
Chapter 8

The Birthday Paradox, Occupancy and the
Coupon Collector Problem
By Sariel Har-Peled, April 26, 2022① I built on the sand

And it tumbled down,
I built on a rock
And it tumbled down.
Now when I build, I shall begin
With the smoke from the chimney

Leopold Staff, Foundations

8.1. Some needed math
Lemma 8.1.1. For any positive integer 𝑛, we have:

(i) 1 + 𝑥 ≤ 𝑒𝑥 and 1 − 𝑥 ≤ 𝑒−𝑥, for all 𝑥.
(ii) (1 + 1/𝑛)𝑛 ≤ 𝑒 ≤

(
1 + 1/𝑛

)𝑛+1.
(iii) (1 − 1/𝑛)𝑛 ≤ 1

𝑒
≤ (1 − 1/𝑛)𝑛−1.

(iv) 𝑛! ≥ (𝑛/𝑒)𝑛 ≤ (𝑛 + 1)𝑛+1/𝑒𝑛.

(v) For any 𝑘 ≤ 𝑛, we have:
(𝑛
𝑘

) 𝑘
≤

(
𝑛

𝑘

)
≤

(𝑛𝑒
𝑘

) 𝑘
.

Proof: (i) Let ℎ(𝑥) = 𝑒𝑥 − 1 − 𝑥. Observe that ℎ′(𝑥) = 𝑒𝑥 − 1, and ℎ′′(𝑥) = 𝑒𝑥 > 0, for all 𝑥. That is ℎ(𝑥)
is a convex function. It achieves its minimum at ℎ′(𝑥) = 0 =⇒ 𝑒𝑥 = 1, which is true for 𝑥 = 0. For
𝑥 = 0, we have that ℎ(0) = 𝑒0 − 1 − 0 = 0. That is, ℎ(𝑥) ≥ 0 for all 𝑥, which implies that 𝑒𝑥 ≥ 1 + 𝑥, see
Figure 8.1.

(ii, iii) Indeed, 1 + 1/𝑛 ≤ exp(1/𝑛) and (1 − 1/𝑛)𝑛 ≤ exp(−1/𝑛), by (i). As such

(1 + 1/𝑛)𝑛 ≤ exp(𝑛(1/𝑛)) = 𝑒 and (1 − 1/𝑛)𝑛 ≤ exp(𝑛(−1/𝑛)) = 1
𝑒
,

which implies the left sides of (ii) and (iii). These are equivalent to

1
𝑒
≤

( 𝑛

𝑛 + 1

)𝑛
=

(
1 − 1

𝑛 + 1

)𝑛
and 𝑒 ≤

(
1 + 1

𝑛 − 1

)𝑛
,

which are the right side of (iii) [by replacing 𝑛 + 1 by 𝑛], and the right side of (ii) [by replacing 𝑛 by
𝑛 + 1].

(iv) Indeed,

𝑛𝑛

𝑛! ≤
∞∑︁
𝑖=0

𝑛𝑖

𝑖! = 𝑒𝑛,

by the Taylor expansion of 𝑒𝑥 =
∑∞

𝑖=0
𝑥𝑖

𝑖! . This implies that (𝑛/𝑒)𝑛 ≤ 𝑛!, as required.
①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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Figure 8.1

(v) For any 𝑘 ≤ 𝑛, we have 𝑛
𝑘
≤ 𝑛−1

𝑘−1 since 𝑘𝑛 − 𝑛 = 𝑛(𝑘 − 1) ≤ 𝑘 (𝑛 − 1) = 𝑘𝑛 − 𝑘. As such, 𝑛
𝑘
≤ 𝑛−𝑖

𝑘−𝑖 ,
for 1 ≤ 𝑖 ≤ 𝑘 − 1. As such,(𝑛

𝑘

) 𝑘
≤ 𝑛

𝑘
· 𝑛 − 1
𝑘 − 1 · · · 𝑛 − 𝑖

𝑘 − 𝑖
· · · 𝑛 − 𝑘 + 1

1 =
𝑛!

(𝑛 − 𝑘)!𝑘! =
(
𝑛

𝑘

)
.

As for the other direction, we have
(
𝑛

𝑘

)
≤ 𝑛𝑘

𝑘! ≤ 𝑛𝑘

(𝑘/𝑒)𝑘
=

(𝑛𝑒
𝑘

) 𝑘
, by (iii). ■

8.2. The birthday paradox
Consider a group of 𝑛 people, and assume their birthdays are uniformly distributed no the dates in the
year (this assumption is not quite true, but close enough). We are interested in the question of how
large 𝑛 has to be till we get a collision – that is, two people with the same birthday. Intuitively, since
the year has 𝑚 = 364 days, the probability of person to land on a specific birthday is 𝑝 = 1/364. So the
natural guess would be that 𝑛 needs to be approximately 364. Surprisingly, the answer is much smaller.

Lemma 8.2.1. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 variables picked uniformly, randomly and independently from J𝑚K =
{1, . . . , 𝑚}. Then, the expected number of collisions is

(𝑛
2
)
/𝑚.

Proof: Let 𝑌𝑖, 𝑗 = 1 ⇐⇒ 𝑋𝑖 = 𝑋 𝑗 . We have that E
[
𝑌𝑖, 𝑗

]
= P

[
𝑌𝑖, 𝑗 = 1

]
= 1/𝑚. Thus, the expected number

of collisions is

E

[
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑌𝑖, 𝑗

]
=

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1
E
[
𝑌𝑖, 𝑗

]
=

(
𝑛

2

)
1
𝑚
. ■
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As such, for birthdays, for 𝑚 = 364, and 𝑛 = 28, we have that the expected number of collisions is(
28
2

)
1

364 =
378
364 > 1.

This seems weird, but is it the truth?

Lemma 8.2.2. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 variables picked uniformly, randomly and independently from J𝑚K =
{1, . . . , 𝑚}. Then, the probability that no collision happened is at most exp

(
−
(𝑛
2
)
/𝑚

)
.

Proof: Let E𝑖 be the event that 𝑋𝑖 is distinct from all the values in 𝑋1, . . . , 𝑋𝑖−1. Let B𝑖 = ∩𝑖
𝑘=1E𝑘 =

B𝑖−1 ∩ E𝑖 be the event that all of 𝑋1, . . . , 𝑋𝑖 are distinct. Clearly, we have

P[E𝑖 | B𝑖−1] = P[E𝑖 | E1 ∩ · · · ∩ E𝑖−1] =
𝑚 − (𝑖 − 1)

𝑚
= 1 − 𝑖 − 1

𝑚
≤ exp

(
−𝑖 − 1

𝑚

)
.

Observe that

P[B𝑖] = P[B𝑖−1]
P[E𝑖 ∩B𝑖−1]
P[B𝑖−1]

= P[B𝑖−1] P[E𝑖 | B𝑖−1] ≤ exp
(
−𝑖 − 1

𝑚

)
P[B𝑖−1] ≤

𝑖∏
𝑘=1

exp
(
− 𝑘 − 1

𝑚

)
.

= exp
(
−

𝑖∑︁
𝑘=1

𝑘 − 1
𝑚

)
= exp

(
−𝑖(𝑖 − 1)

2
1
𝑚

)
= exp

(
−
(
𝑖

2

)
/𝑚

)
.

Which implies the desired claim for 𝑖 = 𝑛. ■

8.3. Occupancy Problems
Problem 8.3.1. We are throwing 𝑚 balls into 𝑛 bins randomly (i.e., for every ball we randomly and
uniformly pick a bin from the 𝑛 available bins, and place the ball in the bin picked). There are many
natural questions one can ask here:
(A) What is the maximum number of balls in any bin?
(B) What is the number of bins which are empty?
(C) How many balls do we have to throw, such that all the bins are non-empty, with reasonable

probability?

Theorem 8.3.2. With probability at least 1 − 1/𝑛, no bin has more than 𝑘∗ =

⌈
3 ln 𝑛

ln ln 𝑛

⌉
balls in it.

Proof: Let 𝑋𝑖 be the number of balls in the 𝑖th bins, when we throw 𝑛 balls into 𝑛 bins (i.e., 𝑚 = 𝑛).
Clearly,

E[𝑋𝑖] =
𝑛∑︁
𝑗=1
P
[
The 𝑗th ball fall in 𝑖th bin

]
= 𝑛 · 1

𝑛
= 1,

by linearity of expectation. The probability that the first bin has exactly 𝑖 balls is(
𝑛

𝑖

) (
1
𝑛

) 𝑖 (
1 − 1

𝑛

)𝑛−𝑖
≤

(
𝑛

𝑖

) (
1
𝑛

) 𝑖
≤

(𝑛𝑒
𝑖

) 𝑖 (1
𝑛

) 𝑖
=

( 𝑒
𝑖

) 𝑖
3



This follows by Lemma 8.1.1 (iv).
Let 𝐶 𝑗 (𝑘) be the event that the 𝑗th bin has 𝑘 or more balls in it. Then,

P
[
𝐶1(𝑘)

]
≤

𝑛∑︁
𝑖=𝑘

( 𝑒
𝑖

) 𝑖
≤

( 𝑒
𝑘

) 𝑘 (
1 + 𝑒

𝑘
+ 𝑒2

𝑘2 + . . .

)
=

( 𝑒
𝑘

) 𝑘 1
1 − 𝑒/𝑘 .

For 𝑘∗ = 𝑐 ln 𝑛/ln ln 𝑛, we have

P
[
𝐶1(𝑘∗)

]
≤

( 𝑒

𝑘∗

) 𝑘∗ 1
1 − 𝑒/𝑘∗ ≤ 2 exp

(
𝑘∗(1 − ln 𝑘∗)

)
≤ 2 exp

(
− 𝑘∗ ln 𝑘∗

2

)
≤ 2 exp

(
− 𝑐 ln 𝑛

2 ln ln 𝑛
ln 𝑐 ln 𝑛

ln ln 𝑛︸    ︷︷    ︸
≈ln ln 𝑛

)
≤ 2 exp

(
−𝑐 ln 𝑛

4

)
≤ 1

𝑛2 ,

for 𝑛 and 𝑐 sufficiently large.

Let us redo this calculation more carefully (yuk!). For 𝑘∗ = ⌈(3 ln 𝑛)/ln ln 𝑛⌉, we have

P
[
𝐶1(𝑘∗)

]
≤

( 𝑒

𝑘∗

) 𝑘∗ 1
1 − 𝑒/𝑘∗ ≤ 2

(
𝑒

(3 ln 𝑛)/ln ln 𝑛

) 𝑘∗
= 2 exp

(
1 − ln 3︸  ︷︷  ︸

<0

− ln ln 𝑛 + ln ln ln 𝑛

) 𝑘∗
≤ 2exp

(
(− ln ln 𝑛 + ln ln ln 𝑛)𝑘∗

)
≤ 2 exp

(
−3 ln 𝑛 + 6 ln 𝑛

ln ln ln 𝑛

ln ln 𝑛

)
≤ 2 exp(−2.5 ln 𝑛) ≤ 1

𝑛2 ,

for 𝑛 large enough. We conclude, that since there are 𝑛 bins and they have identical distributions that

P[any bin contains more than 𝑘∗ balls] ≤
𝑛∑︁
𝑖=1

𝐶𝑖 (𝑘∗) ≤
1
𝑛
. ■

Exercise 8.3.3. Show that when throwing 𝑚 = 𝑛 ln 𝑛 balls into 𝑛 bins, with probability 1 − 𝑜(1), every
bin has 𝑂 (log 𝑛) balls.

8.3.1. The Probability of all bins to have exactly one ball
Next, we are interested in the probability that all 𝑚 balls fall in distinct bins. Let 𝑋𝑖 be the event that
the 𝑖th ball fell in a distinct bin from the first 𝑖 − 1 balls. We have:

P
[
∩𝑚
𝑖=2𝑋𝑖

]
= P[𝑋2]

𝑚∏
𝑖=3
P
[
𝑋𝑖

��� ∩𝑖−1
𝑗=2𝑋 𝑗

]
≤

𝑚∏
𝑖=2

(
𝑛 − 𝑖 + 1

𝑛

)
≤

𝑚∏
𝑖=2

(
1 − 𝑖 − 1

𝑛

)
≤

𝑚∏
𝑖=2

𝑒−(𝑖−1)/𝑛 ≤ exp
(
−𝑚(𝑚 − 1)

2𝑛

)
,

thus for 𝑚 = ⌈
√

2𝑛 + 1⌉, the probability that all the 𝑚 balls fall in different bins is smaller than 1/𝑒.
This is sometime referred to as the birthday paradox. You have 𝑚 = 30 people in the room, and

you ask them for the date (day and month) of their birthday (i.e., 𝑛 = 365). The above shows that the
probability of all birthdays to be distinct is exp(−30 · 29/730) ≤ 1/𝑒. Namely, there is more than 50%
chance for a birthday collision, a simple but counter-intuitive phenomena.
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8.4. The Coupon Collector’s Problem
There are 𝑛 types of coupons, and at each trial one coupon is picked in random. How many trials one
has to perform before picking all coupons? Let 𝑚 be the number of trials performed. We would like to
bound the probability that 𝑚 exceeds a certain number, and we still did not pick all coupons.

Let 𝐶𝑖 ∈
{
1, . . . , 𝑛

}
be the coupon picked in the 𝑖th trial. The 𝑗th trial is a success, if 𝐶 𝑗 was not

picked before in the first 𝑗 − 1 trials. Let 𝑋𝑖 denote the number of trials from the 𝑖th success, till after
the (𝑖 + 1)th success. Clearly, the number of trials performed is

𝑋 =

𝑛−1∑︁
𝑖=0

𝑋𝑖 .

Lemma 8.4.1. Let 𝑋 be the number of rounds till we collection all 𝑛 coupons. Then, V[𝑋] ≈
(
𝜋2/6

)
𝑛2

and its standard deviation is 𝜎𝑋 ≈ (𝜋/
√

6)𝑛.

Proof: The probability of 𝑋𝑖 to succeed in a trial is 𝑝𝑖 = (𝑛 − 𝑖)/𝑛, and 𝑋𝑖 has the geometric distribution
with probability 𝑝𝑖. As such E[𝑋𝑖] = 1/𝑝𝑖, and V[𝑋𝑖] = 𝑞/𝑝2 = (1 − 𝑝𝑖)/𝑝2

𝑖
.

Thus,

E[𝑋] =
𝑛−1∑︁
𝑖=0
E[𝑋𝑖] =

𝑛−1∑︁
𝑖=0

𝑛

𝑛 − 𝑖
= 𝑛𝐻𝑛 = 𝑛(ln 𝑛 + Θ(1)) = 𝑛 ln 𝑛 +𝑂 (𝑛),

where 𝐻𝑛 =
∑𝑛

𝑖=1 1/𝑖 is the 𝑛th Harmonic number.
As for variance, using the independence of 𝑋0, . . . , 𝑋𝑛−1, we have

V[𝑋] =
𝑛−1∑︁
𝑖=0
V[𝑋𝑖] =

𝑛−1∑︁
𝑖=0

1 − 𝑝𝑖

𝑝2
𝑖

=

𝑛−1∑︁
𝑖=0

1 − (𝑛 − 𝑖)/𝑛(
𝑛−𝑖
𝑛

)2 =

𝑛−1∑︁
𝑖=0

𝑖/𝑛(
𝑛−𝑖
𝑛

)2 =

𝑛−1∑︁
𝑖=0

𝑖

𝑛

( 𝑛

𝑛 − 𝑖

)2

= 𝑛

𝑛−1∑︁
𝑖=0

𝑖

(𝑛 − 𝑖)2 = 𝑛

𝑛∑︁
𝑖=1

𝑛 − 𝑖

𝑖2
= 𝑛

(
𝑛∑︁
𝑖=1

𝑛

𝑖2
−

𝑛∑︁
𝑖=1

1
𝑖

)
= 𝑛2

𝑛∑︁
𝑖=1

1
𝑖2

− 𝑛𝐻𝑛 ≈
𝜋2

6 𝑛2,

since lim𝑛→∞
∑𝑛

𝑖=1
1
𝑖2
= 𝜋2/6, we have lim

𝑛→∞
V[𝑋]
𝑛2 =

𝜋2

6 . ■

This implies a weak bound on the concentration of 𝑋, using Chebyshev inequality, we have

P
[
𝑋 ≥ 𝑛 ln 𝑛 + 𝑛 + 𝑡 · 𝑛 𝜋

√
6

]
≤ P

[��𝑋 − E[𝑋]
�� ≥ 𝑡𝜎𝑋

]
≤ 1

𝑡2
,

Note, that this is somewhat approximate, and hold for 𝑛 sufficiently large.

8.5. Notes
The material in this note covers parts of [MR95, sections 3.1, 3.2, 3.6]
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