thus, if we could compute P(-) quickly (and deterministically), then we could derandomize the
algorithm.

Let C} be the bad event that r,, - v > 44/nlogn, where r,, is the mth row of M. Similarly, C,, is the
bad event that r,, - v < —4+/nlogn, and let C,, = C}, U C,,. Consider the probability, P[C}, |V1, Vi
(namely, the first k coordinates of v are specified). Let r,, = (r1,...,r,;). We have that

n

k
P[C,;|v1,...,vk]:P[Zvﬂ’i>4 nlogn—Zviri]:P[ Z Virl'>L]:P[ Z Vi>L]’

i=k+1 i=1 i>k+1,r#0 izk+1,r=1
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where L = 44/nlogn — Zl]le v;r; is a known quantity (since vi,...,vi are known). Let V = ¥ 544121 1.
We have,

b

i+1  L+V
P[C;|V1,...,vk]:P['Z (v"+1)>L+V]=P['ZV; § _;
i>k+1 S

The last quantity is the probability that 3TV flips of a fair 0/1 coirf*éile gets more than (L +V)/2 heads.
Thus,

A T Y,

P;:P[C;1|V1,...,Vk]:. Z (l)?zﬁ Z (l)
i=[(L+V)/2] i=[(L+V)/2]
This implies, that we can compute P}, in polynomial time! Indeed, we are adding V < n numbers,
each one of them is a binomial coefficient that has polynomial size representation in n, and can be
computed in polynomial time (why?). One can define in similar fashion P;,, and let P,, = P} + P;,.
Clearly, P,, can be computed in polynomial time, by applying a similar argument to the computation
of P, :P[C,;, |V1,...,Vk].

For a node v € T, let v, denote the portion of v that was fixed when traversing from the root of T
tov. Let P(v) = 204 ]P’[Cm |Vv]. By the above discussion P(v) can be computed in polynomial time.
Furthermore, we know, by the previous result on discrepancy that P(r) < 1 (that was the bound used
to show that there exist a good assignment).

As before, for any v € T, we have P(v) > min(P(v;), P(v,)). Thus, we have a polynomial deterministic
algorithm for computing a set balancing with discrepancy smaller than 44/nlogn. Indeed, set v =
root(T). And start traversing down the tree. At each stage, compute P(v;) and P(v,) (in polynomial
time), and set v to the child with lower value of P(:). Clearly, after n steps, we reach a leaf, that

corresponds to a vector v/ such that ||AV'||., < 4y/nlogn.

Theorem 15.2.2. Using the method of conditional probabilities, one can compute in polynomial time
inn, a vector v € {=1,1}", such that ||Av||s < 4+/nlogn.

Note, that this method might fail to find the best assignment.

15.3. Bibliographical Notes

There is a lot of nice work on discrepancy in geometric settings. See the books [Cha01, Mat99].

15.4. From previous lectures

Theorem 15.4.1. Let Xy, ..., X, ben independent random variables, such thatP[X; = 1] = P[X; = —1] =
%, fori=1,...,n. LetY =", X;. Then, for any A >0, we have

P[Y > A] < exp(—A?/2n).
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