
Chapter 12

Concentration of Random Variables – Cher-
noff’s Inequality
By Sariel Har-Peled, April 26, 2022①

12.1. Concentration of mass and Chernoff’s inequality

12.1.1. Example: Binomial distribution
Consider the binomial distribution Bin(𝑛, 1/2) for various values of 𝑛 as depicted in Figure 12.1 – here
we think about the value of the variable as the number of heads in flipping a fair coin 𝑛 times. Clearly,
as the value of 𝑛 increases the probability of getting a number of heads that is significantly smaller or
larger than 𝑛/2 is tiny. Here we are interested in quantifying exactly how far can we divert from this
expected value. Specifically, if 𝑋 ∼ Bin(𝑛, 1/2), then we would be interested in bounding the probability
P[𝑋 > 𝑛/2 + Δ], where Δ = 𝑡𝜎𝑋 = 𝑡

√
𝑛/2 (i.e., we are 𝑡 standard deviations away from the expectation).

For 𝑡 > 2, this probability is roughly 2−𝑡 , which is what we prove here.
More surprisingly, if you look only on the middle of the distribution, it looks the same after clipping

away the uninteresting tails, see Figure 12.2; that is, it looks more and more like the normal distribution.
This is a universal phenomena known the central limit theorem – every sum of nicely behaved random
variables behaves like the normal distribution. We unfortunately need a more precise quantification of
this behavior, thus the following.

12.1.2. A restricted case of Chernoff inequality via games

12.1.2.1. Chernoff games

The game. Consider the game where a player starts with 𝑌0 = 1 dollars. At every round, the player
can bet a certain amount 𝑥 (fractions are fine). With probability half she loses her bet, and with
probability half she gains an amount equal to her bet. The player is not allowed to go all in – because
if she looses then the game is over. So it is natural to ask what her optimal betting strategy is, such
that in the end of the game she has as much money as possible.

Is the game pointless? So, let 𝑌𝑖−1 be the money the player has in the end of the (𝑖 − 1)th round,
and she bets an amount 𝜓𝑖 ≤ 𝑌𝑖−1 in the 𝑖th round. As such, in the end of the 𝑖th round, she has

𝑌𝑖 =

{
𝑌𝑖−1 − 𝜓𝑖 lose: probability half
𝑌𝑖−1 + 𝜓𝑖 win: probability half

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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Figure 12.1: The binomial distribution for different values of 𝑛. It pretty quickly concentrates around
its expectation.
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Figure 12.2: The “middle” of the binomial distribution for different values of 𝑛. It very quickly converges
to the normal distribution (under appropriate rescaling and translation.
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𝑋𝑖 ∈ {−1, +1}
P[𝑋𝑖 = −1] = P[𝑋𝑖 = 1] = 1/2

P
[
𝑌 ≥ Δ

]
≤ exp

(
−Δ2/2𝑛

)
Theorem 12.1.7

P
[
𝑌 ≤ −Δ

]
≤ exp

(
−Δ2/2𝑛

)
Theorem 12.1.7

𝑋𝑖 ∈ {0, 1}
P[𝑋𝑖 = 0] = P[𝑋𝑖 = 1] = 1/2

P
[
|𝑌 − 𝑛/2| ≥ Δ

]
≤ 2 exp

(
−2Δ2/𝑛

)
Corollary 12.1.9

𝑋𝑖 ∈ {0, 1} P[𝑋𝑖 = 1] = 𝑝𝑖 P[𝑋𝑖 = 0] = 1 − 𝑝𝑖

𝛿 ≥ 0 𝑃 = P
[
𝑌 > (1 + 𝛿)𝜇

]
<

(
𝑒𝛿

/
(1 + 𝛿)1+𝛿

)𝜇
Theorem 12.2.1

𝛿 ∈ (0, 1) 𝑃 < exp
(
−𝜇𝛿2/3

)
Lemma 12.2.5

𝛿 ∈ (0, 4) 𝑃 < exp
(
−𝜇𝛿2/4

)
Lemma 12.2.6

𝛿 ∈ (0, 6) 𝑃 < exp
(
−𝜇𝛿2/5

)
Lemma 12.2.7

𝛿 ≥ 2𝑒 − 1 𝑃 < 2−𝜇(1+𝛿) Lemma 12.2.8
𝛿 ≥ 𝑒2 𝑃 < exp

(
−(𝜇𝛿/2) ln 𝛿

)
Lemma 12.2.9

𝛿 ≥ 0, 𝜑 ∈ (0, 1] P
[
𝑌 > (1 + 𝛿)𝜇 + 3 ln 𝜑−1

𝛿2

]
< 𝜑. Lemma 12.2.10

𝛿 ≥ 0 P[𝑌 < (1 − 𝛿)𝜇] <
(
𝑒−𝛿

/
(1 − 𝛿)1−𝛿

)𝜇
Theorem 12.2.3

P[𝑌 < (1 − 𝛿)𝜇] < exp
(
−𝜇𝛿2/2

)
Lemma 12.2.4

Δ ≥ 0 P
[
𝑌 − 𝜇 ≥ Δ

]
≤ exp

(
−2Δ2/𝑛

)
P
[
𝑌 − 𝜇 ≤ −Δ

]
≤ exp

(
−2Δ2/𝑛

)
.

Corollary 12.3.5

𝜏 ≥ 1 P[𝑌 < 𝜇/𝜏] < exp ( − [
1 − 1+ln 𝜏

𝜏

]
𝜇) Theorem 12.2.3

𝑋𝑖 ∈ [0, 1] Arbitrary independent distributions

𝛿 ∈ [0, 1]
P
[
𝑌 ≥ (1 + 𝛿)𝜇

]
≤ exp

(
−𝛿2𝜇/4

)
P
[
𝑌 ≤ (1 − 𝛿)𝜇

]
≤ exp

(
−𝛿2𝜇/2

)
.

Theorem 12.3.6

Δ ≥ 0 P
[
𝑌 − 𝜇 ≥ Δ

]
≤ exp

(
−2Δ2/𝑛

)
P
[
𝑌 − 𝜇 ≤ −Δ

]
≤ exp

(
−2Δ2/𝑛

)
.

Corollary 12.3.5

𝑋𝑖 ∈ [𝑎𝑖, 𝑏𝑖] Arbitrary independent distributions

Δ ≥ 0 P
[
|𝑌 − 𝜇 | ≥ Δ

]
≤ 2 exp

(
− 2Δ2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)
Theorem 12.4.3

Table 12.1: Summary of Chernoff type inequalities covered. Here we have 𝑛 independent random
variables 𝑋1, . . . , 𝑋𝑛, 𝑌 =

∑
𝑖 𝑋𝑖 and 𝜇 = E[𝑌 ].
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dollars. This game, in expectation, does not change the amount of money the player has. Indeed, we
have

E
[
𝑌𝑖

��𝑌𝑖−1
]
=

1
2 (𝑌𝑖−1 − 𝜓𝑖) +

1
2 (𝑌𝑖−1 + 𝜓𝑖) = 𝑌𝑖−1.

And as such, we have that E
[
𝑌𝑖

]
= E

[
E
[
𝑌𝑖

��𝑌𝑖−1
] ]

= E
[
𝑌𝑖−1

]
= · · · = E

[
𝑌0

]
= 1. In particular, E[𝑌𝑛] = 1

– namely, on average, independent of the player strategy she is not going to make any money in this
game (and she is allowed to change her bets after every round). Unless, she is lucky②...

What about a lucky player? The player believes she will get lucky and wants to develop a strategy
to take advantage of it. Formally, she believes that she can win, say, at least (1 + 𝛿)/2 fraction of her
bets (instead of the predicted 1/2) – for example, if the bets are in the stock market, she can improve
her chances by doing more research on the companies she is investing in③. Unfortunately, the player
does not know which rounds she is going to be lucky in – so she still needs to be careful.

In a search of a good strategy. Of course, there are many safe strategies the player can use, from
not playing at all, to risking only a tiny fraction of her money at each round. In other words, our quest
here is to find the best strategy that extracts the maximum benefit for the player out of her inherent
luck.

Here, we restrict ourselves to a simple strategy – at every round, the player would bet 𝛽 fraction
of her money, where 𝛽 is a parameter to be determined. Specifically, in the end of the 𝑖th round, the
player would have

𝑌𝑖 =

{
(1 − 𝛽)𝑌𝑖−1 lose
(1 + 𝛽)𝑌𝑖−1 win.

By our assumption, the player is going to win in at least 𝑀 = (1 + 𝛿)𝑛/2 rounds. Our purpose here is to
figure out what the value of 𝛽 should be so that player gets as rich as possible④. Now, if the player is
successful in ≥ 𝑀 rounds, out of the 𝑛 rounds of the game, then the amount of money the player has,
in the end of the game, is

𝑌𝑛 ≥ (1 − 𝛽)𝑛−𝑀 (1 + 𝛽)𝑀 = (1 − 𝛽)𝑛/2−(𝛿/2)𝑛 (1 + 𝛽)𝑛/2+(𝛿/2)𝑛 =
(
(1 − 𝛽) (1 + 𝛽)

)𝑛/2−(𝛿/2)𝑛
(1 + 𝛽)𝛿𝑛

=

(
1 − 𝛽2

)𝑛/2−(𝛿/2)𝑛
(1 + 𝛽)𝛿𝑛 ≥ exp

(
−2𝛽2)𝑛/2−(𝛿/2)𝑛exp(𝛽/2)𝛿𝑛 = exp

( (
−𝛽2 + 𝛽2𝛿 + 𝛽𝛿/2

)
𝑛
)
.

To maximize this quantity, we choose 𝛽 = 𝛿/4 (there is a better choice, see Lemma 12.1.6, but we use this

value for the simplicity of exposition). Thus, we have that 𝑌𝑛 ≥ exp
((
− 𝛿2

16 + 𝛿3

16 + 𝛿2

8

)
𝑛

)
≥ exp

(
𝛿2

16𝑛
)
,

proving the following.

Lemma 12.1.1. Consider a Chernoff game with 𝑛 rounds, starting with one dollar, where the player
wins in ≥ (1 + 𝛿)𝑛/2 of the rounds. If the player bets 𝛿/4 fraction of her current money, at all rounds,
then in the end of the game the player would have at least exp

(
𝑛𝛿2/16

)
dollars.

②“I would rather have a general who was lucky than one who was good.” – Napoleon Bonaparte.
③“I am a great believer in luck, and I find the harder I work, the more I have of it.” – Thomas Jefferson.
④This optimal choice is known as Kelly criterion, see Remark 12.1.3.
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Remark 12.1.2. Note, that Lemma 12.1.1 holds if the player wins any ≥ (1+ 𝛿)𝑛/2 rounds. In particular,
the statement does not require randomness by itself – for our application, however, it is more natural
and interesting to think about the player wins as being randomly distributed.

Remark 12.1.3. Interestingly, the idea of choosing the best fraction to bet is an old and natural question
arising in investments strategies, and the right fraction to use is known as Kelly criterion, going back
to Kelly’s work from 1956 [Kel56].

12.1.2.2. Chernoff’s inequality

The above implies that if a player is lucky, then she is going to become filthy rich⑤. Intuitively, this
should be a pretty rare event – because if the player is rich, then (on average) many other people have
to be poor. We are thus ready for the kill.

Theorem 12.1.4 (Chernoff’s inequality). Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables, where
𝑋𝑖 = 0 or 𝑋𝑖 = 1 with equal probability. Then, for any 𝛿 ∈ (0, 1/2), we have that

P
[∑︁

𝑖

𝑋𝑖 ≥ (1 + 𝛿) 𝑛2

]
≤ exp

(
− 𝛿2

16𝑛
)
.

Proof: Imagine that we are playing the Chernoff game above, with 𝛽 = 𝛿/4, starting with 1 dollar, and
let 𝑌𝑖 be the amount of money in the end of the 𝑖th round. Here 𝑋𝑖 = 1 indicates that the player won
the 𝑖th round. We have, by Lemma 12.1.1 and Markov’s inequality, that

P
[∑︁

𝑖

𝑋𝑖 ≥ (1 + 𝛿) 𝑛2

]
≤ P

[
𝑌𝑛 ≥ exp

(𝑛𝛿2

16

)]
≤ E[𝑌𝑛]

exp(𝑛𝛿2/16)
=

1
exp(𝑛𝛿2/16)

= exp
(
− 𝛿2

16𝑛
)
. ■

This is crazy – so intuition maybe? If the player is (1+𝛿)/2-lucky then she can make a lot of money;
specifically, at least 𝑓 (𝛿) = exp

(
𝑛𝛿2/16

)
dollars by the end of the game. Namely, beating the odds has

significant monetary value, and this value grows quickly with 𝛿. Since we are in a “zero-sum” game
settings, this event should be very rare indeed. Under this interpretation, of course, the player needs to
know in advance the value of 𝛿 – so imagine that she guesses it somehow in advance, or she plays the
game in parallel with all the possible values of 𝛿, and she settles on the instance that maximizes her
profit.

Can one do better? No, not really. Chernoff inequality is tight (this is a challenging homework
exercise) up to the constant in the exponent. The best bound I know for this version of the inequality
has 1/2 instead of 1/16 in the exponent. Note, however, that no real effort was taken to optimize the
constants – this is not the purpose of this write-up.

12.1.2.3. Some low level boring calculations

Above, we used the following well known facts.

Lemma 12.1.5. (A) Markov’s inequality. For any positive random variable 𝑋 and 𝑡 > 0, we have
P[𝑋 ≥ 𝑡] ≤ E[𝑋] /𝑡. (B) For any two random variables 𝑋 and 𝑌 , we have that E

[
𝑋

]
= E

[
E
[
𝑋

��𝑌 ] ]
.

(C) For 𝑥 ∈ (0, 1), 1 + 𝑥 ≥ 𝑒𝑥/2. (D) For 𝑥 ∈ (0, 1/2), 1 − 𝑥 ≥ 𝑒−2𝑥.
⑤Not that there is anything wrong with that – many of my friends are filthy,
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Lemma 12.1.6. The quantity exp
( (
−𝛽2 + 𝛽2𝛿 + 𝛽𝛿/2

)
𝑛
)

is maximal for 𝛽 = 𝛿
4(1−𝛿) .

Proof: We have to maximize 𝑓 (𝛽) = −𝛽2 + 𝛽2𝛿 + 𝛽𝛿/2 by choosing the correct value of 𝛽 (as a function
of 𝛿, naturally). 𝑓 ′(𝛽) = −2𝛽 + 2𝛽𝛿 + 𝛿/2 = 0 ⇐⇒ 2(𝛿 − 1)𝛽 = −𝛿/2 ⇐⇒ 𝛽 = 𝛿

4(1−𝛿) . ■

12.1.3. A proof for −1/+1 case
Theorem 12.1.7. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables, such that P[𝑋𝑖 = 1] = P[𝑋𝑖 = −1] =
1
2 , for 𝑖 = 1, . . . , 𝑛. Let 𝑌 =

∑𝑛
𝑖=1 𝑋𝑖. Then, for any Δ > 0, we have

P
[
𝑌 ≥ Δ

]
≤ exp

(
−Δ2/2𝑛

)
.

Proof: Clearly, for an arbitrary 𝑡, to specified shortly, we have

P[𝑌 ≥ Δ] = P[exp(𝑡𝑌 ) ≥ exp(𝑡Δ)] ≤ E[exp(𝑡𝑌 )]
exp(𝑡Δ) ,

the first part follows by the fact that exp(·) preserve ordering, and the second part follows by the Markov
inequality.

Observe that

E[exp(𝑡𝑋𝑖)] =
1
2𝑒

𝑡 + 1
2𝑒

−𝑡 =
𝑒𝑡 + 𝑒−𝑡

2

=
1
2

(
1 + 𝑡

1! +
𝑡2

2! +
𝑡3

3! + · · ·
)

+ 1
2

(
1 − 𝑡

1! +
𝑡2

2! −
𝑡3

3! + · · ·
)

=

(
1 + + 𝑡

2

2! + + · · · + 𝑡2𝑘

(2𝑘)! + · · ·
)
,

by the Taylor expansion of exp(·). Note, that (2𝑘)! ≥ (𝑘!)2𝑘 , and thus

E[exp(𝑡𝑋𝑖)] =
∞∑︁
𝑖=0

𝑡2𝑖

(2𝑖)! ≤
∞∑︁
𝑖=0

𝑡2𝑖

2𝑖 (𝑖!) =

∞∑︁
𝑖=0

1
𝑖!

(
𝑡2

2

) 𝑖
= exp

(
𝑡2/2

)
,

again, by the Taylor expansion of exp(·). Next, by the independence of the 𝑋𝑖s, we have

E[exp(𝑡𝑌 )] = E

[
exp

(∑︁
𝑖

𝑡𝑋𝑖

)]
= E

[∏
𝑖

exp(𝑡𝑋𝑖)
]
=

𝑛∏
𝑖=1
E[exp(𝑡𝑋𝑖)] ≤

𝑛∏
𝑖=1

𝑒𝑡
2/2 = 𝑒𝑛𝑡

2/2.

We have P[𝑌 ≥ Δ] ≤
exp

(
𝑛𝑡2/2

)
exp(𝑡Δ) = exp

(
𝑛𝑡2/2 − 𝑡Δ

)
.

Next, by minimizing the above quantity for 𝑡, we set 𝑡 = Δ/𝑛. We conclude,

P[𝑌 ≥ Δ] ≤ exp
(
𝑛

2

(
Δ

𝑛

)2
− Δ

𝑛
Δ

)
= exp

(
−Δ

2

2𝑛

)
. ■

By the symmetry of 𝑌 , we get the following:
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Corollary 12.1.8. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables, such that P[𝑋𝑖 = 1] = P[𝑋𝑖 = −1] =
1
2 , for 𝑖 = 1, . . . , 𝑛. Let 𝑌 =

∑𝑛
𝑖=1 𝑋𝑖. Then, for any Δ > 0, we have P[|𝑌 | ≥ Δ] ≤ 2 exp

(
−Δ2/2𝑛

)
.

Corollary 12.1.9. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent coin flips, such that P[𝑋𝑖 = 0] = P[𝑋𝑖 = 1] = 1
2 , for

𝑖 = 1, . . . , 𝑛. Let 𝑌 =
∑𝑛

𝑖=1 𝑋𝑖. Then, for any Δ > 0, we have P[|𝑌 − 𝑛/2| ≥ Δ] ≤ 2 exp
(
−2Δ2/𝑛

)
.

Remark 12.1.10. Before going any further, it is might be instrumental to understand what this inequal-
ities imply. Consider then case where 𝑋𝑖 is either zero or one with probability half. In this case
𝜇 = E[𝑌 ] = 𝑛/2. Set 𝛿 = 𝑡

√
𝑛 (√𝜇 is approximately the standard deviation of 𝑋 if 𝑝𝑖 = 1/2). We have by

P
[���𝑌 − 𝑛

2

��� ≥ Δ

]
≤ 2 exp

(
−2Δ2/𝑛

)
= 2 exp

(
−2(𝑡

√
𝑛)2/𝑛

)
= 2 exp

(
−2𝑡2

)
.

Thus, Chernoff inequality implies exponential decay (i.e., ≤ 2−𝑡) with 𝑡 standard deviations, instead of
just polynomial (i.e., ≤ 1/𝑡2) by the Chebychev’s inequality.

12.2. The Chernoff Bound — General Case
Here we present the Chernoff bound in a more general settings.

Theorem 12.2.1. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent variables, where P
[
𝑋𝑖 = 1

]
= 𝑝𝑖 and P

[
𝑋𝑖 = 0

]
= 𝑞𝑖 =

1 − 𝑝𝑖, for all 𝑖. Let 𝑋 =
∑𝑏

𝑖=1 𝑋𝑖. 𝜇 = E
[
𝑋
]
=

∑
𝑖 𝑝𝑖. For any 𝛿 > 0, we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
<

(
𝑒𝛿

/
(1 + 𝛿)1+𝛿

)𝜇
.

Proof: We have P[𝑋 > (1 + 𝛿)𝜇] = P
[
𝑒𝑡𝑋 > 𝑒𝑡 (1+𝛿)𝜇

]
. By the Markov inequality, we have:

P
[
𝑋 > (1 + 𝛿)𝜇

]
<
E
[
𝑒𝑡𝑋

]
𝑒𝑡 (1+𝛿)𝜇

On the other hand,

E
[
𝑒𝑡𝑋

]
= E

[
𝑒𝑡 (𝑋1+𝑋2...+𝑋𝑛)

]
= E

[
𝑒𝑡𝑋1

]
· · ·E

[
𝑒𝑡𝑋𝑛

]
.

Namely,

P[𝑋 > (1 + 𝛿)𝜇] <
∏𝑛

𝑖=1 E
[
𝑒𝑡𝑋𝑖

]
𝑒𝑡 (1+𝛿)𝜇

=

∏𝑛
𝑖=1

(
(1 − 𝑝𝑖)𝑒0 + 𝑝𝑖𝑒

𝑡
)

𝑒𝑡 (1+𝛿)𝜇
=

∏𝑛
𝑖=1

(
1 + 𝑝𝑖 (𝑒𝑡 − 1)

)
𝑒𝑡 (1+𝛿)𝜇

.

Let 𝑦 = 𝑝𝑖 (𝑒𝑡 − 1). We know that 1 + 𝑦 < 𝑒𝑦 (since 𝑦 > 0). Thus,

P[𝑋 > (1 + 𝛿)𝜇] <
∏𝑛

𝑖=1 exp(𝑝𝑖 (𝑒𝑡 − 1))
𝑒𝑡 (1+𝛿)𝜇

=
exp

(∑𝑛
𝑖=1 𝑝𝑖 (𝑒𝑡 − 1)

)
𝑒𝑡 (1+𝛿)𝜇

=
exp

(
(𝑒𝑡 − 1)∑𝑛

𝑖=1 𝑝𝑖
)

𝑒𝑡 (1+𝛿)𝜇
=

exp
(
(𝑒𝑡 − 1)𝜇

)
𝑒𝑡 (1+𝛿)𝜇

=

(exp
(
𝑒𝑡 − 1

)
𝑒𝑡 (1+𝛿)

)𝜇
=

(
exp(𝛿)

(1 + 𝛿) (1+𝛿)

)𝜇
,

if we set 𝑡 = log(1 + 𝛿). ■

7



12.2.1. The lower tail
We need the following low level lemma.

Lemma 12.2.2. For 𝑥 ∈ [0, 1), we have (1 − 𝑥)1−𝑥 ≥ exp(−𝑥 + 𝑥2/2).

Proof: For 𝑥 ∈ [0, 1), we have, by the Taylor expansion, that ln(1 − 𝑥) = −∑∞
𝑖=1(𝑥𝑖/𝑖). As such, we have

(1 − 𝑥) ln(1 − 𝑥) = −(1 − 𝑥)
∞∑︁
𝑖=1

𝑥𝑖

𝑖
= −

∞∑︁
𝑖=1

𝑥𝑖

𝑖
+

∞∑︁
𝑖=1

𝑥𝑖+1

𝑖
= −𝑥 +

∞∑︁
𝑖=2

(
𝑥𝑖

𝑖 − 1 − 𝑥𝑖

𝑖

)
= −𝑥 +

∞∑︁
𝑖=2

𝑥𝑖

𝑖(𝑖 − 1) .

This implies that (1 − 𝑥) ln(1 − 𝑥) ≥ −𝑥 + 𝑥2/2, which implies the claim by exponentiation. ■

Theorem 12.2.3. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables, where P
[
𝑋𝑖 = 1

]
= 𝑝𝑖, P

[
𝑋𝑖 = 0

]
=

𝑞𝑖 = 1 − 𝑝𝑖, for all 𝑖. For 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖, its expectation is 𝜇 = E
[
𝑋
]
=

∑
𝑖 𝑝𝑖. We have that

P
[
𝑋 < (1 − 𝛿)𝜇

]
<

[ 𝑒−𝛿

(1 − 𝛿)1−𝛿

] 𝜇
.

For any positive 𝜏 > 1, we have that P
[
𝑋 < 𝜇/𝜏

]
≤ exp

(
−
(
1 − 1+ln 𝜏

𝜏

)
𝜇

)
.

Proof: We follow the same proof template seen already. For 𝑡 = − ln(1− 𝛿) > 0, we have E[exp(−𝑡𝑋𝑖)] =
(1 − 𝑝𝑖)𝑒0 + 𝑝𝑖𝑒

−𝑡 = 1 − 𝑝𝑖 + 𝑝𝑖 (1 − 𝛿) = 1 − 𝑝𝑖𝛿 ≤ exp(−𝑝𝑖𝛿). As such, we have

P
[
𝑋 < (1 − 𝛿)𝜇

]
= P

[
−𝑋 > −(1 − 𝛿)𝜇

]
= P

[
exp(−𝑡𝑋) > exp(−𝑡 (1 − 𝛿)𝜇)

]
≤

∏𝑛
𝑖=1 E[exp(−𝑡𝑋𝑖)]

exp(−𝑡 (1 − 𝛿)𝜇)

≤
exp

(
−∑𝑛

𝑖=1 𝑝𝑖𝛿
)

exp(−𝑡 (1 − 𝛿)𝜇) =

[ 𝑒−𝛿

(1 − 𝛿)1−𝛿

] 𝜇
.

For the last inequality, set 𝛿 = 1 − 1/𝜏, and observe that

P
[
𝑋 < (1 − 𝛿)𝜇

]
≤

[ 𝑒−𝛿

(1 − 𝛿)1−𝛿

] 𝜇
=

[exp(−1 + 1/𝜏)
(1/𝜏)1/𝜏

] 𝜇
= exp

(
−
(
1 − 1 + ln 𝜏

𝜏

)
𝜇

)
. ■

Lemma 12.2.4. Let 𝑋1, . . . , 𝑋𝑛 ∈ {0, 1} be 𝑛 independent random variables, with 𝑝𝑖 = P
[
𝑋𝑖 = 1

]
, for all

𝑖. For 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖, and 𝜇 = E
[
𝑋
]
=

∑
𝑖 𝑝𝑖, we have that P

[
𝑋 < (1 − 𝛿)𝜇

]
< Exp

(
−𝜇𝛿2/2

)
.

Proof: This alternative simplified form of Theorem 12.2.3, follows readily from Lemma 12.2.2, since

P
[
𝑋 < (1 − 𝛿)𝜇

]
≤

[ 𝑒−𝛿

(1 − 𝛿)1−𝛿

] 𝜇
≤

[ 𝑒−𝛿

Exp(−𝛿 + 𝛿2/2)

] 𝜇
≤ Exp(−𝜇𝛿2/2). ■
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12.2.2. A more convenient form of Chernoff’s inequality
Lemma 12.2.5. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E

[
𝑋
]
=

∑
𝑖 𝑝𝑖. For 𝛿, ∈ (0, 1), we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
< exp

(
−𝜇𝛿2/3

)
.

Proof: By Theorem 12.2.1, it is sufficient to prove, for 𝛿 ∈ [0, 1], that(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇
≤ exp

(
−𝜇𝛿2

𝑐

)
⇐⇒ 𝜇

(
𝛿 − (1 + 𝛿) ln(1 + 𝛿)

)
≤ −𝜇𝛿2/𝑐

⇐⇒ 𝑓 (𝛿) = 𝛿2/𝑐 + 𝛿 − (1 + 𝛿) ln(1 + 𝛿) ≤ 0.

We have
𝑓 ′(𝛿) = 2𝛿/𝑐 − ln(1 + 𝛿). and 𝑓 ′′(𝛿) = 2/𝑐 − 1

1 + 𝛿
.

For 𝑐 = 3, we have 𝑓 ′′(𝛿) ≤ 0 for 𝛿 ∈ [0, 1/2], and 𝑓 ′′(𝛿) ≥ 0 for 𝛿 ∈ [1/2, 1]. Namely, 𝑓 ′(𝛿) achieves its
maximum either at 0 or 1. As 𝑓 ′(0) = 0 and 𝑓 ′(1) = 2/3 − ln 2 ≈ −0.02 < 0, we conclude that 𝑓 ′(𝛿) ≤ 0.
Namely, 𝑓 is a monotonically decreasing function in [0, 1], which implies that 𝑓 (𝛿) ≤ 0, for all 𝛿 in this
range, thus implying the claim. ■

Lemma 12.2.6. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E

[
𝑋
]
=

∑
𝑖 𝑝𝑖. For 𝛿 ∈ (0, 4), we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
< exp

(
−𝜇𝛿2/4

)
,

Proof: Lemma 12.2.5 implies a stronger bound, so we need to prove the claim only for 𝛿 ∈ (1, 4].
Continuing as in the proof of Lemma 12.2.5, for case 𝑐 = 4, we have to prove that

𝑓 (𝛿) = 𝛿2/4 + 𝛿 − (1 + 𝛿) ln(1 + 𝛿) ≤ 0,

where 𝑓 ′′(𝛿) = 1/2 − 1
1+𝛿 .

For 𝛿 > 1, we have 𝑓 ′′(𝛿) > 0. Namely 𝑓 (·) is convex for 𝛿 ≥ 1, and it achieves its maximum on
the interval [1, 4] on the endpoints. In particular, 𝑓 (1) ≈ −0.13, and 𝑓 (4) ≈ −0.047, which implies the
claim. ■

Lemma 12.2.7. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E

[
𝑋
]
=

∑
𝑖 𝑝𝑖. For 𝛿 ∈ (0, 6), we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
< exp

(
−𝜇𝛿2/5

)
,

Proof: Lemma 12.2.6 implies a stronger bound, so we need to prove the claim only for 𝛿 ∈ (4, 5].
Continuing as in the proof of Lemma 12.2.5, for case 𝑐 = 5, we have to prove that

𝑓 (𝛿) = 𝛿2/5 + 𝛿 − (1 + 𝛿) ln(1 + 𝛿) ≤ 0,

where 𝑓 ′′(𝛿) = 2/5− 1
1+𝛿 . For 𝛿 ≥ 4, we have 𝑓 ′′(𝛿) > 0. Namely 𝑓 (·) is convex for 𝛿 ≥ 4, and it achieves

its maximum on the interval [4, 6] on the endpoints. In particular, 𝑓 (4) ≈ −0.84, and 𝑓 (6) ≈ −0.42,
which implies the claim. ■
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Lemma 12.2.8. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1−𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E

[
𝑋
]
=

∑
𝑖 𝑝𝑖. For 𝛿 > 2𝑒−1, we have P

[
𝑋 > (1 + 𝛿)𝜇

]
<

2−𝜇(1+𝛿).
Proof: By Theorem 12.2.1, we have( 𝑒

1 + 𝛿

) (1+𝛿)𝜇
≤

( 𝑒

1 + 2𝑒 − 1

) (1+𝛿)𝜇
≤ 2−(1+𝛿)𝜇,

since 𝛿 > 2𝑒 − 1. ■

Lemma 12.2.9. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E

[
𝑋
]
=

∑
𝑖 𝑝𝑖. For 𝛿 > 𝑒2, we have P

[
𝑋 > (1 + 𝛿)𝜇

]
<

exp
(
− 𝜇𝛿 ln 𝛿

2

)
.

Proof: Observe that

P
[
𝑋 > (1 + 𝛿)𝜇

]
<

(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇
= exp

(
𝜇𝛿 − 𝜇(1 + 𝛿) ln(1 + 𝛿)

)
. (12.1)

As such, we have

P
[
𝑋 > (1 + 𝛿)𝜇

]
< exp

(
−𝜇(1 + 𝛿)

(
ln(1 + 𝛿) − 1

) )
≤ exp

(
−𝜇𝛿ln 1 + 𝛿

𝑒

)
≤ exp

(
−𝜇𝛿 ln 𝛿

2

)
,

since for 𝑥 ≥ 𝑒2 we have that 1 + 𝑥

𝑒
≥
√
𝑥 ⇐⇒ ln 1 + 𝑥

𝑒
≥ ln 𝑥

2 . ■

12.2.2.1. Bound when the expectation is small

Lemma 12.2.10. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑌 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E[𝑌 ] =

∑
𝑖 𝑝𝑖. For 𝛿 ∈ (0, 1], and 𝜑 ∈ (0, 1], we have

P

[
𝑌 > (1 + 𝛿)𝜇 + 3 ln 𝜑−1

𝛿2

]
< 𝜑.

Proof: Let 𝜉 = 𝛿 + 3 ln 𝜑−1

𝜇𝛿2 . If 𝜉 ≥ 2𝑒 − 1 ≈ 4.43, by Lemma 12.2.8, we have

𝛼 = P

[
𝑌 > (1 + 𝛿)𝜇 + 3 ln 𝜑−1

𝛿2

]
= P

[
𝑌 > (1 + 𝜉)𝜇

]
≤ 2−𝜇(1+𝜉) < 𝜑,

since −𝜇(1 + 𝜉) > −𝜇𝜉 > 𝜇
3 ln 𝜑−1

𝜇𝛿2 > log2 𝜑
−1, since 𝛿 ∈ (0, 1].

If 𝜉 ≤ 6, then by Lemma 12.2.7, we have
𝛼 = P

[
𝑌 > (1 + 𝜉)𝜇

]
≤ exp

(
−𝜇𝜉2/5

)
≤ 𝜑,

since

−𝜇

5 𝜉
2 = −𝜇

5

(
𝛿 + 3 ln 𝜑−1

𝜇𝛿2

)2
> −𝜇

5

(
2 · 𝛿 · 3 ln 𝜑−1

𝜇𝛿2

)
= −6

5 · ln 𝜑

𝛿
> − ln 𝜑. ■

Example 12.2.11. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli trials, where P[𝑋𝑖 = 1] = 𝑝𝑖, and P[𝑋𝑖 = 0] =
1 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. Let 𝑌 =

∑𝑏
𝑖=1 𝑋𝑖, and 𝜇 = E[𝑌 ] =

∑
𝑖 𝑝𝑖. Assume that 𝜇 ≤ 1/2. Setting 𝛿 = 1, We

have, for 𝑡 > 6, that

P[𝑌 > 1 + 𝑡] ≤ P
[
𝑌 > (1 + 𝛿)𝜇 + 3 ln exp(𝑡/3)

𝛿2

]
≤ exp(−𝑡/3),

by Lemma 12.2.10.
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12.3. A special case of Hoeffding’s inequality
In this section, we prove yet another version of Chernoff inequality, where each variable is randomly
picked according to its own distribution in the range [0, 1]. We prove a more general version of this
inequality in Section 12.4, but the version presented here does not follow from this generalization.

Theorem 12.3.1. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 1] be 𝑛 independent random variables, let 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖, and let

𝜇 = E[𝑋]. We have that P
[
𝑋 − 𝜇 ≥ 𝜂

]
≤

(
𝜇

𝜇 + 𝜂

)𝜇+𝜂 (
𝑛 − 𝜇

𝑛 − 𝜇 − 𝜂

)𝑛−𝜇−𝜂
.

Proof: Let 𝑠 ≥ 1 be some arbitrary parameter. By the standard arguments, we have

𝛾 = P
[
𝑋 ≥ 𝜇 + 𝜂

]
= P

[
𝑠𝑋 ≥ 𝑠𝜇+𝜂

]
≤
E
[
𝑠𝑋

]
𝑠𝜇+𝜂

= 𝑠−𝜇−𝜂
𝑛∏
𝑖=1
E
[
𝑠𝑋𝑖

]
.

By calculations, see Lemma 12.3.7 below, one can show that E
[
𝑠𝑋1

]
≤ 1 + (𝑠 − 1) E[𝑋𝑖]. As such, by the

AM-GM inequality⑥, we have that

𝑛∏
𝑖=1
E
[
𝑠𝑋𝑖

]
≤

𝑛∏
𝑖=1

(
1 + (𝑠 − 1) E[𝑋𝑖]

)
≤

(
1
𝑛

𝑛∑︁
𝑖=1

(
1 + (𝑠 − 1) E[𝑋𝑖]

))𝑛
=

(
1 + (𝑠 − 1) 𝜇

𝑛

)𝑛
.

Setting 𝑠 =
(𝜇 + 𝜂) (𝑛 − 𝜇)
𝜇(𝑛 − 𝜇 − 𝜂) =

𝜇𝑛 − 𝜇2 + 𝜂𝑛 − 𝜂𝜇

𝜇𝑛 − 𝜇2 − 𝜂𝜇
we have that

1 + (𝑠 − 1) 𝜇
𝑛
= 1 + 𝜂𝑛

𝜇𝑛 − 𝜇2 − 𝜂𝜇
· 𝜇
𝑛
= 1 + 𝜂

𝑛 − 𝜇 − 𝜂
=

𝑛 − 𝜇

𝑛 − 𝜇 − 𝜂
.

As such, we have that

𝛾 ≤ 𝑠−𝜇−𝜂
𝑛∏
𝑖=1
E
[
𝑠𝑋𝑖

]
=

(
𝜇(𝑛 − 𝜇 − 𝜂)
(𝜇 + 𝜂) (𝑛 − 𝜇)

)𝜇+𝜂 (
𝑛 − 𝜇

𝑛 − 𝜇 − 𝜂

)𝑛
=

(
𝜇

(𝜇 + 𝜂)

)𝜇+𝜂 (
𝑛 − 𝜇

𝑛 − 𝜇 − 𝜂

)𝑛−𝜇−𝜂
. ■

Remark 12.3.2. Setting 𝑠 = (𝜇 + 𝜂)/𝜇 in the proof of Theorem 12.3.1, we have

P
[
𝑋 − 𝜇 ≥ 𝜂

]
≤

(
𝜇

𝜇+𝜂

)𝜇+𝜂 (
1 +

(
𝜇+𝜂
𝜇

− 1
)
𝜇

𝑛

)𝑛
=

(
𝜇

𝜇+𝜂

)𝜇+𝜂 (
1 + 𝜂

𝑛

)𝑛
.

Corollary 12.3.3. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 1] be 𝑛 independent random variables, let 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖/𝑛, 𝑝 =

E
[
𝑋

]
= 𝜇/𝑛 and 𝑞 = 1 − 𝑝. Then, we have that P

[
𝑋 − 𝑝 ≥ 𝑡

]
≤ exp

(
𝑛 𝑓 (𝑡)

)
, for

𝑓 (𝑡) = (𝑝 + 𝑡) ln 𝑝

𝑝 + 𝑡
+ (𝑞 − 𝑡) ln 𝑞

𝑞 − 𝑡
. (12.2)

Theorem 12.3.4. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 1] be 𝑛 independent random variables, let 𝑋 = (∑𝑛
𝑖=1 𝑋𝑖)/𝑛, and

let 𝑝 = E[𝑋]. We have that P
[
𝑋 − 𝑝 ≥ 𝑡

]
≤ exp

(
−2𝑛𝑡2

)
and P

[
𝑋 − 𝑝 ≤ −𝑡

]
≤ exp

(
−2𝑛𝑡2

)
.

⑥The inequality between arithmetic and geometric means: (∑𝑛
𝑖=1 𝑥𝑖)/𝑛 ≥ 𝑛

√
𝑥1 · · · 𝑥𝑛.

11



Proof: Let 𝑝 = 𝜇/𝑛, 𝑞 = 1 − 𝑝, and let 𝑓 (𝑡) be the function from Eq. (12.2), for 𝑡 ∈ (−𝑝, 𝑞). Now, we
have that

𝑓 ′(𝑡) = ln 𝑝

𝑝 + 𝑡
+ (𝑝 + 𝑡) 𝑝 + 𝑡

𝑝

(
− 𝑝

(𝑝 + 𝑡)2

)
− ln 𝑞

𝑞 − 𝑡
− (𝑞 − 𝑡) 𝑞 − 𝑡

𝑞

𝑞

(𝑞 − 𝑡)2 = ln 𝑝

𝑝 + 𝑡
− ln 𝑞

𝑞 − 𝑡

= ln 𝑝(𝑞 − 𝑡)
𝑞(𝑝 + 𝑡) .

As for the second derivative, we have

𝑓 ′′(𝑡) = 𝑞XXXX(𝑝 + 𝑡)
𝑝(𝑞 − 𝑡) ·

𝑝

𝑞
· (𝑝 + 𝑡) (−1) − (𝑞 − 𝑡)

(𝑝 + 𝑡)A2
. =

−𝑝 − 𝑡 − 𝑞 + 𝑡

(𝑞 − 𝑡) (𝑝 + 𝑡) = − 1
(𝑞 − 𝑡) (𝑝 + 𝑡) ≤ −4.

Indeed, 𝑡 ∈ (−𝑝, 𝑞) and the denominator is minimized for 𝑡 = (𝑞 − 𝑝)/2, and as such (𝑞 − 𝑡) (𝑝 + 𝑡) ≤(
2𝑞 − (𝑞 − 𝑝)

) (
2𝑝 + (𝑞 − 𝑝)

)
/4 = (𝑝 + 𝑞)2/4 = 1/4.

Now, 𝑓 (0) = 0 and 𝑓 ′(0) = 0, and by Taylor’s expansion, we have that 𝑓 (𝑡) = 𝑓 (0)+ 𝑓 ′(0)𝑡+ 𝑓 ′′(𝑥)
2 𝑡2 ≤

−2𝑡2, where 𝑥 is between 0 and 𝑡.
The first bound now readily follows from plugging this bound into Corollary 12.3.3. The second

bound follows by considering the random variants 𝑌𝑖 = 1 − 𝑋𝑖, for all 𝑖, and plugging this into the first
bound. Indeed, for 𝑌 = 1 − 𝑋, we have that 𝑞 = E

[
𝑌

]
, and then 𝑋 − 𝑝 ≤ −𝑡 ⇐⇒ 𝑡 ≤ 𝑝 − 𝑋 ⇐⇒ 𝑡 ≤

1 − 𝑞 − (1 − 𝑌 ) = 𝑌 − 𝑞. Thus, P
[
𝑋 − 𝑝 ≤ −𝑡

]
= P

[
𝑌 − 𝑞 ≥ 𝑡

]
≤ exp

(
−2𝑛𝑡2

)
. ■

Corollary 12.3.5. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 1] be 𝑛 independent random variables, let 𝑌 =
∑𝑛

𝑖=1 𝑋𝑖, and let
𝜇 = E[𝑋]. For any Δ > 0, we have P

[
𝑌 − 𝜇 ≥ Δ

]
≤ exp

(
−2Δ2/𝑛

)
and P

[
𝑌 − 𝜇 ≤ −Δ

]
≤ exp

(
−2Δ2/𝑛

)
.

Proof: For 𝑋 = 𝑌/𝑛, 𝑝 = 𝜇/𝑛, and 𝑡 = Δ/𝑛, by Theorem 12.3.4, we have

P
[
𝑌 − 𝜇 ≥ Δ

]
= P

[
𝑋 − 𝑝 ≥ 𝑡

]
≤ exp

(
−2𝑛𝑡2

)
= exp

(
−2Δ2/𝑛

)
. ■

Theorem 12.3.6. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 1] be 𝑛 independent random variables, let 𝑋 = (∑𝑛
𝑖=1 𝑋𝑖), and let

𝜇 = E[𝑋]. We have that P
[
𝑋 − 𝜇 ≥ 𝜀𝜇

]
≤ exp

(
−𝜀2𝜇/4

)
and P

[
𝑋 − 𝜇 ≤ −𝜀𝜇

]
≤ exp

(
−𝜀2𝜇/2

)
.

Proof: Let 𝑝 = 𝜇/𝑛, and let 𝑔(𝑥) = 𝑓 (𝑝𝑥), for 𝑥 ∈ [0, 1] and 𝑥𝑝 < 𝑞. As before, computing the derivative
of 𝑔, we have

𝑔′(𝑥) = 𝑝 𝑓 ′(𝑥𝑝) = 𝑝 ln 𝑝(𝑞 − 𝑥𝑝)
𝑞(𝑝 + 𝑥𝑝) = 𝑝 ln 𝑞 − 𝑥𝑝

𝑞(1 + 𝑥) ≤ 𝑝 ln 1
1 + 𝑥

≤ − 𝑝𝑥

2 ,

since (𝑞 − 𝑥𝑝)/𝑞 is maximized for 𝑥 = 0, and ln 1
1+𝑥 ≤ −𝑥/2, for 𝑥 ∈ [0, 1], as can be easily verified⑦.

Now, 𝑔(0) = 𝑓 (0) = 0, and by integration, we have that 𝑔(𝑥) =
∫ 𝑥

𝑦=0 𝑔
′(𝑦)d𝑦 ≤

∫ 𝑥

𝑦=0(−𝑝𝑦/2)d𝑦 = −𝑝𝑥2/4.
Now, plugging into Corollary 12.3.3, we get that the desired probability P

[
𝑋 − 𝜇 ≥ 𝜀𝜇

]
is

P
[
𝑋 − 𝑝 ≥ 𝜀𝑝

]
≤ exp

(
𝑛 𝑓 (𝜀𝑝)

)
= exp

(
𝑛𝑔(𝜀)

)
≤ exp

(
−𝑝𝑛𝜀2/4

)
= exp

(
−𝜇𝜀2/4

)
.

⑦Indeed, this is equivalent to 1
1+𝑥 ≤ 𝑒−𝑥/2 ⇐⇒ 𝑒𝑥/2 ≤ 1 + 𝑥, which readily holds for 𝑥 ∈ [0, 1].
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As for the other inequality, set ℎ(𝑥) = 𝑔(−𝑥) = 𝑓 (−𝑥𝑝). Then

ℎ′(𝑥) = −𝑝 𝑓 ′(−𝑥𝑝) = −𝑝 ln 𝑝(𝑞 + 𝑥𝑝)
𝑞(𝑝 − 𝑥𝑝) = 𝑝 ln 𝑞(1 − 𝑥)

𝑞 + 𝑥𝑝
= 𝑝 ln 𝑞 − 𝑥𝑞

𝑞 + 𝑥𝑝
= 𝑝 ln

(
1 − 𝑥

𝑝 + 𝑞

𝑞 + 𝑥𝑝

)
= 𝑝 ln

(
1 − 𝑥

1
𝑞 + 𝑥𝑝

)
≤ 𝑝 ln(1 − 𝑥) ≤ −𝑝𝑥,

since 1 − 𝑥 ≤ 𝑒−𝑥. By integration, as before, we conclude that ℎ(𝑥) ≤ −𝑝𝑥2/2. Now, plugging
into Corollary 12.3.3, we get P

[
𝑋 − 𝜇 ≤ −𝜀𝜇

]
= P

[
𝑋 − 𝑝 ≤ −𝜀𝑝

]
≤ exp

(
𝑛 𝑓 (−𝜀𝑝)

)
≤ exp

(
𝑛ℎ(𝜀)

)
≤

exp
(
−𝑛𝑝𝜀2/2

)
≤ exp

(
−𝜇𝜀2/2

)
. ■

12.3.1. Some technical lemmas
Lemma 12.3.7. Let 𝑋 ∈ [0, 1] be a random variable, and let 𝑠 ≥ 1. Then E

[
𝑠𝑋

]
≤ 1 + (𝑠 − 1) E[𝑋].

Proof: For the sake of simplicity of exposition, assume that 𝑋 is a discrete random variable, and that
there is a value 𝛼 ∈ (0, 1/2), such that 𝛽 = P[𝑋 = 𝛼] > 0. Consider the modified random variable
𝑋′, such that P[𝑋′ = 0] = P[𝑋 = 0] + 𝛽/2, and P[𝑋′ = 2𝛼] = P[𝑋 = 𝛼] + 𝛽/2. Clearly, E[𝑋] = E[𝑋′].
Next, observe that E

[
𝑠𝑋

′ ] − E[𝑠𝑋 ] = (𝛽/2) (𝑠2𝛼 + 𝑠0) − 𝛽𝑠𝛼 ≥ 0, by the convexity of 𝑠𝑥. We conclude
that E

[
𝑠𝑋

]
achieves its maximum if takes only the values 0 and 1. But then, we have that E

[
𝑠𝑋

]
=

P[𝑋 = 0]𝑠0 + P[𝑋 = 1]𝑠1 = (1 − E[𝑋]) + E[𝑋] 𝑠 = 1 + (𝑠 − 1) E[𝑋] , as claimed. ■

12.4. Hoeffding’s inequality
In this section, we prove a generalization of Chernoff’s inequality. The proof is considerably more
tedious, and it is included here for the sake of completeness.

Lemma 12.4.1. Let 𝑋 be a random variable. If E[𝑋] = 0 and 𝑎 ≤ 𝑋 ≤ 𝑏, then for any 𝑠 > 0, we have
E
[
𝑒𝑠𝑋

]
≤ exp

(
𝑠2(𝑏 − 𝑎)2/8

)
.

Proof: Let 𝑎 ≤ 𝑥 ≤ 𝑏 and observe that 𝑥 can be written as a convex combination of 𝑎 and 𝑏. In
particular, we have

𝑥 = 𝜆𝑎 + (1 − 𝜆)𝑏 for 𝜆 =
𝑏 − 𝑥

𝑏 − 𝑎
∈ [0, 1] .

Since 𝑠 > 0, the function exp(𝑠𝑥) is convex, and as such

𝑒𝑠𝑥 ≤ 𝑏 − 𝑥

𝑏 − 𝑎
𝑒𝑠𝑎 + 𝑥 − 𝑎

𝑏 − 𝑎
𝑒𝑠𝑏,

since we have that 𝑓 (𝜆𝑥 + (1−𝜆)𝑦) ≤ 𝜆 𝑓 (𝑥) + (1−𝜆) 𝑓 (𝑦) if 𝑓 (·) is a convex function. Thus, for a random
variable 𝑋, by linearity of expectation, we have

E
[
𝑒𝑠𝑋

]
≤ E

[
𝑏 − 𝑋

𝑏 − 𝑎
𝑒𝑠𝑎 + 𝑋 − 𝑎

𝑏 − 𝑎
𝑒𝑠𝑏

]
=
𝑏 − E[𝑋]
𝑏 − 𝑎

𝑒𝑠𝑎 + E[𝑋] − 𝑎

𝑏 − 𝑎
𝑒𝑠𝑏

=
𝑏

𝑏 − 𝑎
𝑒𝑠𝑎 − 𝑎

𝑏 − 𝑎
𝑒𝑠𝑏,
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since E[𝑋] = 0.
Next, set 𝑝 = − 𝑎

𝑏 − 𝑎
and observe that 1 − 𝑝 = 1 + 𝑎

𝑏 − 𝑎
=

𝑏

𝑏 − 𝑎
and

−𝑝𝑠(𝑏 − 𝑎) = −
(
− 𝑎

𝑏 − 𝑎

)
𝑠(𝑏 − 𝑎) = 𝑠𝑎.

As such, we have

E
[
𝑒𝑠𝑋

]
≤ (1 − 𝑝)𝑒𝑠𝑎 + 𝑝𝑒𝑠𝑏 = (1 − 𝑝 + 𝑝𝑒𝑠(𝑏−𝑎))𝑒𝑠𝑎

= (1 − 𝑝 + 𝑝𝑒𝑠(𝑏−𝑎))𝑒−𝑝𝑠(𝑏−𝑎)

= exp
(
−𝑝𝑠(𝑏 − 𝑎) + ln

(
1 − 𝑝 + 𝑝𝑒𝑠(𝑏−𝑎)

))
= exp(−𝑝𝑢 + ln(1 − 𝑝 + 𝑝𝑒𝑢)),

for 𝑢 = 𝑠(𝑏 − 𝑎). Setting

𝜙(𝑢) = −𝑝𝑢 + ln(1 − 𝑝 + 𝑝𝑒𝑢),

we thus have E
[
𝑒𝑠𝑋

]
≤ exp(𝜙(𝑢)). To prove the claim, we will show that 𝜙(𝑢) ≤ 𝑢2/8 = 𝑠2(𝑏 − 𝑎)2/8.

To see that, expand 𝜙(𝑢) about zero using Taylor’s expansion. We have

𝜙(𝑢) = 𝜙(0) + 𝑢𝜙′(0) + 1
2𝑢

2𝜙′′(𝜃) (12.3)

where 𝜃 ∈ [0, 𝑢], and notice that 𝜙(0) = 0. Furthermore, we have

𝜙′(𝑢) = −𝑝 + 𝑝𝑒𝑢

1 − 𝑝 + 𝑝𝑒𝑢
,

and as such 𝜙′(0) = −𝑝 + 𝑝

1−𝑝+𝑝 = 0. Now,

𝜙′′(𝑢) = (1 − 𝑝 + 𝑝𝑒𝑢)𝑝𝑒𝑢 − (𝑝𝑒𝑢)2

(1 − 𝑝 + 𝑝𝑒𝑢)2 =
(1 − 𝑝)𝑝𝑒𝑢

(1 − 𝑝 + 𝑝𝑒𝑢)2 .

For any 𝑥, 𝑦 ≥ 0, we have (𝑥 + 𝑦)2 ≥ 4𝑥𝑦 as this is equivalent to (𝑥 − 𝑦)2 ≥ 0. Setting 𝑥 = 1 − 𝑝 and
𝑦 = 𝑝𝑒𝑢, we have that

𝜙′′(𝑢) = (1 − 𝑝)𝑝𝑒𝑢

(1 − 𝑝 + 𝑝𝑒𝑢)2 ≤ (1 − 𝑝)𝑝𝑒𝑢
4(1 − 𝑝)𝑝𝑒𝑢 =

1
4 .

Plugging this into Eq. (12.3), we get that

𝜙(𝑢) ≤ 1
8𝑢

2 =
1
8 (𝑠(𝑏 − 𝑎))2 and E

[
𝑒𝑠𝑋

]
≤ exp(𝜙(𝑢)) ≤ exp

(
1
8 (𝑠(𝑏 − 𝑎))2

)
,

as claimed. ■

Lemma 12.4.2. Let 𝑋 be a random variable. If E[𝑋] = 0 and 𝑎 ≤ 𝑋 ≤ 𝑏, then for any 𝑠 > 0, we have

P[𝑋 > 𝑡 ] ≤
exp

(
𝑠2 (𝑏−𝑎)2

8

)
𝑒𝑠𝑡

.
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Proof: Using the same technique we used in proving Chernoff’s inequality, we have that

P[𝑋 > 𝑡 ] = P
[
𝑒𝑠𝑋 > 𝑒𝑠𝑡

]
≤
E
[
𝑒𝑠𝑋

]
𝑒𝑠𝑡

≤
exp

(
𝑠2 (𝑏−𝑎)2

8

)
𝑒𝑠𝑡

. ■

Theorem 12.4.3 (Hoeffding’s inequality). Let 𝑋1, . . . , 𝑋𝑛 be independent random variables, where
𝑋𝑖 ∈ [𝑎𝑖, 𝑏𝑖], for 𝑖 = 1, . . . , 𝑛. Then, for the random variable 𝑆 = 𝑋1 + · · · + 𝑋𝑛 and any 𝜂 > 0, we have

P
[���𝑆 − E[𝑆]

��� ≥ 𝜂

]
≤ 2 exp

(
− 2 𝜂2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)
.

Proof: Let 𝑍𝑖 = 𝑋𝑖 − E[𝑋𝑖], for 𝑖 = 1, . . . , 𝑛. Set 𝑍 =
∑𝑛

𝑖=1 𝑍𝑖, and observe that

P[𝑍 ≥ 𝜂] = P
[
𝑒𝑠𝑍 ≥ 𝑒𝑠𝜂

]
≤ E[exp(𝑠𝑍)]

exp(𝑠𝜂) ,

by Markov’s inequality. Arguing as in the proof of Chernoff’s inequality, we have

E[exp(𝑠𝑍) ] = E

[
𝑛∏
𝑖=1

exp(𝑠𝑍𝑖)
]
=

𝑛∏
𝑖=1
E[exp(𝑠𝑍𝑖)] ≤

𝑛∏
𝑖=1

exp
(
𝑠2(𝑏𝑖 − 𝑎𝑖)2

8

)
,

since the 𝑍𝑖s are independent and by Lemma 12.4.1. This implies that

P[𝑍 ≥ 𝜂] ≤ exp(−𝑠𝜂)
𝑛∏
𝑖=1

𝑒𝑠
2 (𝑏𝑖−𝑎𝑖)2/8 = exp

(
𝑠2

8

𝑛∑︁
𝑖=1

(𝑏𝑖 − 𝑎𝑖)2 − 𝑠𝜂

)
.

The upper bound is minimized for 𝑠 = 4𝜂/
(∑

𝑖 (𝑏𝑖 − 𝑎𝑖)2), implying

P[𝑍 ≥ 𝜂] ≤ exp
(
− 2𝜂2∑(𝑏𝑖 − 𝑎𝑖)2

)
.

The claim now follows by the symmetry of the upper bound (i.e., apply the same proof to −𝑍). ■

12.5. Bibliographical notes

Some of the exposition here follows more or less the exposition in [MR95]. Exercise 12.6.1 (without
the hint) is from [Mat99]. McDiarmid [McD89] provides a survey of Chernoff type inequalities, and
Theorem 12.3.6 and Section 12.3 is taken from there (our proof has somewhat weaker constants).

A more general treatment of such inequalities and tools is provided by Dubhashi and Panconesi
[DP09].
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12.6. Exercises
Exercise 12.6.1 (Chernoff inequality is tight.). Let 𝑆 =

∑𝑛
𝑖=1 𝑆𝑖 be a sum of 𝑛 independent random variables

each attaining values +1 and −1 with equal probability. Let 𝑃(𝑛,Δ) = P[𝑆 > Δ]. Prove that for Δ ≤ 𝑛/𝐶,

𝑃(𝑛,Δ) ≥ 1
𝐶

exp
(
−Δ2

𝐶𝑛

)
,

where 𝐶 is a suitable constant. That is, the well-known Chernoff bound 𝑃(𝑛,Δ) ≤ exp(−Δ2/2𝑛)) is close
to the truth.

Exercise 12.6.2 (Chernoff inequality is tight by direct calculations.). For this question use only basic argu-
mentation – do not use Stirling’s formula, Chernoff inequality or any similar “heavy” machinery.

(A) Prove that
𝑛−𝑘∑︁
𝑖=0

(
2𝑛
𝑖

)
≤ 𝑛

4𝑘2 22𝑛.

Hint: Consider flipping a coin 2𝑛 times. Write down explicitly the probability of this coin to have
at most 𝑛 − 𝑘 heads, and use Chebyshev inequality.

(B) Using (A), prove that
(2𝑛
𝑛

)
≥ 22𝑛/4

√
𝑛 (which is a pretty good estimate).

(C) Prove that
(

2𝑛
𝑛 + 𝑖 + 1

)
=

(
1 − 2𝑖 + 1

𝑛 + 𝑖 + 1

) (
2𝑛
𝑛 + 𝑖

)
.

(D) Prove that
(

2𝑛
𝑛 + 𝑖

)
≤ exp

(
−𝑖(𝑖 − 1)

2𝑛

) (
2𝑛
𝑛

)
.

(E) Prove that
(

2𝑛
𝑛 + 𝑖

)
≥ exp

(
−8𝑖2

𝑛

) (
2𝑛
𝑛

)
.

(F) Using the above, prove that
(
2𝑛
𝑛

)
≤ 𝑐

22𝑛
√
𝑛

for some constant 𝑐 (I got 𝑐 = 0.824... but any reasonable

constant will do).
(G) Using the above, prove that

(𝑡+1)
√
𝑛∑︁

𝑖=𝑡
√
𝑛+1

(
2𝑛
𝑛 − 𝑖

)
≤ 𝑐22𝑛 exp

(
−𝑡2/2

)
.

In particular, conclude that when flipping fair coin 2𝑛 times, the probability to get less than 𝑛−𝑡
√
𝑛

heads (for 𝑡 an integer) is smaller than 𝑐′ exp
(
−𝑡2/2

)
, for some constant 𝑐′.

(H) Let 𝑋 be the number of heads in 2𝑛 coin flips. Prove that for any integer 𝑡 > 0 and any 𝛿 > 0
sufficiently small, it holds that P[𝑋 < (1 − 𝛿)𝑛] ≥ exp

(
−𝑐′′𝛿2𝑛

)
, where 𝑐′′ is some constant. Namely,

the Chernoff inequality is tight in the worst case.

Exercise 12.6.3 (Tail inequality for geometric variables). Let 𝑋1, . . . , 𝑋𝑚 be 𝑚 independent random vari-
ables with geometric distribution with probability 𝑝 (i.e., P[𝑋𝑖 = 𝑗] = (1 − 𝑝) 𝑗−1𝑝). Let 𝑌 =

∑
𝑖 𝑋𝑖, and

let 𝜇 = E[𝑌 ] = 𝑚/𝑝. Prove that P
[
𝑌 ≥ (1 + 𝛿)𝜇

]
≤ exp

(
−𝑚𝛿2/8

)
.
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