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Coupon’s Collector Problems II
By Sariel Har-Peled, April 26, 2022①

There is not much talking now. A silence falls upon them all. This is no time to talk of hedges and fields, or the
beauties of any country. Sadness and fear and hate, how they well up in the heart and mind, whenever one opens
the pages of these messengers of doom. Cry for the broken tribe, for the law and custom that is gone. Aye, and cry
aloud for the man who is dead, for the woman and children bereaved. Cry, the beloved country, these things are
not yet at an end. The sun pours down on the earth, on the lovely land that man cannot enjoy. He knows only the
fear of his heart.

Alan Paton, Cry, the beloved country

9.1. The Coupon Collector’s Problem Revisited

9.1.1. Some technical lemmas

Unfortunately, in Randomized Algorithms, many of the calculations are awful②. As such, one has to be
dexterous in approximating such calculations. We present quickly a few of these estimates.

Lemma 9.1.1. For 𝑥 ≥ 0, we have 1−𝑥 ≤ exp(−𝑥) and 1+𝑥 ≤ 𝑒𝑥. Namely, for all 𝑥, we have 1+𝑥 ≤ 𝑒𝑥.

Proof: For 𝑥 = 0 we have equality. Next, computing the derivative on both sides, we have that we need
to prove that −1 ≤ − exp(−𝑥) ⇐⇒ 1 ≥ exp(−𝑥) ⇐⇒ 𝑒𝑥 ≥ 1, which clearly holds for 𝑥 ≥ 0.

A similar argument works for the second inequality. ■

Lemma 9.1.2. For any 𝑦 ≥ 1, and |𝑥 | ≤ 1, we have
(
1 − 𝑥2) 𝑦 ≥ 1 − 𝑦𝑥2.

Proof: Observe that the inequality holds with equality for 𝑥 = 0. So compute the derivative of 𝑥 of both
sides of the inequality. We need to prove that

𝑦(−2𝑥)
(
1 − 𝑥2) 𝑦−1 ≥ −2𝑦𝑥 ⇐⇒

(
1 − 𝑥2) 𝑦−1 ≤ 1,

which holds since 1 − 𝑥2 ≤ 1, and 𝑦 − 1 ≥ 0. ■

Lemma 9.1.3. For any 𝑦 ≥ 1, and |𝑥 | ≤ 1, we have
(
1 − 𝑥2𝑦

)
𝑒𝑥𝑦 ≤ (1 + 𝑥)𝑦 ≤ 𝑒𝑥𝑦.

Proof: The right side of the inequality is standard by now. As for the left side. Observe that

(1 − 𝑥2)𝑒𝑥 ≤ 1 + 𝑥,

since dividing both sides by (1+𝑥)𝑒𝑥, we get 1−𝑥 ≤ 𝑒−𝑥, which we know holds for any 𝑥. By Lemma 9.1.2,
we have (

1 − 𝑥2𝑦
)
𝑒𝑥𝑦 ≤

(
1 − 𝑥2) 𝑦𝑒𝑥𝑦 = ( (

1 − 𝑥2)𝑒𝑥 ) 𝑦 ≤ (
1 + 𝑥

) 𝑦
≤ 𝑒𝑥𝑦 . ■

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

②"In space travel," repeated Slartibartfast, "all the numbers are awful." – Life, the Universe, and Everything Else,
Douglas Adams.

1

http://creativecommons.org/licenses/by-nc/3.0/


9.1.2. Back to the coupon collector’s problem
There are 𝑛 types of coupons, and at each trial one coupon is picked in random. How many trials one
has to perform before picking all coupons? Let 𝑚 be the number of trials performed. We would like to
bound the probability that 𝑚 exceeds a certain number, and we still did not pick all coupons.

In the previous lecture, we showed that

P

[
# of trials ≥ 𝑛 log 𝑛 + 𝑛 + 𝑡 · 𝑛 𝜋

√
6

]
≤ 1

𝑡2
,

for any 𝑡.
A stronger bound, follows from the following observation. Let 𝑍𝑟

𝑖
denote the event that the 𝑖th

coupon was not picked in the first 𝑟 trials. Clearly,

P
[
𝑍𝑟
𝑖

]
=

(
1 − 1

𝑛

)𝑟
≤ exp

(
− 𝑟

𝑛

)
.

Thus, for 𝑟 = 𝛽𝑛 log 𝑛, we have P
[
𝑍𝑟
𝑖

]
≤ exp

(
− 𝛽𝑛 log 𝑛

𝑛

)
= 𝑛−𝛽. Thus,

P
[
𝑋 > 𝛽𝑛 log 𝑛

]
≤ P

[⋃
𝑖

𝑍
𝛽𝑛 log 𝑛

𝑖

]
≤ 𝑛 · P

[
𝑍1

]
≤ 𝑛−𝛽+1.

Lemma 9.1.4. Let the random variable 𝑋 denote the number of trials for collecting each of the 𝑛 types
of coupons. Then, we have P

[
𝑋 > 𝑛 ln 𝑛 + 𝑐𝑛

]
≤ 𝑒−𝑐.

Proof: The probability we fail to pick the first type of coupon is 𝛼 = (1 − 1/𝑛)𝑚 ≤ exp
(
−𝑛 ln 𝑛+𝑐𝑛

𝑛

)
=

exp(−𝑐)/𝑛. As such, using the union bound, the probability we fail to pick all 𝑛 types of coupons is
bounded by 𝑛𝛼 = exp(−𝑐), as claimed. ■

In the following, we show a slightly stronger bound on the probability, which is 1 − exp(−𝑒−𝑐). To
see that it is indeed stronger, observe that 𝑒−𝑐 ≥ 1 − exp(−𝑒−𝑐).

9.1.3. An asymptotically tight bound
Lemma 9.1.5. Let 𝑐 > 0 be a constant, 𝑚 = 𝑛 ln 𝑛 + 𝑐𝑛 for a positive integer 𝑛. Then for any constant

𝑘, we have lim
𝑛→∞

(
𝑛

𝑘

) (
1 − 𝑘

𝑛

)𝑚
=

exp(−𝑐𝑘)
𝑘! .

Proof: By Lemma 9.1.3, we have(
1 − 𝑘2𝑚

𝑛2

)
exp

(
− 𝑘𝑚

𝑛

)
≤

(
1 − 𝑘

𝑛

)𝑚
≤ exp

(
− 𝑘𝑚

𝑛

)
.

Observe also that lim
𝑛→∞

(
1 − 𝑘2𝑚

𝑛2

)
= 1, and exp

(
− 𝑘𝑚

𝑛

)
= 𝑛−𝑘 exp(−𝑐𝑘). Also,

lim
𝑛→∞

(
𝑛

𝑘

)
𝑘!
𝑛𝑘

= lim
𝑛→∞

𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1)
𝑛𝑘

= 1.

Thus, lim
𝑛→∞

(
𝑛

𝑘

) (
1 − 𝑘

𝑛

)𝑚
= lim

𝑛→∞
𝑛𝑘

𝑘! exp
(
− 𝑘𝑚

𝑛

)
= lim

𝑛→∞
𝑛𝑘

𝑘! 𝑛
−𝑘 exp(−𝑐𝑘) = exp(−𝑐𝑘)

𝑘! . ■
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Theorem 9.1.6. Let the random variable 𝑋 denote the number of trials for collecting each of the 𝑛 types
of coupons. Then, for any constant 𝑐 ∈ R, and 𝑚 = 𝑛 ln 𝑛+𝑐𝑛, we have lim𝑛→∞ P

[
𝑋 > 𝑚

]
= 1−exp

(
−𝑒−𝑐

)
.

Before dwelling into the proof, observe that 1−exp(−𝑒−𝑐) ≈ 1− (1 − 𝑒−𝑐) = 𝑒−𝑐. Namely, in the limit,
the upper bound of Lemma 9.1.4 is tight.

Proof: We have P
[
𝑋 > 𝑚

]
= P

[
∪𝑖𝑍

𝑚
𝑖

]
. By inclusion-exclusion, we have

P
[⋃

𝑖

𝑍𝑚
𝑖

]
=

𝑛∑︁
𝑖=1

(−1)𝑖+1𝑃𝑛
𝑖 ,

where 𝑃𝑛
𝑗 =

∑︁
1≤𝑖1<𝑖2<...<𝑖 𝑗≤𝑛

P
[
∩ 𝑗

𝑣=1𝑍
𝑚
𝑖𝑣

]
. Let 𝑆𝑛

𝑘
=
∑𝑘

𝑖=1(−1)𝑖+1𝑃𝑛
𝑖
. We know that 𝑆𝑛2𝑘 ≤ P

[⋃
𝑖 𝑍

𝑚
𝑖

]
≤ 𝑆𝑛2𝑘+1.

By symmetry,

𝑃𝑛
𝑘 =

(
𝑛

𝑘

)
P

[
𝑘⋂

𝑣=1
𝑍𝑚
𝑣

]
=

(
𝑛

𝑘

) (
1 − 𝑘

𝑛

)𝑚
,

Thus, 𝑃𝑘 = lim𝑛→∞ 𝑃𝑛
𝑘
= exp(−𝑐𝑘)/𝑘!, by Lemma 9.1.5. Thus, we have

𝑆𝑘 =

𝑘∑︁
𝑗=1

(−1) 𝑗+1𝑃 𝑗 =

𝑘∑︁
𝑗=1

(−1) 𝑗+1 · exp(−𝑐 𝑗)
𝑗 ! .

Observe that lim𝑘→∞ 𝑆𝑘 = 1 − exp(−𝑒−𝑐) by the Taylor expansion of exp(𝑥) (for 𝑥 = −𝑒−𝑐). Indeed,

exp(𝑥) =
∞∑︁
𝑗=0

𝑥 𝑗

𝑗 ! =

∞∑︁
𝑗=0

(−𝑒−𝑐) 𝑗

𝑗 ! = 1 +
∞∑︁
𝑗=1

(−1) 𝑗exp(−𝑐 𝑗)
𝑗 ! .

Clearly, lim𝑛→∞ 𝑆𝑛
𝑘
= 𝑆𝑘 and lim𝑘→∞ 𝑆𝑘 = 1 − exp(−𝑒−𝑐). Thus, (using fluffy math), we have

lim
𝑛→∞
P
[
𝑋 > 𝑚

]
= lim

𝑛→∞
P
[
∪𝑛
𝑖=1𝑍

𝑚
𝑖

]
= lim

𝑛→∞
lim
𝑘→∞

𝑆𝑛𝑘 = lim
𝑘→∞

𝑆𝑘 = 1 − exp(−𝑒−𝑐). ■

9.2. Bibliographical notes
Are presentation follows, as usual, Motwani and Raghavan [MR95].
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