
Chapter 11

Quick Sort with High Probability
By Sariel Har-Peled, April 26, 2022①

11.1. QuickSort runs in 𝑂 (𝑛 log 𝑛) time with high probability
Consider a set 𝑇 of the 𝑛 items to be sorted, and consider a specific element 𝑡 ∈ 𝑇 . Let 𝑋𝑖 be the size of
the input in the 𝑖th level of recursion that contains 𝑡. We know that 𝑋0 = 𝑛, and

E
[
𝑋𝑖

�� 𝑋𝑖−1
]
≤ 1

2
3
4𝑋𝑖−1 +

1
2𝑋𝑖−1 ≤

7
8𝑋𝑖−1.

Indeed, with probability 1/2 the pivot is the middle of the subproblem; that is, its rank is between
𝑋𝑖−1/4 and (3/4)𝑋𝑖−1 (and then the subproblem has size ≤ 𝑋𝑖−1(3/4)), and with probability 1/2 the
subproblem might has not shrank significantly (i.e., we pretend it did not shrink at all).

Now, observe that for any two random variables we have that E[𝑋] = E𝑦 [E[𝑋 |𝑌 = 𝑦]], see Lemma ??p??..
As such, we have that

E[𝑋𝑖] = E
𝑦

[
E
[
𝑋𝑖

�� 𝑋𝑖−1 = 𝑦
]]
≤ E

𝑋𝑖−1=𝑦

[
7
8 𝑦

]
=

7
8 E[𝑋𝑖−1] ≤

(
7
8

) 𝑖
E[𝑋0] =

(
7
8

) 𝑖
𝑛.

In particular, consider 𝑀 = 8 log8/7 𝑛. We have that

𝜇 = E[𝑋𝑀] ≤
(
7
8

)𝑀
𝑛 ≤ 1

𝑛8𝑛 =
1
𝑛7 .

Of course, 𝑡 participates in more than 𝑀 recursive calls, if and only if 𝑋𝑀 ≥ 1. However, by Markov’s
inequality (Theorem 11.5.1), we have that

P

[
element 𝑡 participates

in more than 𝑀 recursive calls

]
≤ P[𝑋𝑀 ≥ 1] ≤ E[𝑋𝑀]

1 ≤ 1
𝑛7 ,

as desired. That is, we proved that the probability that any element of the input 𝑇 participates in more
than 𝑀 recursive calls is at most 𝑛(1/𝑛7) ≤ 1/𝑛6.

Theorem 11.1.1. For 𝑛 elements, QuickSort runs in 𝑂 (𝑛 log 𝑛) time, with high probability.

11.2. Treaps
Anybody that ever implemented a balanced binary tree, knows that it can be very painful. A natural
question, is whether we can use randomization to get a simpler data-structure with good performance.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

p(xk)

xk

TL TR

11.2.1. Construction
The key observation is that many of data-structures that offer good performance for balanced binary
search trees, do so by storing additional information to help in how to balance the tree. As such, the
key Idea is that for every element 𝑥 inserted into the data-structure, randomly choose a priority 𝑝(𝑥);
that is, 𝑝(𝑥) is chosen uniformly and randomly in the range [0, 1].

So, for the set of elements 𝑋 = {𝑥1, . . . , 𝑥𝑛}, with (random) priorities 𝑝(𝑥1), . . . , 𝑝(𝑥𝑛), our purpose
is to build a binary tree which is “balanced”. So, let us pick the element 𝑥𝑘 with the lowest priority in
𝑋, and make it the root of the tree. Now, we partition 𝑋 in the natural way:

(A) 𝐿: set of all the numbers smaller than 𝑥𝑘 in 𝑋, and
(B) 𝑅: set of all the numbers larger than 𝑥𝑘 in 𝑋.

We can now build recursively the trees for 𝐿 and 𝑅, and let denote them by 𝑇𝐿 and 𝑇𝑅. We build
the natural tree, by creating a node for 𝑥𝑘 , having 𝑇𝐿 its left child, and 𝑇𝑅 as its right child.

We call the resulting tree a treap. As it is a tree over the elements, and a heap over the priorities;
that is, treap = tree + heap.

Lemma 11.2.1. Given 𝑛 elements, the expected depth of a treap 𝑇 defined over those elements is
𝑂 (log(𝑛)). Furthermore, this holds with high probability; namely, the probability that the depth of the
treap would exceed 𝑐 log 𝑛 is smaller than 𝛿 = 𝑛−𝑑, where 𝑑 is an arbitrary constant, and 𝑐 is a constant
that depends on 𝑑.②

Furthermore, the probability that 𝑇 has depth larger than 𝑐𝑡 log(𝑛), for any 𝑡 ≥ 1, is smaller than
𝑛−𝑑𝑡.

Proof: Observe, that every element has equal probability to be in the root of the treap. Thus, the
structure of a treap, is identical to the recursive tree of QuickSort. Indeed, imagine that instead of
picking the pivot uniformly at random, we instead pick the pivot to be the element with the lowest
(random) priority. Clearly, these two ways of choosing pivots are equivalent. As such, the claim follows
immediately from our analysis of the depth of the recursion tree of QuickSort, see Theorem 11.1.1. ■

11.2.2. Operations
The following innocent observation is going to be the key insight in implementing operations on treaps:

Observation 11.2.2. Given 𝑛 distinct elements, and their (distinct) priorities, the treap storing them
is uniquely defined.

②That is, if we want to decrease the probability of failure, that is 𝛿, we need to increase 𝑐.

2

0.2
x

0.6
A

0.5
C

E
0.4

D
0.3

=⇒

E
0.4

0.2
x

0.6
A

0.5
C

D
0.3

Figure 11.1: RotateRight: Rotate right in action. Importantly, after the rotation the priorities are
ordered correctly (at least locally for this subtree.

11.2.2.1. Insertion

Given an element 𝑥 to be inserted into an existing treap 𝑇 , insert it in the usual way into 𝑇 (i.e., treat
it a regular search binary tree). This takes 𝑂 (height(𝑇)). Now, 𝑥 is a leaf in the treap. Set 𝑥 priority
𝑝(𝑥) to some random number [0, 1]. Now, while the new tree is a valid search tree, it is not necessarily
still a valid treap, as 𝑥’s priority might be smaller than its parent. So, we need to fix the tree around 𝑥,
so that the priority property holds.

RotateUp(𝑥)
𝑦 ← parent(𝑥)
while 𝑝(𝑦) > 𝑝(𝑥) do

if 𝑦.left_child = 𝑥 then
RotateRight(𝑦)

else
RotateLeft(𝑦)

𝑦 ← parent(𝑥)
We call RotateUp(𝑥) to do so. Specifically, if 𝑥 parent is 𝑦, and 𝑝(𝑥) < 𝑝(𝑦), we will rotate 𝑥 up so that
it becomes the parent of 𝑦. We repeatedly do it till 𝑥 has a larger priority than its parent. The rotation
operation takes constant time and plays around with priorities, and importantly, it preserves the binary
search tree order. A rotate right operation RotateRight(𝐷) is depicted in Figure 11.1. RotateLeft is
the same tree rewriting operation done in the other direction.

Observe that as 𝑥 is being rotated upwards, the priority properties are being fixed – in particular,
as demonstrated in Figure 11.1, nodes are being hanged on nodes that were previously their ancestors,
so priorities are still monotonically decreasing along a path.

In the end of this process, both the ordering property and the priority property holds. That is, we
have a valid treap that includes all the old elements, and the new element. By Observation 11.2.2, since
the treap is uniquely defined, we have updated the treap correctly. Since every time we do a rotation
the distance of 𝑥 from the root decrease by one, it follows that insertions takes 𝑂 (height(𝑇)).

11.2.2.2. Deletion

Deletion is just an insertion done in reverse. Specifically, to delete an element 𝑥 from a treap 𝑇 , set its
priority to +∞, and rotate it down it becomes a leaf. The only tricky observation is that you should
rotate always so that the child with the lower priority becomes the new parent. Once 𝑥 becomes a leaf
deleting it is trivial - just set the pointer pointing to it in the tree to null.

3

11.2.2.3. Split

Given an element 𝑥 stored in a treap 𝑇 , we would like to split 𝑇 into two treaps – one treap 𝑇≤ for all the
elements smaller or equal to 𝑥, and the other treap 𝑇> for all the elements larger than 𝑥. To this end,
we set 𝑥 priority to −∞, fix the priorities by rotating 𝑥 up so it becomes the root of the treap. The right
child of 𝑥 is the treap 𝑇>, and we disconnect it from 𝑇 by setting 𝑥 right child pointer to null. Next, we
restore 𝑥 to its real priority, and rotate it down to its natural location. The resulting treap is 𝑇≤. This
again takes time that is proportional to the depth of the treap.

11.2.2.4. Meld

Given two treaps 𝑇𝐿 and 𝑇𝑅 such that all the elements in 𝑇𝐿 are smaller than all the elements in 𝑇𝑅, we
would like to merge them into a single treap. Find the largest element 𝑥 stored in 𝑇𝐿 (this is just the
element stored in the path going only right from the root of the tree). Set 𝑥 priority to −∞, and rotate
it up the treap so that it becomes the root. Now, 𝑥 being the largest element in 𝑇𝐿 has no right child.
Attach 𝑇𝑅 as the right child of 𝑥. Now, restore 𝑥 priority to its original priority, and rotate it back so
the priorities properties hold.

11.2.3. Summery
Theorem 11.2.3. Let 𝑇 be a treap, initialized to an empty treap, and undergoing a sequence of 𝑚 = 𝑛𝑐

insertions, where 𝑐 is some constant. The probability that the depth of the treap in any point in time
would exceed 𝑑 log 𝑛 is ≤ 1/𝑛 𝑓 , where 𝑑 is an arbitrary constant, and 𝑓 is a constant that depends only
𝑐 and 𝑑.

In particular, a treap can handle insertion/deletion in 𝑂 (log 𝑛) time with high probability.

Proof: Since the first part of the theorem implies that with high probability all these treaps have
logarithmic depth, then this implies that all operations takes logarithmic time, as an operation on a
treap takes at most the depth of the treap.

As for the first part, let 𝑇1, . . . , 𝑇𝑚 be the sequence of treaps, where 𝑇𝑖 is the treap after the 𝑖th
operation. Similarly, let 𝑋𝑖 be the set of elements stored in 𝑇𝑖. By Lemma 11.2.1, the probability that
𝑇𝑖 has large depth is tiny. Specifically, we have that

𝛼𝑖 = P[depth(𝑇𝑖) > 𝑡𝑐′ log 𝑛𝑐] = P
[
depth(𝑇𝑖) > 𝑐′𝑡

(
log 𝑛𝑐
log |𝑇𝑖 |

)
· log |𝑇𝑖 |

]
≤ 1

𝑛𝑡·𝑐
,

as a tedious and boring but straightforward calculation shows. Picking 𝑡 to be sufficiently large, we have
that the probability that the 𝑖th treap is too deep is smaller than 1/𝑛 𝑓 +𝑐. By the union bound, since
there are 𝑛𝑐 treaps in this sequence of operations, it follows that the probability of any of these treaps
to be too deep is at most 1/𝑛 𝑓 , as desired. ■

11.3. Extra: Sorting Nuts and Bolts
Problem 11.3.1 (Sorting Nuts and Bolts). You are given a set of 𝑛 nuts and 𝑛 bolts. Every nut have a
matching bolt, and all the 𝑛 pairs of nuts and bolts have different sizes. Unfortunately, you get the nuts
and bolts separated from each other and you have to match the nuts to the bolts. Furthermore, given
a nut and a bolt, all you can do is to try and match one bolt against a nut (i.e., you can not compare
two nuts to each other, or two bolts to each other).

4

When comparing a nut to a bolt, either they match, or one is smaller than other (and you known
the relationship after the comparison).

How to match the 𝑛 nuts to the 𝑛 bolts quickly? Namely, while performing a small number of
comparisons.

MatchNuts&Bolts (𝑁: nuts, 𝐵: bolts)
Pick a random nut 𝑛𝑝𝑖𝑣𝑜𝑡 from 𝑁

Find its matching bolt 𝑏𝑝𝑖𝑣𝑜𝑡 in 𝐵

𝐵𝐿 ← All bolts in 𝐵 smaller than 𝑛𝑝𝑖𝑣𝑜𝑡
𝑁𝐿 ← All nuts in 𝑁 smaller than 𝑏𝑝𝑖𝑣𝑜𝑡

𝐵𝑅 ← All bolts in 𝐵 larger than 𝑛𝑝𝑖𝑣𝑜𝑡
𝑁𝑅 ← All nuts in 𝑁 larger than 𝑏𝑝𝑖𝑣𝑜𝑡

MatchNuts&Bolts(𝑁𝑅,𝐵𝑅)
MatchNuts&Bolts(𝑁𝐿,𝐵𝐿)

The naive algorithm is of course to compare each nut to
each bolt, and match them together. This would require
a quadratic number of comparisons. Another option is
to sort the nuts by size, and the bolts by size and then
“merge” the two ordered sets, matching them by size. The
only problem is that we can not sorts only the nuts, or only
the bolts, since we can not compare them to each other.
Indeed, we sort the two sets simultaneously, by simulating
QuickSort. The resulting algorithm is depicted on the
right.

11.3.1. Running time analysis
Definition 11.3.2. Let RT denote the random variable which is the running time of the algorithm. Note,
that the running time is a random variable as it might be different between different executions on the
same input.

Definition 11.3.3. For a randomized algorithm, we can speak about the expected running time. Namely,
we are interested in bounding the quantity E[RT] for the worst input.

Definition 11.3.4. The expected running-time of a randomized algorithm for input of size 𝑛 is

𝑇 (𝑛) = max
𝑈 is an input of size 𝑛

E[RT(𝑈)] ,

where RT(𝑈) is the running time of the algorithm for the input 𝑈.

Definition 11.3.5. The rank of an element 𝑥 in a set 𝑆, denoted by rank(𝑥), is the number of elements
in 𝑆 of size smaller or equal to 𝑥. Namely, it is the location of 𝑥 in the sorted list of the elements of 𝑆.

Theorem 11.3.6. The expected running time of MatchNuts&Bolts (and thus also of QuickSort)
is 𝑇 (𝑛) = 𝑂 (𝑛 log 𝑛), where 𝑛 is the number of nuts and bolts. The worst case running time of this
algorithm is 𝑂 (𝑛2).

Proof: Clearly, we have that P
[
rank(𝑛𝑝𝑖𝑣𝑜𝑡) = 𝑘

]
= 1

𝑛
. Furthermore, if the rank of the pivot is 𝑘 then

𝑇 (𝑛) = E
𝑘=rank(𝑛𝑝𝑖𝑣𝑜𝑡)

[𝑂 (𝑛) + 𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘)] = 𝑂 (𝑛) + E
𝑘
[𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘)]

= 𝑂 (𝑛) +
𝑛∑︁

𝑘=1
P[𝑅𝑎𝑛𝑘 (𝑃𝑖𝑣𝑜𝑡) = 𝑘] ∗ (𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘))

= 𝑂 (𝑛) +
𝑛∑︁

𝑘=1

1
𝑛
· (𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘)),

by the definition of expectation. It is not easy to verify that the solution to the recurrence 𝑇 (𝑛) =
𝑂 (𝑛) +∑𝑛

𝑘=1
1
𝑛
· (𝑇 (𝑘 − 1) + 𝑇 (𝑛 − 𝑘)) is 𝑂 (𝑛 log 𝑛). ■

5

11.4. Bibliographical Notes
Treaps were invented by Siedel and Aragon [SA96]. Experimental evidence suggests that Treaps performs
reasonably well in practice, despite their simplicity, see for example the comparison carried out by Cho
and Sahni [CS00]. Implementations of treaps are readily available. An old implementation I wrote in C
is available here: http://valis.cs.uiuc.edu/blog/?p=6060.

11.5. From previous lectures
Theorem 11.5.1 (Markov’s Inequality). Let 𝑌 be a random variable assuming only non-negative
values. Then for all 𝑡 > 0, we have

P
[
𝑌 ≥ 𝑡

]
≤
E
[
𝑌
]

𝑡
.

References
[CS00] S. Cho and S. Sahni. A new weight balanced binary search tree. Int. J. Found. Comput. Sci.,

11(3): 485–513, 2000.
[SA96] R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16: 464–497, 1996.

6

http://valis.cs.uiuc.edu/blog/?p=6060

	Quick Sort with High Probability
	QuickSort runs in O(n logn) time with high probability
	Treaps
	Construction
	Operations
	Summery

	Extra: Sorting Nuts and Bolts
	Running time analysis

	Bibliographical Notes
	From previous lectures

