
Chapter 7

Closest Pair
By Sariel Har-Peled, April 26, 2022① The events of September 8 prompted Foch to

draft the later legendary signal: “My centre is
giving way, my right is in retreat, situation
excellent. I attack.” It was probably never sent.

John Keegan, The first world war

7.1. How many times can a minimum change?
Let 𝑎1, . . . , 𝑎𝑛 be a set of 𝑛 numbers, and let us randomly permute them into the sequence 𝑏1, . . . , 𝑏𝑛.
Next, let 𝑐𝑖 = min𝑖

𝑘=1 𝑏𝑖, and let 𝑋 be the random variable which is the number of distinct values that
appears in the sequence 𝑐1, . . . , 𝑐𝑛. What is the expectation of 𝑋?

Lemma 7.1.1. In expectation, the number of times the minimum of a prefix of 𝑛 randomly permuted
numbers change, is 𝑂 (log 𝑛). That is E[𝑋] = 𝑂 (log 𝑛).

Proof: Consider the indicator variable 𝑋𝑖, such that 𝑋𝑖 = 1 if 𝑐𝑖 ≠ 𝑐𝑖−1. The probability for that is ≤ 1/𝑖,
since this is the probability that the smallest number of 𝑏1, . . . , 𝑏𝑖 is 𝑏𝑖. (Why is this probability not

simply equal to 1/𝑖?) As such, we have 𝑋 =
∑

𝑖 𝑋𝑖, and E[𝑋] =
∑︁
𝑖

E[𝑋𝑖] =
𝑛∑︁
𝑖=1

1
𝑖
= 𝑂 (log 𝑛). ■

7.2. Closest Pair
Assumption 7.2.1. Throughout the discourse, we are going to assume that every hashing operation takes
(worst case) constant time. This is quite a reasonable assumption when true randomness is available
(using for example perfect hashing [CLRS01]). We will revisit this issue later in the course.

For a real positive number 𝑟 and a point p = (𝑥, 𝑦) in R2, define

G𝑟 (p) :=
(⌊𝑥

𝑟

⌋
𝑟 ,

⌊ 𝑦
𝑟

⌋
𝑟

)
∈ R2.

The number 𝑟 is the width of the grid G𝑟 . Observe that G𝑟 partitions the plane into square regions,
which are grid cells. Formally, for any 𝑖, 𝑗 ∈ Z, the intersection of the half-planes 𝑥 ≥ 𝑟𝑖, 𝑥 < 𝑟 (𝑖 + 1),
𝑦 ≥ 𝑟 𝑗 and 𝑦 < 𝑟 (𝑗 + 1) is a grid cell. Further a grid cluster is a block of 3 × 3 contiguous grid cells.

For a point set P, and a parameter 𝑟, the partition of P into subsets by the grid G𝑟 , is denoted by
G𝑟 (P). More formally, two points p, u ∈ P belong to the same set in the partition G𝑟 (P), if both points
are being mapped to the same grid point or equivalently belong to the same grid cell.

Note, that every grid cell 𝐶 of G𝑟 , has a unique ID; indeed, let p = (𝑥, 𝑦) be any point in 𝐶, and
consider the pair of integer numbers id𝐶 = id(p) = (⌊𝑥/𝑟⌋ , ⌊𝑦/𝑟⌋). Clearly, only points inside 𝐶 are going
to be mapped to id𝐶 . This is useful, as one can store a set P of points inside a grid efficiently. Indeed,
given a point p, compute its id(p). We associate with each unique id a data-structure that stores all the

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

points falling into this grid cell (of course, we do not maintain such data-structures for grid cells which
are empty). For our purposes here, the grid-cell data-structure can simply be a linked list of points. So,
once we computed id(p), we fetch the data structure for this cell, by using hashing. Namely, we store
pointers to all those data-structures in a hash table, where each such data-structure is indexed by its
unique id. Since the ids are integer numbers, we can do the hashing in constant time.

We are interested in solving the following problem.

Problem 7.2.2. Given a set P of 𝑛 points in the plane, find the pair of points closest to each other.
Formally, return the pair of points realizing CP(P) = minp,u∈𝑃 ∥p − u∥.

We need the following easy packing lemma.

Lemma 7.2.3. Let P be a set of points contained inside a square □, such that
the sidelength of □ is 𝛼 = CP(P). Then |P| ≤ 4.

Proof: Partition □ into four equal squares □1, . . . ,□4, and observe that each of
these squares has diameter

√
2𝛼/2 < 𝛼, and as such each can contain at most

one point of P; that is, the disk of radius 𝛼 centered at a point p ∈ P completely
covers the subsquare containing it; see the figure on the right.

Note that the set P can have four points if it is the four corners of □. ■

α
p

Lemma 7.2.4. Given a set P of 𝑛 points in the plane, and a distance 𝑟, one can verify in linear time,
whether or not CP(P) < 𝑟 or CP(P) ≥ 𝑟.

Proof: Indeed, store the points of P in the grid G𝑟 . For every non-empty grid cell, we maintain a linked
list of the points inside it. Thus, adding a new point 𝑝 takes constant time. Indeed, compute id(𝑝),
check if id(𝑝) already appears in the hash table, if not, create a new linked list for the cell with this ID
number, and store 𝑝 in it. If a data-structure already exist for id(𝑝), just add 𝑝 to it.

This takes 𝑂 (𝑛) time. Now, if any grid cell in G𝑟 (P) contains more than four points of P, then, by
Lemma 7.2.3, it must be that the CP(P) < 𝑟.

Thus, when inserting a point 𝑝, the algorithm fetch all the points of P that were already inserted,
for the cell of 𝑝, and the 8 adjacent cells. All those cells must contain at most 4 points of P (otherwise,
we would already have stopped since the CP(·) of the inserted points is smaller than 𝑟). Let 𝑆 be the
set of all those points, and observe that |𝑆 | ≤ 4 · 9 = 𝑂 (1). Thus, we can compute by brute force the
closest point to 𝑝 in 𝑆. This takes 𝑂 (1) time. If d(𝑝, 𝑆) < 𝑟, we stop and return this distance (together
with the two points realizing d(𝑝, 𝑆) as a proof that the distance is too short). Otherwise, we continue
to the next point, where d(𝑝, 𝑆) = min𝑠∈𝑆 ∥𝑝 − 𝑠∥.

Overall, this takes 𝑂 (𝑛) time. As for correctness, first observe that if CP(P) > 𝑟 then the algorithm
would never make a mistake, since it returns ‘CP(P) < 𝑟’ only after finding a pair of points of P with
distance smaller than 𝑟. Thus, assume that 𝑝, 𝑞 are the pair of points of P realizing the closest pair, and
∥𝑝 − 𝑞∥ = CP(P) < 𝑟. Clearly, when the later of them, say 𝑝, is being inserted, the set 𝑆 would contain
𝑞, and as such the algorithm would stop and return “CP(P) < 𝑟”. ■

Lemma 7.2.4 hints to a natural way to compute CP(P). Indeed, permute the points of P, in an
arbitrary fashion, and let 𝑃 = ⟨𝑝1, . . . , 𝑝𝑛⟩. Next, let 𝑟𝑖 = CP

(
{𝑝1, . . . , 𝑝𝑖}

)
. We can check if 𝑟𝑖+1 < 𝑟𝑖,

by just calling the algorithm for Lemma 7.2.4 on P𝑖+1 and 𝑟𝑖. If 𝑟𝑖+1 < 𝑟𝑖, the algorithm of Lemma 7.2.4,
would give us back the distance 𝑟𝑖+1 (with the other point realizing this distance).

2

So, consider the “good” case where 𝑟𝑖+1 = 𝑟𝑖 = 𝑟𝑖−1. Namely, the length of the shortest pair does not
change. In this case we do not need to rebuild the data structure of Lemma 7.2.4 for each point. We
can just reuse it from the previous iteration. Thus, inserting a single point takes constant time as long
as the closest pair (distance) does not change.

Things become bad, when 𝑟𝑖 < 𝑟𝑖−1. Because then we need to rebuild the grid, and reinsert all the
points of P𝑖 = ⟨𝑝1, . . . , 𝑝𝑖⟩ into the new grid G𝑟𝑖 (P𝑖). This takes 𝑂 (𝑖) time.

So, if the closest pair radius, in the sequence 𝑟1, . . . , 𝑟𝑛, changes only 𝑘 times, then the running time
of the algorithm would be 𝑂 (𝑛𝑘). But we can do even better!
Theorem 7.2.5. Let P be a set of 𝑛 points in the plane. One can compute the closest pair of points of
P in expected linear time.
Proof: Pick a random permutation of the points of P, and let ⟨𝑝1, . . . , 𝑝𝑛⟩ be this permutation. Let
𝑟2 = ∥𝑝1 − 𝑝2∥, and start inserting the points into the data structure of Lemma 7.2.4. In the 𝑖th iteration,
if 𝑟𝑖 = 𝑟𝑖−1, then this insertion takes constant time. If 𝑟𝑖 < 𝑟𝑖−1, then we rebuild the grid and reinsert the
points. Namely, we recompute G𝑟𝑖 (P𝑖).

To analyze the running time of this algorithm, let 𝑋𝑖 be the indicator variable which is 1 if 𝑟𝑖 ≠ 𝑟𝑖−1,
and 0 otherwise. Clearly, the running time is proportional to

𝑅 = 1 +
𝑛∑︁
𝑖=2

(1 + 𝑋𝑖 · 𝑖).

Thus, the expected running time is

E
[
𝑅
]
= 1 + E

[
1 +

∑︁𝑛

𝑖=2
(1 + 𝑋𝑖 · 𝑖)

]
= 𝑛 +

𝑛∑︁
𝑖=2

(
E[𝑋𝑖] · 𝑖

)
= 𝑛 +

𝑛∑︁
𝑖=2

𝑖 · P[𝑋1 = 1],

by linearity of expectation and since for an indicator variable 𝑋𝑖, we have that E[𝑋𝑖] = P[𝑋𝑖 = 1].
Thus, we need to bound P[𝑋𝑖 = 1] = P[𝑟𝑖 < 𝑟𝑖−1]. To bound this quantity, fix the points of P𝑖, and

randomly permute them. A point u ∈ P𝑖 is critical if CP(P𝑖 \ {u}) > CP(P𝑖).
(A) If there are no critical points, then 𝑟𝑖−1 = 𝑟𝑖 and then P[𝑋𝑖 = 1] = 0.
(B) If there is one critical point, than P[𝑋𝑖 = 1] = 1/𝑖, as this is the probability that this critical point

would be the last point in a random permutation of P𝑖.
(C) If there are two critical points, and let p, u be this unique pair of points of P𝑖 realizing CP(P𝑖).

The quantity 𝑟𝑖 is smaller than 𝑟𝑖−1, if either p or u are 𝑝𝑖. But the probability for that is 2/𝑖 (i.e.,
the probability in a random permutation of 𝑖 objects, that one of two marked objects would be
the last element in the permutation).

Observe, that there can not be more than two critical points. Indeed, if p and u are two points that
realize the closest distance, than if there is a third critical point v, then CP(P𝑖 \ {v}) = ∥p − u∥, and v
is not critical.

We conclude that

E
[
𝑅
]
= 𝑛 +

𝑛∑︁
𝑖=2

𝑖 · P[𝑋1 = 1] ≤ 𝑛 +
𝑛∑︁
𝑖=2

𝑖 · 2
𝑖
≤ 3𝑛.

As such, the expected running time of this algorithm is 𝑂 (E[𝑅]) = 𝑂 (𝑛). ■

Theorem 7.2.5 is a surprising result, since it implies that uniqueness (i.e., deciding if 𝑛 real numbers
are all distinct) can be solved in linear time. However, there is a lower bound of Ω(𝑛 log 𝑛) on uniqueness,
using the comparison tree model. This reality dysfunction, can be easily explained, once one realizes
that the model of computation of Theorem 7.2.5 is considerably stronger, using hashing, randomization,
and the floor function.

3

7.3. Bibliographical notes
The closest-pair algorithm follows Golin et al. [GRSS95]. This is in turn a simplification of a result of the
celebrated result of Rabin [Rab76]. Smid provides a survey of such algorithms [Smi00]. A generalization
of the closest pair algorithm was provided by Har-Peled and Raichel [HR15].

Surprisingly, Schönhage [Sch79] showed that assuming that the floor function is allowed, and the
standard arithmetic operation can be done in constant time, then every problem in PSPACE can be
solved in polynomial time. Since PSPACE includes NPC, this is bad news, as it implies that one can
solve NPC problem in polynomial time (finally!). The basic idea is that one can pack huge number of
bits into a single number, and the floor function enables one to read a single bit of this number. As such,
a real RAM model that allows certain operations, and put no limit on the bit complexity of numbers,
and assume that each operation can take constant time, is not a reasonable model of computation (but
we already knew that).

References
[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT

Press / McGraw-Hill, 2001.
[GRSS95] M. Golin, R. Raman, C. Schwarz, and M. Smid. Simple randomized algorithms for closest

pair problems. Nordic J. Comput., 2: 3–27, 1995.
[HR15] S. Har-Peled and B. Raichel. Net and prune: A linear time algorithm for Euclidean distance

problems. J. Assoc. Comput. Mach., 62(6): 44:1–44:35, 2015.
[Rab76] M. O. Rabin. Probabilistic algorithms. Algorithms and Complexity: New Directions and Re-

cent Results. Ed. by J. F. Traub. Orlando, FL, USA: Academic Press, 1976, pp. 21–39.
[Sch79] A. Schönhage. On the power of random access machines. Proc. 6th Int. Colloq. Automata

Lang. Prog. (ICALP), vol. 71. 520–529, 1979.
[Smi00] M. Smid. Closest-point problems in computational geometry. Handbook of Computational

Geometry. Ed. by J.-R. Sack and J. Urrutia. Amsterdam, The Netherlands: Elsevier, 2000,
pp. 877–935.

4

http://theory.lcs.mit.edu/~clr/
http://dx.doi.org/10.1145/2831230
http://dx.doi.org/10.1145/2831230
http://dx.doi.org/10.1007/3-540-09510-1_42

	Closest Pair
	How many times can a minimum change?
	Closest Pair
	Bibliographical notes

