Chapter 14

Min Cut

To acknowledge the corn - This purely American expression means to admit the losing of an argument, especially
in regard to a detail; to retract; to admit defeat. It is over a hundred years old. Andrew Stewart, a member of
Congress, is said to have mentioned it in a speech in 1828. He said that haystacks and cornfields were sent by Indiana,
Ohio and Kentucky to Philadelphia and New York. Charles A. Wickliffe, a member from Kentucky questioned the
statement by commenting that haystacks and cornfields could not walk. Stewart then pointed out that he did not
mean literal haystacks and cornfields, but the horses, mules, and hogs for which the hay and corn were raised.
Wickliffe then rose to his feet, and said, “Mr. Speaker, I acknowledge the corn”.
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14.1. Branching processes — Galton-Watson Process

14.1.1. The problem

In the 19th century, Victorians were worried that aristocratic surnames were disappearing, as family
names passed on only through the male children. As such, a family with no male children had its family
name disappear. So, imagine the number of male children of a person is an independent random variable
X €{0,1,2,...}. Starting with a single person, its family (as far as male children are concerned) is a
random tree with the degree of a node being distributed according to X. We continue recursively in
constructing this tree, again, sampling the number of children for each current leaf according to the
distribution of X. It is not hard to see that a family disappears if E[X] < 1, and it has a constant
probability of surviving if E[X] > 1.

Francis Galton asked the question of what is the probability of such a blue-blood family name to
survive, and this question was answered by Henry William Watson [WGT75]. The Victorians were worried
about strange things, see [Gre69] for a provocatively titled article from the period, and [Stel2] for a
more recent take on this issue.

Of course, since infant mortality is dramatically down (as is the number of aristocrat males dying to
maintain the British empire), the probability of family names to disappear is now much lower than it was
in the 19th century. Interestingly, countries with family names that were introduced long time ago have
very few surnames (i.e., Korean have 250 surnames, and three surnames form 45% of the population).
On the other hand, countries that introduced surnames more recently have dramatically more surnames
(for example, the Dutch have surnames only for the last 200 years, and there are 68,000 different family
names).

Here we are going to look on a very specific variant of this problem. Imagine that starting with a
single male. A male has exactly two children, and one of them is a male with probability half (i.e., the
Y-chromosome is being passed only to its male children). As such, the natural question is what is the
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probability that & generations down, there is a male decedent that all his ancestors are male (i.e., it
caries the original family name, and the original Y-chromosome).

14.1.2. On coloring trees

Let T}, be a complete binary tree of height h. We randomly color its edges by black and white. Namely,
for each edge we independently choose its color to be either black or white, with equal probability (say,
black indicates the child is male). We are interested in the event that there exists a path from the root
of Ty, to one of its leafs, that is all black. Let &;, denote this event, and let p; = P[E;]. Observe that
po =1 and p; = 3/4 (see below).

To bound this probability, consider the root u of T}, and its two children u; and u,. The probability
that there is a black path from u; to one of its children is p;_1, and as such, the probability that there is
a black path from u through u; to a leaf of the subtree of u; is P[the edge uu; is colored black] - pp—1 =
on-1/2. As such, the probability that there is no black path through u; is 1 — ps—1/2. As such, the
probability of not having a black path from u to a leaf (through either children) is (1 — p;_1/2)%. In
particular, there desired probability, is the complement; that is
Ph—1)2 _ Pr-1 (2 B Ph—l) b Pi

5 5 5 h-1 — T_l = f(on-1) for fx) =x-x*/4.

pn=1-(1-

The starting values are pg = 1, and p; = 3/4.
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Figure 14.1: A graph of the function f(x) = x —x?/4.

Lemma 14.1.1. We have that pp, > 1/(h+1).

Proof: (Feel free to skip reading.) The proof is by induction. For h =1, we have p; =3/4 > 1/(1 +1).
Observe that py = f(pp-1) for f(x) =x —x2/4, and f’(x) =1 —x/2. As such, f’(x) > 0 for x € [0, 1]

and f(x) is increasing in the range [0, 1]. As such, by induction, we have that

1 1 1
Ph=f(/0h—1)2f(m)=ﬁ—4—hz-

We need to prove that p, > 1/(h+ 1), which is implied by the above if

L1 1 2 2 2
which trivially holds. u

Lemma 14.1.2. We have that pp, = O(1/h).



Proof: (Feel free to skip reading.) We prove the claim for infinite number of values of & — the claim then
follows for all & by fiddling with the constants. The claim trivially holds for small values of h. For any
Jj >0, let hj be the minimal index such that pj, < 1/2/. It is easy to verify that ps, > 1/2/*1. We claim
(mysteriously) that

Phy = Phy
hjy1 —hj < ————.
J+ / (phj+1)2/4
Indeed, pg4+1 is the number resulting from removing p,% /4 from pj. Namely, the sequence p1, p2,... is a

monotonically decreasing sequence of numbers in the interval [0, 1], where the gaps between consecutive
numbers decreases. In particular, to get from pj; to pp,,,, the gaps used were of size at least A = (on j+1)2,
which means that there are at least (on; —pn,,,;)/A—1 numbers in the series between these two elements.
As such, since pj; < 1/2/ and Phjy = 1/2/*2, we have

— j j+2
hiyi—hi < Phj = Phjn < 1/2J - ‘1/2J+ < 22j+6/2j — 2j+6'
LTS T VA S 122

This implies that h; < (hj —hj_1)+(hj-1 =hj_2)+---+ (h1 = hp) < 276 As such, we have Ph; < 1/2/ <
26/2/%6 < 26/h;, which implies the claim. [ ]

14.2. Min Cut

14.2.1. Problem Definition

Let G = (V, E) be an undirected graph with n vertices and m edges. We are
interested in cuts in G.

Definition 14.2.1. A cut in G is a partition of the vertices of V into two
sets § and V' \ S, where the edges of the cut are

(S,V\S)z{uvluES,VEV\S, andquE},

where § # 0 and V \ § # 0. We will refer to the number of edges in the
cut (S,V\ S) as the size of the cut. For an example of a cut, see figure

on the right.
We are interested in the problem of computing the minimum cut (i.e., mincut), that is, the cut in

the graph with minimum cardinality. Specifically, we would like to find the set S C V such that (S,V\S)
is as small as possible, and § is neither empty nor V \ § is empty.

14.2.2. Some Definitions

We remind the reader of the following concepts. The conditional probability of X given Y is
P[X =x |Y = y] =P[(X=x)Nn (Y =y)]/P[Y =y]. An equivalent, useful restatement of this is that

P[(X=x)n (¥ =y)]|=P[X=x|Y=y]| P[Y =yl (14.1)
The following is easy to prove by induction using Eq. (14.1).

Lemma 14.2.2. Let &1,...,E&, be n events which are not necessarily independent. Then,

]P[ﬂ?zlgi] =P[81] *P[Ez |81] *P[Sg |81 082] *...*P[Sn |81 ﬂ...ﬂgn_l].
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14.3. The Algorithm

The basic operation used by the algorithm is edge
contraction, depicted in Figure 14.2. We take an
edge e = xy in G and merge the two vertices into a
single vertex. The new resulting graph is denoted
by G/xy. Note, that we remove self loops created by X £
(@) (b)

the contraction. However, since the resulting graph
is no longer a regular graph, it has parallel edges —
namely, it is a multi-graph. We represent a multi-
graph, as a regular graph with multiplicities on the
edges. See Figure 14.3.

The edge contraction operation can be implemented
in O(n) time for a graph with n vertices. This is
done by merging the adjacency lists of the two ver-
tices being contracted, and then using hashing to do 2 2
the fix-ups (i.e., we need to fix the adjacency list of
(a) (b)

the vertices that are connected to the two vertices).

Note, that the cut is now computed counting mul-
tiplicities (i.e., if e is in the cut and it has weight w, Figure 14.3: (a) A multi-graph. (b) A minimum
then the contribution of e to the cut weight is w). cut in the resulting multi-graph.

Figure 14.2: (a) A contraction of the edge xy.
(b) The resulting graph.

Observation 14.3.1. A set of vertices in G/xy corresponds to a set of vertices in the graph G. Thus
a cut in G/xy always corresponds to a valid cut in G. However, there are cuts in G that do not exist in
G/xy. For example, the cut S = {x}, does not exist in G/xy. As such, the size of the minimum cut in
G/xy is at least as large as the minimum cut in G (as long as G/xy has at least one edge). Since any
cut in G/xy has a corresponding cut of the same cardinality in G.

Our algorithm works by repeatedly performing edge contractions. This is beneficial as this shrinks
the underlying graph, and we would compute the cut in the resulting (smaller) graph. An “extreme”
example of this, is shown in Figure 14.4, where we contract the graph into a single edge, which (in turn)
corresponds to a cut in the original graph. (It might help the reader to think about each vertex in the
contracted graph, as corresponding to a connected component in the original graph.)

Figure 14.4 also demonstrates the problem with taking this approach. Indeed, the resulting cut is
not the minimum cut in the graph.

So, why did the algorithm fail to find the minimum cut in this case?® The failure occurs because
of the contraction at Figure 14.4 (e), as we had contracted an edge in the minimum cut. In the new
graph, depicted in Figure 14.4 (f), there is no longer a cut of size 3, and all cuts are of size 4 or more.
Specifically, the algorithm succeeds only if it does not contract an edge in the minimum cut.

Observation 14.3.2. Letey,...,e,—2 be a sequence of edges in G, such that none of them is in the min-
imum cut, and such that G' = G /{e1,...,ey—2} is a single multi-edge. Then, this multi-edge corresponds
to a minimum cut in G.

Note, that the claim in the above observation is only in one direction. We might be able to still
compute a minimum cut, even if we contract an edge in a minimum cut, the reason being that a minimum

@Naturally, if the algorithm had succeeded in finding the minimum cut, this would have been our success.
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Figure 14.4: (a) Original graph. (b)—(j) a sequence of contractions in the graph, and (h) the cut in the
original graph, corresponding to the single edge in (h). Note that the cut of (h) is not a mincut in the
original graph.

Algorithm MinCut(G)

Go — G

i=0

while G; has more than two vertices do
Pick randomly an edge e; from the edges of G;
Gis1 < Gi/e;
i—i+1

Let (S,V '\ S) be the cut in the original graph

corresponding to the single edge in G;
return (S,V\ S).

Figure 14.5: The minimum cut algorithm.



cut is not unique. In particular, another minimum cut might survived the sequence of contractions that
destroyed other minimum cuts.

Using Observation 14.3.2 in an algorithm is problematic, since the argumentation is circular, how
can we find a sequence of edges that are not in the cut without knowing what the cut is? The way to
slice the Gordian knot here, is to randomly select an edge at each stage, and contract this random edge.

See Figure 14.5 for the resulting algorithm MinCut.

14.3.1. Analysis

14.3.1.1. The probability of success

Naturally, if we are extremely lucky, the algorithm would never pick an edge in the mincut, and the
algorithm would succeed. The ultimate question here is what is the probability of success. If it is
relatively “large” then this algorithm is useful since we can run it several times, and return the best
result computed. If on the other hand, this probability is tiny, then we are working in vain since this
approach would not work.

Lemma 14.3.3. If a graph G has a minimum cut of size k and G has n vertices, then |E(G)| > %

Proof: Each vertex degree is at least k, otherwise the vertex itself would form a minimum cut of size
smaller than k. As such, there are at least ),y degree(v)/2 > nk/2 edges in the graph. [

Lemma 14.3.4. Fiz a specific minimum cut C = (S,S) in the graph. If we pick in random an edge e
from a graph G, uniformly at random, then with probability at most 2/n it belongs to the minimum cut
C.

Proof: There are at least nk/2 edges in the graph and exactly k edges in the minimum cut. Thus, the
probability of picking an edge from the minimum cut is smaller then k/(nk/2) = 2/n. [

The following lemma shows (surprisingly) that MinCut succeeds with reasonable probability.

2
Lemma 14.3.5. MinCut outputs the mincut with probability > (—1)
n(n —

7
Proof: Let &; be the event that e; is not in the minimum cut of G;. By Observation 14.3.2, MinCut

outputs the minimum cut if the events &y, ..., £,-3 all happen (namely, all edges picked are outside the

minimum cut).

2 2
By Lemma 14.3.4, it holds P[Ei | EoNEiN...N 81’—1] >1- =1 - ——. Implying that
V(G n—i

A=P[&N...NE3] =P[E&] -P[E1 |Eo] - P[E2 €N &) ... P[Euz [E0N...NEuy].

As such, we have

) n—i Ly i
n—2 n—=3 n—4 "m—5H n—=_6 3 2 1
= ES k *k k. k — %k — 3k —
n n-1 n—=2 n—=3 n—4 5 4 3
2
nn-1) "



14.3.1.2. Running time analysis.
Observation 14.3.6. MinCut runs in O(n?) time.

Observation 14.3.7. The algorithm always outputs a cut, and the cut is not smaller than the minimum
cut.

Definition 14.3.8. (informal) Amplification is the process of running an experiment again and again till
the things we want to happen, with good probability, do happen.

Let MinCutRep be the algorithm that runs MinCut n(n — 1) times and return the minimum cut
computed in all those independent executions of MinCut.

Lemma 14.3.9. The probability that MinCutRep fails to return the minimum cut is < 0.14.

Proof: The probability of failure of MinCut to output the mincut in each execution is at most 1— ﬁ,
by Lemma 14.3.5. Now, MinCutRep fails, only if all the n(n — 1) executions of MinCut fail. But
these executions are independent, as such, the probability to this happen is at most

9 n(n-1) 92
(1 - m) < exp(—m -n(n—1) | =exp(-2) <0.14,

sincel—-x<e*for0<x<1. ]

Theorem 14.3.10. One can compute the minimum cut in O(n*) time with constant probability to get
a correct result. In O(n4 logn) time the minimum cut is returned with high probability.

14.3.2. An alternative implementation using MST

The algorithm. The above algorithm can be restated as follows. Randomly assign weights to the
edges of G (say, by picking numbers in [0, 1]). Next, compute the MST T of the graph according to these
weights. Remove the heaviest edge in the MST. The resulting partition of T' into two trees, corresponds
to a cut in the original graph. Return this cut as a candidate to be the minimum cut.

The analysis. To see that this algorithm is equivalent to MinCut (Figure 14.5), observe that the
contraction algorithm simulates Kruskal’s MST algorithm when run on randomly weighted edges. First,
imagine implementing MinCut so that it keeps parallel edges. Then, the edges connecting two vertices
that are not contracted are exactly the edges between the two connected components. Picking a random
edge to contract, is equivalent to picking the edge with the minimum random weight. Thus, the MST
algorithm here just simulates MinCut (or vice versa).

A small optimization. It is possible to compute the heaviest edge in the MST, and the partition it
induces in (deterministic) linear time — it is a nice example of the search and prune technique.

Exercise 14.3.11. Given a graph G with weights on the edges, show how to compute the maximum
weight edge in the MST of G in O(n + m) time, where n are m are the number of vertices and edges of
G, respectively.

Thus, this yields a O(n + m) implementation of MinCut. We get the following result.

Lemma 14.3.12. MinCut can implemented to run in O(n+ m) time, and it outputs the mincut with

probability > m



FastCut(G = (V,E))
G — multi-graph

begin
n « |V(G)|
Contract ( G,t) if n <6 then
begin Compute (via brute force) minimum cut
while [(G)| >t do of G and return cut.
Pick a random edge e in G. t— [1 + n/\/ﬁ-‘
Ge—Gle H, « Contract(G, 1)
return G Hy « Contract(G, 1)
end /* Contract is randomized!!! */

X1 « FastCut(Hy),

X9 « FastCut(Hs)

return minimum cut out of X7 and Xs.
end

Figure 14.6: Contract(G,) shrinks G till it has only ¢ vertices. FastCut computes the minimum cut
using Contract.

14.4. A faster algorithm

The algorithm presented in the previous section is extremely simple. Which raises the question of
whether we can get a faster algorithm®?

So, why MinCutRep needs so many executions? Well, the probability of success in the first v
iterations is

\%

i=0
— n—3 n—4 (n=-v)(n—-v-1)
* s R
n n—1 n—2 n-(n-1)

= 2 -9

PlEon ... Ey] ( _ ,): noi-2
L_ol n—i l_l n-—i
n-—2

(14.2)

Namely, this probability deteriorates very quickly toward the end of the execution, when the graph
becomes small enough. (To see this, observe that for v = n/2, the probability of success is roughly 1/4,
but for v = n — 4/n the probability of success is roughly 1/n.)

So, the key observation is that as the graph get smaller the probability to make a bad choice increases.
So, instead of doing the amplification from the outside of the algorithm, we will run the new algorithm
more times when the graph is smaller. Namely, we put the amplification directly into the algorithm.

The basic new operation we use is Contract, depicted in Figure 14.6, which also depict the new
algorithm FastCut.

Lemma 14.4.1. The running time of FastCut(G) is O(n*logn), where n = |V(G)|.

Proof: Well, we perform two calls to Contract(G,) which takes O(n?) time. And then we perform
two recursive calls on the resulting graphs. We have

T(n) = 0(n?) + 2T (n/V2).

®This would require a more involved algorithm, that is life.



The solution to this recurrence is O (n?logn) as one can easily (and should) verify. |
Exercise 14.4.2. Show that one can modify FastCut so that it uses only O(n?) space.

Lemma 14.4.3. The probability that Contract(G,n/\@) had not contracted the minimum cut is at
least 1/2.

Namely, the probability that the minimum cut in the contracted graph is still a minimum cut in the
ortginal graph is at least 1/2.

Proof: Just pluginv=n—-t=n- [1 + n/\/ﬂ into Eq. (14.2). We have

-y || ([rene]-)
n‘(n—l): nn-1)

P[Egm...m&l_[]z > .

N =

The following lemma bounds the probability of success.

Lemma 14.4.4. FastCut finds the minimum cut with probability larger than Q(1/logn).

Proof: Let Ty, be the recursion tree of the algorithm of depth & = ®(logn). Color an edge of recursion
tree by black if the contraction succeeded. Clearly, the algorithm succeeds if there is a path from the
root to a leaf that is all black. This is exactly the settings of Lemma 14.1.1, and we conclude that the
probability of success is at least 1/(h+ 1) = ®@(1/logn), as desired. [

Exercise 14.4.5. Prove, that running FastCut repeatedly ¢ - log? n times, guarantee that the algorithm
outputs the minimum cut with probability > 1 — 1/n?, say, for ¢ a constant large enough.

Theorem 14.4.6. One can compute the minimum cut in a graph G with n vertices in O(n?log® n) time.
The algorithm succeeds with probability > 1 —1/n?.

Proof: We do amplification on FastCut by running it O(log?n) times. The running time bound fol-
lows from Lemma 14.4.1. The bound on the probability follows from Lemma 14.4.4, and using the
amplification analysis as done in Lemma 14.3.9 for MinCutRep. [

14.5. Bibliographical Notes

The MinCut algorithm was developed by David Karger during his PhD thesis in Stanford. The fast
algorithm is a joint work with Clifford Stein. The basic algorithm of the mincut is described in [MR95,
pages 7-9], the faster algorithm is described in [MR95, pages 289-295].

Galton-Watson process. The idea of using coloring of the edges of a tree to analyze FastCut might
be new (i.e., Section 14.1.2).
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