
Chapter 6

Evaluating And/Or Trees
By Sariel Har-Peled, April 26, 2022① That’s all a prophet is good for - to admit

somebody else is an ass or a whore.

The Violent Bear It Away, Flannery
O’connor

6.1. Evaluating an And/Or Tree

Let 𝑇2𝑘 denote a complete binary tree of height 2𝑘 – this tree has 𝑛 = 22𝑘 leaves. The inputs to the tree
are boolean values stored in the leafs, where nodes are AND/OR nodes alternatingly. The task at hand
is to evaluate the tree - where the value of a internal node, is the operation associated with the node,
applied to the values returned from evaluating its two children.

and

or or

0 1 1 1

and (1)

or (1) or (1)

0 1 1 1

Figure 6.1: The tree 𝑇2, inputs in the leafs, and the output.

Defined recursively, 𝑇2 is a tree with the root being an AND gate, and its children are OR gates. This
tree has four inputs. More generally, 𝑇2𝑘 , is 𝑇2, with each leaf replaced by 𝑇2𝑘−2. Let 𝑛 = 22𝑘 .

So the input here is 𝑇2𝑘 , together with 22𝑘 values stored in each leaf of the tree. Consider here the
query model – instead of read the values in the leafs, the algorithm has to explicitly perform a query
to get the value stored in the leaf. The question thus is can we minimize the number of queries the
algorithm needs to perform.

It is straightforward to evaluate such a tree using a recursive algorithm in 𝑂 (𝑛) time. In particular,
it following is not too difficult to show.

Exercise 6.1.1. Show that any deterministic algorithm, in the worst case, requires Ω(𝑛) time to evaluate
a tree 𝑇2𝑘 .

The key observation is that AND (i.e., ∧) gate evaluation can be shortcut – that is, if 𝑥 = 0 then
𝑥 ∧ 𝑦 = 0 independently on what value 𝑦 has. Similarly, an OR (i.e., ∨) gate evaluation can be shortcut
– since if 𝑥 = 1, then 𝑥 ∨ 𝑦 = 1 independently of what 𝑦 value is.

6.1.1. Randomized evaluation algorithm for 𝑇2𝑘

The algorithm is recursive. If the current node 𝑣 is a leaf, the algorithm returns the value stored at
the leaf. Otherwise, the algorithm randomly chooses (with equal probability) one of the children of 𝑣,
and evaluate them recursively. If the returned value, is sufficient to evaluate the gate at 𝑣, then the

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


algorithm shortcut. Otherwise, the algorithm evaluates recursively the other child, computes the value
of the gate and return it.

6.1.2. Analysis
Lemma 6.1.2. The above algorithm when applied to 𝑇2𝑘 , in expectation, reads the value of at most 3𝑘
leaves, and this also bounds its running time.

Proof: The proof is by induction. Let start with 𝑇2. There are two possibilities:
(i) The tree evaluates to 0, then one of the children of the AND gate evaluates zero. But then, with

probability half the algorithm would guess the right child, and evaluate it first. Thus, in this case,
the algorithm would evaluate (in expectation) ≤ (1/2)2 + (1/2)4 = 3 leafs.

(ii) If the output of the tree is 1, then both children of the root must evaluate to 1. Each one of them
is an OR gate. Arguing as above, an OR gate evaluating to one, requires in expectation to read
(1/2)1 + (1/2)2 = 3/2 leafs to be evaluated by the randomized algorithm. It follows, that in this
case, the algorithm would read (in expectation) 2(3/2) = 3. (Note, that this is an upper bound –
if all the four inputs are 1, this algorithm would read only 2 leafs.)

For 𝑘 > 1, consider the four grandchildren of the root 𝑐1, 𝑐2, 𝑐3, 𝑐4. By induction, in expectation,
evaluating each of 𝑐1, . . . , 𝑐4, takes 3𝑘−1 leaf evaluations. Let 𝑋1, . . . , 𝑋4 be indicator variables that are
one if 𝑐𝑖 is evaluated by the recursive algorithm. Let 𝑌𝑖 be the expected number of leafs read when
evaluating 𝑐𝑖 (i.e., E[𝑌𝑖] = 3𝑘). By the above, we have that E[

∑
𝑖 𝑋𝑖] = 3. Observe that 𝑋𝑖 and 𝑌𝑖 are

independent. (Note, that the 𝑋𝑖 are not independent of each other.) We thus have that the expected
number of leafs to be evaluated by the randomized algorithm is

E

[∑︁
𝑖

𝑋𝑖𝑌𝑖

]
=
∑︁
𝑖

E[𝑋𝑖𝑌𝑖] =
∑︁
𝑖

E[𝑋𝑖] E[𝑌𝑖] ≤ 3E[𝑌𝑖] = 3 · 3𝑘−1 = 3𝑘 . ■

Corollary 6.1.3. Given an AND/OR tree with 𝑛 leafs, the above algorithm in expectation evaluates

3𝑘 = 2𝑘 log2 3 =

(
22𝑘 (log2 3)/2

)
= 𝑛(log2 3)/2 = 𝑛0.79248

leafs.

6.2. Bibliographical notes
The AND/OR tree algorithm is from Marc Snir work [Sni85]. One can show a lower bound using Yao’s
min-max principle, which is implied by the minimax principle of zero sum games.

References
[Sni85] M. Snir. Lower bounds on probabilistic linear decision trees. Theor. Comput. Sci., 38: 69–82,

1985.

2

http://dx.doi.org/10.1016/0304-3975(85)90210-5

	Evaluating And/Or Trees
	Evaluating an And/Or Tree
	Randomized evaluation algorithm for T2k
	Analysis

	Bibliographical notes


