
Chapter 5

Verifying Identities, and Some Complexity
By Sariel Har-Peled, April 26, 2022① The events of September 8 prompted Foch to

draft the later legendary signal: “My centre is
giving way, my right is in retreat, situation
excellent. I attack.” It was probably never sent.

John Keegan, The first world war

5.1. Verifying equality

5.1.1. Vectors

You are given two binary vectors v = (𝑣1, . . . , 𝑣𝑛), u = (𝑢1, . . . , 𝑢𝑛) ∈
{
0, 1

}𝑛 and you would like to decide
if they are equal or not. Unfortunately, the only access you have to the two vectors is via a black-box
that enables you to compute the dot-product of two binary vectors over Z2. Formally, given two binary
vectors as above, their dot-product is ⟨v, u⟩ = ∑𝑛

𝑖=1 𝑣𝑖𝑢𝑖 (which is a non-negative integer number). Their
dot product modulo 2, is ⟨v, u⟩ mod 2 (i.e., it is 1 if ⟨v, u⟩ is odd and 0 otherwise).

Naturally, we could the use the black-box to read the vectors (using 2𝑛 calls), but since we are
interested only in deciding if they are equal or not, this should require less calls to the black-box (which
is expensive).

Lemma 5.1.1. Given two binary vectors v, u ∈
{
0, 1

}𝑛, a randomized algorithm can, using two compu-
tations of dot-product modulo 2, decide if v is equal to u or not. The algorithm may return one of the
following two values:

≠: Then v ≠ u.
=: Then the probability that the algorithm made a mistake (i.e., the vectors are different) is at most

1/2.
The running time of the algorithm is 𝑂 (𝑛+𝐵(𝑛)), where 𝐵(𝑛) is the time to compute a single dot-product
of vectors of length 𝑛.

Proof: Pick a random vector r = (𝑟1, . . . , 𝑟𝑛) ∈ {0, 1}𝑛 by picking each coordinate independently with
probability 1/2. Compute the two dot-products ⟨v, r⟩ and ⟨u, r⟩.
(A) If ⟨v, r⟩ ≡ ⟨v, r⟩ mod 2 ⇒ the algorithm returns ‘=’.
(B) If ⟨v, r⟩ . ⟨v, r⟩ mod 2 ⇒ the algorithm returns ‘≠’.

Clearly, if the ‘≠’ is returned then v ≠ u.
So, assume that the algorithm returned ‘=’ but v ≠ u. For the sake of simplicity of exposition,

assume that they differ on the 𝑛th bit: 𝑢𝑛 ≠ 𝑣𝑛. We then have that

𝛼 = ⟨v, r⟩ =

=𝛼′︷ ︸︸ ︷
𝑛−1∑︁
𝑖=1

𝑣𝑖𝑟𝑖 + 𝑣𝑛𝑟𝑛 and 𝛽 = ⟨u, r⟩ =

=𝛽′︷ ︸︸ ︷
𝑛−1∑︁
𝑖=1

𝑢𝑖𝑟𝑖 + 𝑢𝑛𝑟𝑛.

Now, there are two possibilities:
①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

(A) If 𝛼′ . 𝛽′ mod 2, then, with probability half, we have 𝑟𝑖 = 0, and as such 𝛼 . 𝛽 mod 2.
(B) If 𝛼′ ≡ 𝛽′ mod 2, then, with probability half, we have 𝑟𝑖 = 1, and as such 𝛼 . 𝛽 mod 2.

As such, with probability at most half, the algorithm would fail to discover that the two vectors are
different. ■

5.1.1.1. Amplification

Of course, this is not a satisfying algorithm – it returns the correct answer only with probability half if
the vectors are different. So, let us run the algorithm 𝑡 times. Let 𝑇1, . . . , 𝑇𝑡 be the returned values from
all these executions. If any of the 𝑡 executions returns that the vectors are different, then we know that
they are different.

P
[
Algorithm fails

]
= P

[
v ≠ u, but all 𝑡 executions return ‘=’

]
= P

[(
𝑇1 = ‘=’

)
∩
(
𝑇2 = ‘=’

)
∩ · · · ∩

(
𝑇𝑡 = ‘=’

)]
= P

[
𝑇1 = ‘=’

]
P
[
𝑇2 = ‘=’

]
· · · P

[
𝑇𝑡 = ‘=’

]
≤

𝑡∏
𝑖=1

1
2 =

1
2𝑡 .

We thus get the following result.

Lemma 5.1.2. Given two binary vectors v, u ∈
{
0, 1

}𝑛 and a confidence parameter 𝛿 > 0, a random-
ized algorithm can decide if v is equal to u or not. More precisely, the algorithm may return one of the
two following results:

≠: Then v ≠ u.
=: Then, with probability ≥ 1 − 𝛿, we have v ≠ u.

The running time of the algorithm is 𝑂
(
(𝑛 + 𝐵(𝑛)) ln 𝛿−1), where 𝐵(𝑛) is the time to compute a single

dot-product of two vectors of length 𝑛.

Proof: Follows from the above by setting 𝑡 = ⌈lg(1/𝛿)⌉. ■

5.1.2. Matrices
Given three binary matrices B, C, D of size 𝑛 × 𝑛, we are interested in deciding if BC = D. Computing
BC is expensive – the fastest known (theoretical!) algorithm has running time (roughly) 𝑂

(
𝑛2.37). On

the other hand, multiplying such a matrix with a vector r (modulo 2, as usual) takes only 𝑂 (𝑛2) time
(and this algorithm is simple).

Lemma 5.1.3. Given three binary matrices B,C,D ∈
{
0, 1

}𝑛×𝑛 and a confidence parameter 𝛿 > 0, a
randomized algorithm can decide if BC = D or not. More precisely the algorithm can return one of the
following two results:

≠: Then BC ≠ D.
=: Then BC = D with probability ≥ 1 − 𝛿.

The running time of the algorithm is 𝑂
(
𝑛2 log 𝛿−1).

Proof: Compute a random vector r = (𝑟1, . . . , 𝑟𝑛), and compute the quantity x = BCr = B(Cr) in 𝑂 (𝑛2)
time, using the associative property of matrix multiplication. Similarly, compute y = Dr. Now, if x ≠ y
then return ‘=’.

2

Now, we execute this algorithm 𝑡 =
⌈
lg 𝛿−1⌉ times. If all of these independent runs return that the

matrices are equal then return ‘=’.
The algorithm fails only if BC ≠ D, but then, assume the 𝑖th row in two matrices BC and D are

different. The probability that the algorithm would not detect that these rows are different is at most
1/2, by Lemma 5.1.1. As such, the probability that all 𝑡 runs failed is at most 1/2𝑡 ≤ 𝛿, as desired. ■

5.1.3. Checking identity for polynomials
5.1.3.1. The Schwartz–Zippel lemma

Let F be a field (i.e., real numbers). Let F[𝑥1, . . . , 𝑋𝑛] denote the set of polynomials over the 𝑛 variables
𝑥1, . . . , 𝑥𝑛 over F. Such a polynomial is a sum of monomial, where a monomial has the form 𝑐 · 𝑥𝑖11 ·
𝑥
𝑖2
2 · · · 𝑥𝑖𝑛𝑛 , where 𝑐 ∈ F. The degree of this monomial is degree

(
𝑐 · 𝑥𝑖11 · 𝑥𝑖22 · · · 𝑥𝑖𝑛𝑛

)
= 𝑖1 + 𝑖2 + · · · + 𝑖𝑛.

Thus, a polynomial of degree 𝑑 over 𝑛 variables has potentially up to 𝑑𝑛𝑑 monomials (the exact bound
is messier, but an easy lower bound on this quantity is

(𝑛
𝑑

)
).

For a polynomial 𝑓 ∈ F[𝑥1, . . . , 𝑋𝑛], the zero set of 𝑓 , is the set 𝑍 𝑓 = {(𝑥1, . . . , 𝑥𝑛) | 𝑓 (𝑥1, . . . , 𝑥𝑛) = 0}.
Intuitively, the zero set 𝑍 𝑓 = F

𝑛 only if 𝑓 (𝑥1, . . . , 𝑥𝑛) = 0 (and then it is the zero polynomial), but oth-
erwise (i.e., 𝑓 ≠ 0) 𝑍 𝑓 should be much “smaller”.

Specifically, a polynomial in a single variable of degree 𝑑 is either zero everywhere, or has at most
𝑑 roots (i.e., |𝑍 𝑓 | ≤ 𝑑). This is known as the fundamental theorem of algebra②. The picture gets much
messier once one deals with multi-variate polynomials, but fortunately there is a simple and elegant
lemma that bounds the number of zeros if we pick the values from the right set of values.

Lemma 5.1.4 (Schwartz–Zippel). Let 𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛] be a non-zero polynomial of total degree
𝑑 ≥ 0, over a field F. Let 𝑆 ⊆ F be finite. Let r = (𝑟1, . . . , 𝑟𝑛) be randomly and uniformly chosen from
𝑆𝑛. Then

P[𝑓 (r) = 0] ≤ 𝑑

|𝑆 | .

Equivalently, we have |𝑍 𝑓 ∩ 𝑆𝑛 | ≤ 𝑑 |𝑆 |𝑛−1.

Proof: The proof is by induction on 𝑛. For 𝑛 = 1, by the theorem, formally known as the fundamental
theorem of algebra, |𝑍 𝑓 ∩ 𝑆 | ≤ |𝑍 𝑓 | ≤ 𝑑. So assume the theorem holds for 𝑛 − 1. Since 𝑓 is non-zero, it
can be written as a sum of 𝑑 polynomials in 𝑛 − 1 variables. That is, 𝑓 can be written as

𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝑑∑︁
𝑖=0

𝑥𝑖1 𝑓𝑖 (𝑥2, . . . , 𝑥𝑛),

where degree(𝑓𝑖) ≤ 𝑑 − 𝑖. Since 𝑓 is not zero, one of the 𝑓 s must be non-zero, and let 𝑖 the maximum
value such that 𝑓𝑖 ≠ 0.

Now, we randomly choose the values 𝑟2, . . . , 𝑟𝑛 ∈ 𝑆 (independently and uniformly). And consider the
polynomial in the single variable 𝑥, which is

𝑔(𝑥) =
𝑑∑︁
𝑗=0

𝑓 𝑗 (𝑟2, . . . , 𝑟𝑛)𝑥𝑖 .

②Wikipedia notes that the proof is not algebraic, and it is definitely not fundamental to modern algebra. So maybe it
should be cited as “the theorem formerly known as the fundamental theorem of algebra”.

3

Let F be the event that 𝑓𝑖 (𝑟2, . . . , 𝑟𝑛) = 0. Let G be the event that 𝑔(𝑥) = 0. By induction, we have
P[F] ≤ (𝑑 − 𝑖)/|𝑆 |. More interestingly if F does not happen, then degree(𝑔) = 𝑖. As such, by induction,
we have that

P[G | F] = P[𝑔(𝑥) = 0 | F] ≤ 𝑖

|𝑆 | .

We conclude that

P[𝑓 (r) = 0] = P[G ∩ F] + P[G ∩ F] ≤ P[F] + P[G | F] ≤ 𝑑 − 𝑖

|𝑆 | + 𝑖

|𝑆 | ≤
𝑑

|𝑆 | . ■

Remark 5.1.5. Consider the polynomial 𝑓 (𝑥, 𝑦) = (𝑥 − 1)2 + (𝑦 − 1)2 − 1. The zero set of this polynomial
is the unit circle. So the zero set 𝑍 𝑓 is infinite in this case. However, note that for any choice of 𝑆, the
set 𝑆2 is a grid. The Schwartz-Zippel lemma, tells us that there relatively few grid points that are in
the zero set.

5.1.3.2. Applications

5.1.3.2.1. Checking if a polynomial is the zero polynomial. Let 𝑓 be a polynomial of degree 𝑑,
with 𝑛 variables, over the reals that can be evaluated in 𝑂 (𝑇) time. One can check if 𝑓 zero, by picking
randomly a 𝑛 numbers from 𝑆 =

q
𝑑3y. By Lemma 5.1.4, we have that the probability of 𝑓 to be zero

over the chosen values is ≤ 𝑑/𝑑3, which is a small number. As above, we can do amplification to get a
high confidence answer.

5.1.3.2.2. Checking if two polynomials are equal. Given two polynomials 𝑓 and 𝑔, one can now
check if they are equal by checking if 𝑓 (𝑟) = 𝑔(𝑟), for some random input. The proof of correctness
follows from the above, as one interpret the algorithm as checking if 𝑓 − 𝑔 is the zero polynomial.

5.1.3.2.3. Verifying polynomials product. Given three polynomials 𝑓 , 𝑔, and ℎ, one can now
check if 𝑓 𝑔 = ℎ. Again, one randomly pick a value 𝑟, and check if 𝑓 (𝑟)𝑔(𝑟) = ℎ(𝑟). The proof of
correctness follows from the above, as one interprets the algorithm as checking if 𝑓 𝑔 − ℎ is the zero
polynomial.

5.1.4. Checking if a bipartite graph has a perfect matching
Let G = (𝐿 ∪ 𝑅, E) be a bipartite graph. Let 𝐿 = {𝑢1, . . . , 𝑢𝑛} and 𝑅 = {𝑣1, . . . , 𝑣𝑛}. Consider the set of
variables

V =
{
𝑥𝑖, 𝑗

�� 𝑢𝑖𝑣 𝑗 ∈ E
}
.

Let 𝑀 be an 𝑛 × 𝑛 matrix, where 𝑀 [𝑖, 𝑗] = 0 if 𝑢𝑖𝑣 𝑗 ∉ E, and 𝑀 [𝑖, 𝑗] = 𝑥𝑖, 𝑗 otherwise. Let Π be the set
of all permutations of J𝑛K.

A perfect matching is a permutation 𝜋 : J𝑛K → J𝑛K, such that for all 𝑖, we have 𝑢𝑖𝑣𝜋(𝑖) ∈ E. For
such a permutation 𝜋, consider the monomial

𝑓𝜋 = sign(𝜋)
𝑛∏
𝑖=1

𝑀 [𝑖, 𝑗],

where sign is the sign of the permutation (it is either −1 or +1 – for our purpose here we do not care
about the exact definition of this quantity). It is either a polynomial of degree exactly 𝑛, or it is zero.

4

Furthermore, observe that for any two different permutation 𝜋, 𝜎 ∈ Π, we have that if 𝑓𝜋 and 𝑓𝜎 are
both non-zero, then 𝑓𝜋 ≠ 𝑓𝜎 and 𝑓𝜋 ≠ − 𝑓𝜎.

Consider the following “crazy” polynomial over the set of variables V:

𝜓 = 𝜓() = det(𝑀) =
∑︁
𝜋∈Π

sign(𝜋) 𝑓𝜋 .

If there is perfect matching in G, then there is a permutation 𝜋 such that 𝑓𝜋 ≠ 0. But this implies that
𝜓 ≠ 0 (since it has a non-zero monomials, and the monomials can not cancel each other).

In the other direction, if there is no perfect matching in G, then 𝑓𝜋 = 0 for all permutation 𝜋. This
implies that 𝜓 = 0. Thus, deciding if G has a perfect matching is equivalent to deciding if 𝜓 ≠ 0. The
polynomial 𝜓 is defined via a determinant of a matrix that variables as some of the entries (and zeros
otherwise). By the above, all we need to do is to evaluate 𝜓 over some random values. If we use exact
arithmetic, we would just pick a random number in [0, 1] for each variable, and evaluate 𝜓 for these
values of the variable. Namely, we filled the matrix 𝑀 with values (so it is all numbers now), and we
need to computes its determinant. Via Gaussian elimination, the determinant can be computed in cubic
time. Thus, we can evaluate 𝜓 in cubic time, which implies that with high probability we can check if
G has a perfect matching.

If we do not want to be prisoners of the impreciseness of floating point arithmetic, then one can
perform the above calculations over some finite field (usually,the field is simply working modulo a prime
number).

5.2. Las Vegas and Monte Carlo algorithms
Definition 5.2.1. A Las Vegas algorithm is a randomized algorithms that always return the correct
result. The only variant is that it’s running time might change between executions.

An example for a Las Vegas algorithm is the QuickSort algorithm.

Definition 5.2.2. A Monte Carlo algorithm is a randomized algorithm that might output an incorrect
result. However, the probability of error can be diminished by repeated executions of the algorithm.

The matrix multiplication algorithm is an example of a Monte Carlo algorithm.

5.2.1. Complexity Classes
I assume people know what are Turing machines, NP, NPC, RAM machines, uniform model, logarithmic
model. PSPACE, and EXP. If you do now know what are those things, you should read about them.
Some of that is covered in the randomized algorithms book, and some other stuff is covered in any basic
text on complexity theory③.

Definition 5.2.3. The class P consists of all languages 𝐿 that have a polynomial time algorithm Alg,
such that for any input Σ∗, we have
(A) 𝑥 ∈ 𝐿 ⇒ Alg(𝑥) accepts,
(B) 𝑥 ∉ 𝐿 ⇒ Alg(𝑥) rejects.

③There is also the internet.

5

Definition 5.2.4. The class NP consists of all languages 𝐿 that have a polynomial time algorithm Alg,
such that for any input Σ∗, we have:

(i) If 𝑥 ∈ 𝐿 ⇒ then ∃𝑦 ∈ Σ∗, Alg(𝑥, 𝑦) accepts, where |𝑦 | (i.e. the length of 𝑦) is bounded by a
polynomial in |𝑥 |.

(ii) If 𝑥 ∉ 𝐿 ⇒ then ∀𝑦 ∈ Σ∗Alg(𝑥, 𝑦) rejects.

Definition 5.2.5. For a complexity class C, we define the complementary class co-C as the set of languages
whose complement is in the class C. That is

co−C =
{
𝐿
�� 𝐿 ∈ C

}
,

4 where 𝐿 = Σ∗ \ 𝐿.

It is obvious that P = co−P and P ⊆ NP ∩ co−NP. (It is currently unknown if P = NP ∩ co−NP or
whether NP = co−NP, although both statements are believed to be false.)

Definition 5.2.6. The class RP (for Randomized Polynomial time) consists of all languages 𝐿 that have
a randomized algorithm Alg with worst case polynomial running time such that for any input 𝑥 ∈ Σ∗,
we have

(i) If 𝑥 ∈ 𝐿 then P[Alg(𝑥) accepts] ≥ 1/2.
(ii) 𝑥 ∉ 𝐿 then P[Alg(𝑥) accepts] = 0.

An RP algorithm is a Monte Carlo algorithm, but this algorithm can make a mistake only if 𝑥 ∈ 𝐿.
As such, co−RP is all the languages that have a Monte Carlo algorithm that make a mistake only if
𝑥 ∉ 𝐿. A problem which is in RP ∩ co−RP has an algorithm that does not make a mistake, namely a
Las Vegas algorithm.

Definition 5.2.7. The class ZPP (for Zero-error Probabilistic Polynomial time) is the class of languages
that have a Las Vegas algorithm that runs in expected polynomial time.

Definition 5.2.8. The class PP (for Probabilistic Polynomial time) is the class of languages that have a
randomized algorithm Alg, with worst case polynomial running time, such that for any input 𝑥 ∈ Σ∗,
we have

(i) If 𝑥 ∈ 𝐿 then P[Alg(𝑥) accepts] > 1/2.
(ii) If 𝑥 ∉ 𝐿 then P[Alg(𝑥) accepts] < 1/2.

The class PP is not very useful. Why?

Exercise 5.2.9. Provide a PP algorithm for 3SAT.

Consider the mind-boggling stupid randomized algorithm that returns either yes or no with proba-
bility half. This algorithm is almost in PP, as it return the correct answer with probability half. An
algorithm is in PP needs to be slightly better, and be correct with probability better than half. However,
how much better can be made to be arbitrarily close to 1/2. In particular, there is no way to do effective
amplification with such an algorithm.

Definition 5.2.10. The class BPP (for Bounded-error Probabilistic Polynomial time) is the class of lan-
guages that have a randomized algorithm Alg with worst case polynomial running time such that for
any input 𝑥 ∈ Σ∗, we have

(i) If 𝑥 ∈ 𝐿 then P[Alg(𝑥) accepts] ≥ 3/4.
(ii) If 𝑥 ∉ 𝐿 then P[Alg(𝑥) accepts] ≤ 1/4.

6

5.3. Bibliographical notes
Section 5.2 follows [MR95, Section 1.5].

References
[MR95] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge, UK: Cambridge University

Press, 1995.

7

http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Verifying Identities, and Some Complexity
	Verifying equality
	Vectors
	Matrices
	Checking identity for polynomials
	Checking if a bipartite graph has a perfect matching

	Las Vegas and Monte Carlo algorithms
	Complexity Classes

	Bibliographical notes

