
Chapter 13

Applications of Chernoff’s Inequality
By Sariel Har-Peled, April 26, 2022①

13.1. QuickSort is Quick
We revisit QuickSort. We remind the reader that the running time of QuickSort is proportional to the
number of comparisons performed by the algorithm. Next, consider an arbitrary element 𝑢 being sorted.
Consider the 𝑖th level recursive subproblem that contains 𝑢, and let 𝑆𝑖 be the set of elements in this
subproblems. We consider 𝑢 to be successful in the 𝑖th level, if |𝑆𝑖+1 | ≤ |𝑆𝑖 | /2. Namely, if 𝑢 is successful,
then the next level in the recursion involving 𝑢 would include a considerably smaller subproblem. Let
𝑋𝑖 be the indicator variable which is 1 if 𝑢 is successful.

We first observe that if QuickSort is applied to an array with 𝑛 elements, then 𝑢 can be successful
at most 𝑇 = ⌈lg 𝑛⌉ times, before the subproblem it participates in is of size one, and the recursion stops.
Thus, consider the indicator variable 𝑋𝑖 which is 1 if 𝑢 is successful in the 𝑖th level, and zero otherwise.
Note that the 𝑋𝑖s are independent, and P[𝑋𝑖 = 1] = 1/2.

If 𝑢 participates in 𝑣 levels, then we have the random variables 𝑋1, 𝑋2, . . . , 𝑋𝑣. To make things
simpler, we will extend this series by adding independent random variables, such that P[‘]𝑋𝑖 = 1 = 1/2,
for 𝑖 ≥ 𝑣. Thus, we have an infinite sequence of independent random variables, that are 0/1 and get 1
with probability 1/2. The question is how many elements in the sequence we need to read, till we get
𝑇 ones.

Lemma 13.1.1. Let 𝑋1, 𝑋2, . . . be an infinite sequence of independent random 0/1 variables. Let 𝑀 be
an arbitrary parameter. Then the probability that we need to read more than 2𝑀 + 4𝑡

√
𝑀 variables of

this sequence till we collect 𝑀 ones is at most 2 exp
(
−𝑡2

)
, for 𝑡 ≤

√
𝑀. If 𝑡 ≥

√
𝑀 then this probability

is at most 2 exp
(
−𝑡
√
𝑀

)
.

Proof: Consider the random variable 𝑌 =
∑𝐿

𝑖=1 𝑋𝑖, where 𝐿 = 2𝑀 + 4𝑡
√
𝑀. Its expectation is 𝐿/2, and

using the Chernoff inequality, we get

𝛼 = P
[
𝑌 ≤ 𝑀

]
≤ P

[
|𝑌 − 𝐿/2| ≥ 𝐿/2 − 𝑀

]
≤ 2 exp

(
− 2

𝐿
(𝐿/2 − 𝑀)2

)
≤ 2 exp

(
−2

(
𝑀 + 2𝑡

√
𝑀 − 𝑀

)2/𝐿) ≤ 2 exp
(
−2

(
2𝑡
√
𝑀
)2/𝐿) = 2 exp

(
−8𝑡2𝑀

𝐿

)
,

by Corollary 13.7.4. For 𝑡 ≤
√
𝑀 we have that 𝐿 = 2𝑀 + 4𝑡

√
𝑀 ≤ 8𝑀, as such in this case P[𝑌 ≤ 𝑀] ≤

2 exp
(
−𝑡2

)
.

If 𝑡 ≥
√
𝑀, then 𝛼 = 2 exp

(
− 8𝑡2𝑀

2𝑀 + 4𝑡
√
𝑀

)
≤ 2 exp

(
− 8𝑡2𝑀

6𝑡
√
𝑀

)
≤ 2 exp

(
−𝑡
√
𝑀

)
. ■

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Going back to the QuickSort problem, we have that if we sort 𝑛 elements, the probability that 𝑢 will
participate in more than 𝐿 = (4+𝑐) ⌈lg 𝑛⌉ = 2 ⌈lg 𝑛⌉ +4𝑐

√︁
lg 𝑛

√︁
lg 𝑛, is smaller than 2 exp

(
−𝑐

√︁
lg 𝑛

√︁
lg 𝑛

)
≤

1/𝑛𝑐, by Lemma 13.1.1. There are 𝑛 elements being sorted, and as such the probability that any element
would participate in more than (4 + 𝑐 + 1) ⌈lg 𝑛⌉ recursive calls is smaller than 1/𝑛𝑐.

Lemma 13.1.2. For any 𝑐 > 0, the probability that QuickSort performs more than (6 + 𝑐)𝑛 lg 𝑛, is
smaller than 1/𝑛𝑐.

13.2. How many times can the minimum change?
Let Π = 𝜋1 . . . 𝜋𝑛 be a random permutation of {1, . . . , 𝑛}. Let E𝑖 be the event that 𝜋𝑖 is the minimum
number seen so far as we read Π; that is, E𝑖 is the event that 𝜋𝑖 = min𝑖

𝑘=1 𝜋𝑘 . Let 𝑋𝑖 be the indicator
variable that is one if E𝑖 happens. We already seen, and it is easy to verify, that E[𝑋𝑖] = 1/𝑖. We are
interested in how many times the minimum might change②; that is 𝑍 =

∑
𝑖 𝑋𝑖, and how concentrated is

the distribution of 𝑍 . The following is maybe surprising.

Lemma 13.2.1. The events E1, . . . ,E𝑛 are independent (as such, the variables 𝑋1, . . . , 𝑋𝑛 are indepen-
dent).

Proof: Exercise. ■

Theorem 13.2.2. Let Π = 𝜋1 . . . 𝜋𝑛 be a random permutation of 1, . . . , 𝑛, and let 𝑍 be the number of
times, that 𝜋𝑖 is the smallest number among 𝜋1, . . . , 𝜋𝑖, for 𝑖 = 1, . . . , 𝑛. Then, we have that for 𝑡 ≥ 2𝑒
that P[𝑍 > 𝑡 ln 𝑛] ≤ 1/𝑛𝑡 ln 2, and for 𝑡 ∈

[
1, 2𝑒

]
, we have that P

[
𝑍 > 𝑡 ln 𝑛

]
≤ 1/𝑛(𝑡−1)2/4.

Proof: Follows readily from Chernoff’s inequality, as 𝑍 =
∑

𝑖 𝑋𝑖 is a sum of independent indicator vari-
ables, and, since by linearity of expectations, we have

` = E
[
𝑍
]
=
∑︁
𝑖

E
[
𝑋𝑖

]
=

𝑛∑︁
𝑖=1

1
𝑖
≥
∫ 𝑛+1

𝑥=1

1
𝑥

d𝑥 = ln(𝑛 + 1) ≥ ln 𝑛.

Next, we set 𝛿 = 𝑡 − 1, and use Theorem 13.7.2. ■

13.3. Routing in a Parallel Computer
Let G be a graph of a network, where every node is a processor. The processor communicate by sending
packets on the edges. Let

[
0, . . . , 𝑁 − 1

]
denote be vertices (i.e., processors) of G, where 𝑁 = 2𝑛, and G

is the hypercube. As such, each processes is identified with a binary string 𝑏1𝑏2 . . . 𝑏𝑛 ∈ {0, 1}𝑛. Two
nodes are connected if their binary string differs only in a single bit. Namely, G is the binary hypercube
over 𝑛 bits.

We want to investigate the best routing strategy for this topology of network. We assume that every
processor need to send a message to a single other processor. This is represented by a permutation
𝜋, and we would like to figure out how to send the messages encoded by the permutation while create
minimum delay/congestion.

②The answer, my friend, is blowing in the permutation.

2

RandomRoute(𝑣0, . . . , 𝑣𝑁−1)
// 𝑣𝑖: Packet at node 𝑖 to be routed to node 𝑑 (𝑖).

(i) Pick a random intermediate destination 𝜎(𝑖) from [1, . . . , 𝑁]. Packet 𝑣𝑖 travels to
𝜎(𝑖).

// Here random sampling is done with replacement.
// Several packets might travel to the same destination.

(ii) Wait till all the packets arrive to their intermediate destination.
(iii) Packet 𝑣𝑖 travels from 𝜎(𝑖) to its destination 𝑑 (𝑖).

Figure 13.1: The routing algorithm

Specifically, in our model, every edge has a FIFO queue③ of the packets it has to transmit. At every
clock tick, one message get sent. All the processors start sending the packets in their permutation in
the same time.

A routing scheme is oblivious if every node that has to forward a packet, inspect the packet, and
depending only on the content of the packet decides how to forward it. That is, such a routing scheme
is local in nature, and does not take into account other considerations. Oblivious routing is of course a
bad idea – it ignores congestion in the network, and might insist routing things through regions of the
hypercube that are “gridlocked”.

Theorem 13.3.1 ([KKT91]). For any deterministic oblivious permutation routing algorithm on a net-
work of 𝑁 nodes each of out-degree 𝑛, there is a permutation for which the routing of the permutation
takes Ω

(√︁
𝑁/𝑛

)
units of time (i.e., ticks).

Proof: (Sketch.) The above is implied by a nice averaging argument – construct, for every possible
destination, the routing tree of all packets to this specific node. Argue that there must be many edges
in this tree that are highly congested in this tree (which is NOT the permutation routing we are looking
for!). Now, by averaging, there must be a single edge that is congested in “many” of these trees. Pick
a source-destination pair from each one of these trees that uses this edge, and complete it into a full
permutation in the natural way. Clearly, the congestion of the resulting permutation is high. For the
exact details see [KKT91]. ■

How do we send a packet? We use bit fixing. Namely, the packet from the 𝑖 node, always go to
the current adjacent node that have the first different bit as we scan the destination string 𝑑 (𝑖). For
example, packet from (0000) going to (1101), would pass through (1000), (1100), (1101).

The routing algorithm. We assume each edge have a FIFO queue. The routing algorithm is depicted
in Figure 13.1.

13.3.1. Analysis
We analyze only step (i) in the algorithm, as (iii) follows from the same analysis. In the following, let
𝜌𝑖 denote the route taken by 𝑣𝑖 in (i).

③First in, first out queue. I sure hope you already knew that.

3

Exercise 13.3.2. Once a packet 𝑣 𝑗 that travel along a path 𝜌 𝑗 can not leave a path 𝜌𝑖, and then join it
again later. Namely, 𝜌𝑖 ∩ 𝜌 𝑗 is (maybe an empty) path.

Lemma 13.3.3. Let the route of a message c follow the sequence of edges 𝜋 = (𝑒1, 𝑒2, . . . , 𝑒𝑘). Let 𝑆 be
the set of packets whose routes pass through at least one of (𝑒1, . . . , 𝑒𝑘). Then, the delay incurred by c
is at most |𝑆 |.

Proof: A packet in 𝑆 is said to leave 𝜋 at that time step at which it traverses an edge of 𝜋 for the last
time. If a packet is ready to follow edge 𝑒 𝑗 at time 𝑡, we define its lag at time 𝑡 to be 𝑡 − 𝑗 . The lag of c
is initially zero, and the delay incurred by c is its lag when it traverse 𝑒𝑘 . We will show that each step
at which the lag of c increases by one can be charged to a distinct member of 𝑆.

We argue that if the lag of c reaches ℓ + 1, some packet in 𝑆 leaves 𝜋 with lag ℓ. When the lag of c
increases from ℓ to ℓ + 1, there must be at least one packet (from 𝑆) that wishes to traverse the same
edge as c at that time step, since otherwise c would be permitted to traverse this edge and its lag would
not increase. Thus, 𝑆 contains at least one packet whose lag reach the value ℓ.

Let 𝜏 be the last time step at which any packet in 𝑆 has lag ℓ. Thus there is a packet d ready to
follow edge 𝑒` at 𝜏, such that 𝜏 − ` = ℓ. We argue that some packet of 𝑆 leaves 𝜋 at time 𝜏 – this
establishes the lemma since once a packet leaves 𝜋, it would never join it again and as such will never
again delay c.

Since d is ready to follow 𝑒` at time 𝜏, some packet 𝜔 (which may be d itself) in 𝑆 traverses 𝑒` at
time 𝜏. Now 𝜔 must leave 𝜋 at time 𝜏 – if not, some packet will follow 𝑒`+1 at step ` + 1 with lag ℓ.
But this violates the maximality of 𝜏. We charge to 𝜔 the increase in the lag of c from ℓ to ℓ + 1. Since
𝜔 leaves 𝜋, it will never be charged again. Thus, each member of 𝑆 whose route intersects 𝜋 is charge
for at most one delay, establishing the lemma. ■

Let 𝐻𝑖 𝑗 be an indicator variable that is 1 if 𝜌𝑖 and 𝜌 𝑗 share an edge, and 0 otherwise. The total
delay for 𝑣𝑖 is at most ≤ ∑

𝑗 𝐻𝑖 𝑗 .
Crucially, for a fixed 𝑖, the variables 𝐻𝑖1, . . . , 𝐻𝑖𝑁 are independent. Indeed, imagine first picking the

destination of 𝑣𝑖, and let the associated path be 𝜌𝑖. Now, pick the destinations of all the other packets in
the network. Since the sampling of destinations is done with replacements, whether or not the path 𝜌 𝑗

of 𝑣 𝑗 intersects 𝜌𝑖, is independent of whether 𝜌𝑘 intersects 𝜌𝑖. Of course, the probabilities P
[
𝐻𝑖 𝑗 = 1

]
and

P
[
𝐻𝑖𝑘 = 1

]
are probably different. Confusingly, however, 𝐻11, . . . , 𝐻𝑁𝑁 are not independent. Indeed,

imagine 𝑘 and 𝑗 being close vertices on the hypercube. If 𝐻𝑖 𝑗 = 1 then intuitively it means that 𝜌𝑖 is
traveling close to the vertex 𝑣 𝑗 , and as such there is a higher probability that 𝐻𝑖𝑘 = 1.

Let
𝜌𝑖 = (𝑒1, . . . , 𝑒𝑘),

and let 𝑇 (𝑒) be the number of packets (i.e., paths) that pass through 𝑒. We have that

𝑁∑︁
𝑗=1

𝐻𝑖 𝑗 ≤
𝑘∑︁
𝑗=1

𝑇 (𝑒 𝑗) and thus E

[
𝑁∑︁
𝑗=1

𝐻𝑖 𝑗

]
≤ E

[
𝑘∑︁
𝑗=1

𝑇 (𝑒 𝑗)
]
.

Because of symmetry, the variables 𝑇 (𝑒) have the same distribution for all the edges of G. On the other
hand, the expected length of a path is 𝑛/2, there are 𝑁 packets, and there are 𝑁𝑛/2 edges. We conclude
𝐸 [𝑇 (𝑒)] = 1. Thus

` = E

[
𝑁∑︁
𝑗=1

𝐻𝑖 𝑗

]
≤ E

[
𝑘∑︁
𝑗=1

𝑇 (𝑒 𝑗)
]
= E

[
|𝜌𝑖 |

]
≤ 𝑛

2 .

4

By the Chernoff inequality, specifically Lemma 13.7.3, we have

P

[∑︁
𝑗

𝐻𝑖 𝑗 > 7𝑛
]
≤ P

[∑︁
𝑗

𝐻𝑖 𝑗 > (1 + 13)`
]
< 2−13` ≤ 2−6𝑛.

Since there are 𝑁 = 2𝑛 packets, we know that with probability ≤ 2−5𝑛 all packets arrive to their temporary
destination in a delay of most 7𝑛.

Theorem 13.3.4. Each packet arrives to its destination in ≤ 14𝑛 stages, in probability at least 1− 1/𝑁
(note that this is very conservative).

13.4. Faraway Strings
Consider the Hamming distance between binary strings. It is natural to ask how many strings of
length 𝑛 can one have, such that any pair of them, is of Hamming distance at least 𝑡 from each other.
Consider two random strings, generated by picking at each bit randomly and independently. Thus,
E[𝑑𝐻 (𝑥, 𝑦)] = 𝑛/2, where 𝑑𝐻 (𝑥, 𝑦) denote the hamming distance between 𝑥 and 𝑦. In particular, using
the Chernoff inequality, specifically Corollary 13.7.4, we have that

P
[
𝑑𝐻 (𝑥, 𝑦) ≤ 𝑛/2 − Δ

]
≤ exp

(
−2Δ2/𝑛

)
.

Next, consider generating 𝑀 such string, where the value of 𝑀 would be determined shortly. Clearly,
the probability that any pair of strings are at distance at most 𝑛/2 − Δ, is

𝛼 ≤
(
𝑀

2

)
exp

(
−2Δ2/𝑛

)
< 𝑀2 exp

(
−2Δ2/𝑛

)
.

If this probability is smaller than one, then there is some probability that all the 𝑀 strings are of
distance at least 𝑛/2 − Δ from each other. Namely, there exists a set of 𝑀 strings such that every pair
of them is far. We used here the fact that if an event has probability larger than zero, then it exists.
Thus, set Δ = 𝑛/4, and observe that

𝛼 < 𝑀2 exp
(
−2𝑛2/16𝑛

)
= 𝑀2 exp(−𝑛/8).

Thus, for 𝑀 = exp(𝑛/16), we have that 𝛼 < 1. We conclude:

Lemma 13.4.1. There exists a set of exp(𝑛/16) binary strings of length 𝑛, such that any pair of them
is at Hamming distance at least 𝑛/4 from each other.

This is our first introduction to the beautiful technique known as the probabilistic method — we
will hear more about it later in the course.

This result has also interesting interpretation in the Euclidean setting. Indeed, consider the sphere
S of radius

√
𝑛/2 centered at (1/2, 1/2, . . . , 1/2) ∈ R𝑛. Clearly, all the vertices of the binary hypercube

{0, 1}𝑛 lie on this sphere. As such, let 𝑃 be the set of points on S that exists according to Lemma 13.4.1.
A pair 𝑝, 𝑞 of points of 𝑃 have Euclidean distance at least

√︁
𝑑𝐻 (𝑝, 𝑞) =

√︁
𝑛/4 =

√
𝑛/2 from each other.

We conclude:

Lemma 13.4.2. Consider the unit hypersphere S in R𝑛. The sphere S contains a set 𝑄 of points, such
that each pair of points is at (Euclidean) distance at least one from each other, and |𝑄 | ≥ exp(𝑛/16).

Proof: Take the above point set, and scale it down by a factor of
√
𝑛/2. ■

5

13.5. Bibliographical notes
Section 13.3 is based on Section 4.2 in [MR95]. A similar result to Theorem 13.3.4 is known for the
case of the wrapped butterfly topology (which is similar to the hypercube topology but every node has
a constant degree, and there is no clear symmetry). The interested reader is referred to [MU05].

13.6. Exercises
Exercise 13.6.1 (More binary strings. More!). To some extent, Lemma 13.4.1 is somewhat silly, as one can
prove a better bound by direct argumentation. Indeed, for a fixed binary string 𝑥 of length 𝑛, show
a bound on the number of strings in the Hamming ball around 𝑥 of radius 𝑛/4 (i.e., binary strings of
distance at most 𝑛/4 from 𝑥). (Hint: interpret the special case of the Chernoff inequality as an inequality
over binomial coefficients.)

Next, argue that the greedy algorithm which repeatedly pick a string which is in distance ≥ 𝑛/4 from
all strings picked so far, stops after picking at least exp(𝑛/8) strings.

13.7. From previous lectures

Corollary 13.7.1. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent coin flips, such that P[𝑋𝑖 = 0] = P[𝑋𝑖 = 1] = 1
2 , for

𝑖 = 1, . . . , 𝑛. Let 𝑌 =
∑𝑛

𝑖=1 𝑋𝑖. Then, for any Δ > 0, we have P[|𝑌 − 𝑛/2| ≥ Δ] ≤ 2 exp
(
−2Δ2/𝑛

)
.

Theorem 13.7.2. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent variables, where P
[
𝑋𝑖 = 1

]
= 𝑝𝑖 and P

[
𝑋𝑖 = 0

]
= 𝑞𝑖 =

1 − 𝑝𝑖, for all 𝑖. Let 𝑋 =
∑𝑏

𝑖=1 𝑋𝑖. ` = E
[
𝑋
]
=
∑

𝑖 𝑝𝑖. For any 𝛿 > 0, we have

P
[
𝑋 > (1 + 𝛿)`

]
<

(
𝑒𝛿

/
(1 + 𝛿)1+𝛿

)`
.

Lemma 13.7.3. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1−𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and ` = E

[
𝑋
]
=
∑

𝑖 𝑝𝑖. For 𝛿 > 2𝑒−1, we have P
[
𝑋 > (1 + 𝛿)`

]
<

2−`(1+𝛿).

Corollary 13.7.4. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent coin flips, such that P[𝑋𝑖 = 0] = P[𝑋𝑖 = 1] = 1
2 , for

𝑖 = 1, . . . , 𝑛. Let 𝑌 =
∑𝑛

𝑖=1 𝑋𝑖. Then, for any Δ > 0, we have P[|𝑌 − 𝑛/2| ≥ Δ] ≤ 2 exp
(
−2Δ2/𝑛

)
.

References
[KKT91] C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for oblivious routing in the hy-

percube. Math. sys. theory, 24(1): 223–232, 1991.
[MR95] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge, UK: Cambridge Univer-

sity Press, 1995.
[MU05] M. Mitzenmacher and U. Upfal. Probability and computing – randomized algorithms and

probabilistic analysis. Cambridge, 2005.

6

http://dx.doi.org/10.1007/BF02090400
http://dx.doi.org/10.1007/BF02090400
http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Applications of Chernoff's Inequality
	QuickSort is Quick
	How many times can the minimum change?
	Routing in a Parallel Computer
	Analysis

	Faraway Strings
	Bibliographical notes
	Exercises
	From previous lectures

