
Chapter 4

Chebychev, Sampling and Selection
By Sariel Har-Peled, April 26, 2022① During a native rebellion in German East

Africa, the Imperial Ministry in Berlin issued
the following order to its representatives on the
ground: “The natives are to be instructed that
on pain of harsh penalties, every rebellion must
be announced, in writing, six weeks before it
breaks out.”

Dead Funny: Humor in Hitler’s Germany,
Rudolph Herzog

4.1. Chebyshev’s inequality

4.1.1. Example: A better inequality via moments
Let 𝑋𝑖 ∈ {−1, +1} with probability half for each value, for 𝑖 = 1, . . . , 𝑛 (all picked independently). Let
𝑌 =

∑
𝑖 𝑋𝑖. We have that

E
[
𝑌
]
= E

[∑︁
𝑖

𝑋𝑖

]
=
∑︁
𝑖

E
[
𝑋𝑖

]
= 𝑛 · 0 = 0.

A more interesting quantity is

E
[
𝑌2] = E[(∑︁

𝑖

𝑋𝑖

)2]
= E

[∑︁
𝑖

𝑋2
𝑖 + 2

∑︁
𝑖< 𝑗

𝑋𝑖𝑋 𝑗

]
=
∑︁
𝑖

E
[
𝑋2
𝑖

]
+ 2E

[∑︁
𝑖< 𝑗

𝑋𝑖𝑋 𝑗

]
= 𝑛 + 2

∑︁
𝑖< 𝑗

E
[
𝑋𝑖𝑋 𝑗

]
= 𝑛 + 2

∑︁
𝑖< 𝑗

E[𝑋𝑖] E
[
𝑋 𝑗

]
= 𝑛.

Lemma 4.1.1. Let 𝑋𝑖 ∈ {−1, +1} with probability half for each value, for 𝑖 = 1, . . . , 𝑛 (all picked inde-
pendently). We have that P

[
|∑𝑖 𝑋𝑖 | > 𝑡

√
𝑛
]
< 1/𝑡2.

Proof: Let 𝑌 =
∑

𝑖 𝑋𝑖 and 𝑍 = 𝑌2. We have

P
[���∑︁

𝑖

𝑋𝑖

��� > 𝑡
√
𝑛

]
= P

[(∑︁
𝑖

𝑋𝑖

)2
> 𝑡2𝑛

]
= P

[
𝑌2 > 𝑡2 E

[
𝑌2]] = P[𝑍 > 𝑡2 E[𝑍]

]
≤ 1/𝑡2,

by Markov’s inequality. ■

4.1.2. Chebychev’s inequality

As a reminder, the variance of a random variable 𝑋 is V[𝑋] = E
[
(𝑋 − 𝜇𝑋)2] = E[𝑋2] − 𝜇2

𝑋
.

Theorem 4.1.2 (Chebyshev’s inequality). Let 𝑋 be a real random variable, with 𝜇𝑋 = E[𝑋], and
𝜎𝑋 =

√︁
V[𝑋]. Then, for any 𝑡 > 0, we have P

[
|𝑋 − 𝜇𝑋 | ≥ 𝑡𝜎𝑋

]
≤ 1/𝑡2.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof: Set 𝑌 = (𝑋 − 𝜇𝑋)2, and observe that

𝜎2
𝑋 = V[𝑋] = E[𝑌] = E

[
(𝑋 − 𝜇𝑋)2] = E[𝑋2] − 𝜇2

𝑋 .

As such, we have that

P
[
|𝑋 − 𝜇𝑋 | ≥ 𝑡𝜎𝑋

]
= P

[
(𝑋 − 𝜇𝑋)2 ≥ 𝑡2𝜎2

𝑋

]
= P

[
𝑌 ≥ 𝑡2 E[𝑌]

]
≤ 1

𝑡2
,

by Markov’s inequality. ■

4.2. Estimation via sampling
One of the big advantages of randomized algorithms, is that they sample the world; that is, learn how
the input looks like without reading all the input. For example, consider the following problem: We are
given a set of 𝑈 of 𝑛 objects 𝑢1, . . . , 𝑢𝑛. and we want to compute the number of elements of 𝑈 that have
some property. Assume, that one can check if this property holds, in constant time, for a single object,
and let 𝜓(𝑢) be the function that returns 1 if the property holds for the element 𝑢. and zero otherwise.
Now, let Γ be the number of objects in 𝑈 that have this property. We want to reliably estimate Γ

without computing the property for all the elements of 𝑈.
A natural approach, would be to pick a random sample R of 𝑚 objects, 𝑟1, . . . , 𝑟𝑚 from 𝑈 (with

replacement), and compute 𝑌 =
∑𝑚

𝑖=1 𝜓(𝑟1). The estimate for Γ is 𝛽 = (𝑛/𝑚)𝑌 . It is natural to ask how
far is 𝛽 from the true value Γ.
Lemma 4.2.1. Let 𝑈 be a set of 𝑛 elements, with Γ of them having a certain property 𝜓. Let R be a
uniform random sample from 𝑈 (with repetition) of size 𝑚, and let 𝑌 be the number of elements in R
that have the property 𝜓, and let 𝑍 = (𝑛/𝑚)𝑌 be the estimate for Γ. Then, for any 𝑡 ≥ 1, we have that

P
[
Γ − 𝑡

𝑛

2
√
𝑚

≤ 𝑍 ≤ Γ + 𝑡
𝑛

2
√
𝑚

]
≥ 1 − 1

𝑡2
.

Similarly, we have that P
[
E[𝑌] − 𝑡

√
𝑚/2 ≤ 𝑌 ≤ E[𝑌] + 𝑡

√
𝑚/2

]
≥ 1 − 1/𝑡2.

Proof: Let 𝑌𝑖 = 𝜓(𝑟𝑖) be an indicator variable that is 1 if the 𝑖th sample 𝑟𝑖 has the property 𝜓, for
𝑖 = 1, . . . , 𝑚. Consider the random variable 𝑌 =

∑
𝑖 𝑌𝑖, and the estimate 𝑍 = (𝑛/𝑚)𝑌 for Γ. Observe that

E[𝑍] = E[(𝑛/𝑚)𝑌] = 𝑛

𝑚
E[𝑌] =

𝑛

𝑚
E
[∑︁

𝑖

𝑌𝑖

]
=

𝑛

𝑚

𝑚∑︁
𝑖=1
E[𝑌𝑖] =

𝑛

𝑚

𝑚∑︁
𝑖=1

Γ

𝑛
=

𝑛

𝑚
· 𝑚 · Γ

𝑛
= Γ.

The variable 𝑌 is a binomial distribution with probability 𝑝 = Γ/𝑛, and 𝑚 samples; that is, 𝑌 ∼
Bin(𝑚, 𝑝). We saw in the previous lecture that, E[𝑌] = 𝑚𝑝, V[𝑌] = 𝑚𝑝(1 − 𝑝), and its standard
deviation is

𝜎𝑌 =
√︁
𝑚𝑝(1 − 𝑝) ≤

√
𝑚/2,

as
√︁
𝑝(1 − 𝑝) is maximized for 𝑝 = 1/2.

By Chebychev’s inequality, we have that P
[
|𝑌 − E[𝑌] | ≥ 𝑡𝜎𝑌

]
≤ 1/𝑡2. Since (𝑛/𝑚) E[𝑌] = E[𝑍] = Γ,

this implies that
1
𝑡2

≥ P
[
|𝑌 − E[𝑌] | ≥ 𝑡𝜎𝑌

]
≥ P

[��� 𝑛
𝑚
𝑌 − 𝑛

𝑚
E[𝑌]

��� ≥ 𝑛

𝑚
𝑡𝜎𝑌

]
= P

[
|𝑍 − Γ| ≥ 𝑛

𝑚
𝑡𝜎𝑌

]
≥ P

[
|𝑍 − Γ| ≥ 𝑛

𝑚
𝑡 ·

√
𝑚

2

]
= P

[
|𝑍 − Γ| ≥ 𝑡

𝑛

2
√
𝑚

]
. ■

2

4.3. Randomized selection – Using sampling to learn the world

4.3.1. Inverse estimation
We are given a set 𝑈 = {𝑢1, . . . , 𝑢𝑛} of 𝑛 distinct numbers. Let 𝑈⟨𝑖⟩ denote the 𝑖th smallest number in 𝑈

– that is 𝑈⟨𝑖⟩ is the number of rank 𝑖 in 𝑈.

Lemma 4.3.1. Given a set 𝑈 of 𝑛 numbers, a number 𝑘, and parameters 𝑡 ≥ 1 and 𝑚 ≥ 1, one can
compute, in 𝑂 (𝑚 log𝑚) time, two numbers 𝑟−, 𝑟+ ∈ 𝑈, such that:
(A) The number of rank 𝑘 in 𝑈 is in the interval I = [𝑟−, 𝑟+].
(B) There are at most 8𝑡𝑛/

√
𝑚 numbers of 𝑈 in I.

The above two properties hold with probability ≥ 1 − 3/𝑡2.
(Namely, as 𝑡 increases, the interval I becomes bigger, and the probability it contains the desired

element increases.)

Proof: (A) Compute a random sample R of 𝑈 of size 𝑚 in 𝑂 (𝑚) time (assuming the input numbers are
given in an array, say). Next sort the numbers of R in 𝑂 (𝑚 log𝑚) time. Let

ℓ− =

⌊
𝑚
𝑘

𝑛
− 𝑡

√
𝑚/2

⌋
− 1 and ℓ+ =

⌈
𝑚
𝑘

𝑛
+ 𝑡

√
𝑚/2

⌉
+ 1.

Set 𝑟− = R[ℓ−] and 𝑟+ = R[ℓ+].
Let 𝑌 be the number of elements in the sample R that are ≤ 𝑈⟨𝑘⟩. By Lemma 4.2.1, we have

P
[
E[𝑌] − 𝑡

√
𝑚/2 ≤ 𝑌 ≤ E[𝑌] + 𝑡

√
𝑚/2

]
≥ 1 − 1/𝑡2. In particular, if this happens, then 𝑟− ≤ 𝑈⟨𝑘⟩ ≤ 𝑟+.

(B) Let 𝑔 = 𝑘 − 𝑡 𝑛√
𝑚
−3 𝑛

𝑚
, and let 𝑔R be the number of elements in R that are smaller than 𝑈⟨𝑔⟩. Arguing

as above, we have that P
[
𝑔R ≤ 𝑔

𝑛
𝑚 + 𝑡

√
𝑚/2

]
≥ 1 − 1/𝑡2. Now

𝑔

𝑛
𝑚 + 𝑡

√
𝑚/2 =

𝑚

𝑛

(
𝑘 − 𝑡

𝑛
√
𝑚

− 3 𝑛

𝑚

)
+ 𝑡

√
𝑚/2 = 𝑘

𝑚

𝑛
− 𝑡

√
𝑚 − 3 + 𝑡

√
𝑚/2 = 𝑘

𝑚

𝑛
− 𝑡

√
𝑚/2 − 3 < ℓ−.

This implies that the 𝑔 smallest numbers in 𝑈 are outside the interval [𝑟−, 𝑟+] with probability ≥ 1−1/𝑡2.
Next, let ℎ = 𝑘 + 𝑡 𝑛√

𝑚
+ 3 𝑛

𝑚
. A similar argument, shows that all the 𝑛 − ℎ largest numbers in 𝑈 are

too large to be in [𝑟−, 𝑟+]. This implies that

| [𝑟−, 𝑟+] ∩𝑈 | ≤ ℎ − 𝑔 + 1 = 6 𝑛

𝑚
+ 2𝑡 𝑛

√
𝑚

≤ 8 𝑡𝑛
√
𝑚
. ■

4.3.1.1. Inverse estimation – intuition

Here we are trying to give some intuition to the proof of the previous lemma. Feel free to skip this part
if you feel you already understand what is going on.

Given 𝑘, we are interested in estimating 𝑠𝑘 = 𝑈⟨𝑘⟩ quickly. So, let us take a sample R of size 𝑚. Let
R≤𝑠𝑘 be the set of all the numbers in R that are ≤ 𝑠𝑘 . For 𝑌 =

��R≤𝑠𝑘
��, we have that 𝜇 = E[𝑌] = 𝑚 𝑘

𝑛
.

Furthermore, for any 𝑡 ≥ 1, Lemma 4.2.1 implies that P
[
𝜇 − 𝑡

√
𝑚/2 ≤ 𝑌 ≤ 𝜇 + 𝑡

√
𝑚/2

]
≥ 1 − 1/𝑡2. In

particular, with probability ≥ 1 − 1/𝑡2 the number 𝑟− = R⟨ℓ−⟩, for ℓ− =
⌊
𝜇 − 𝑡

√
𝑚/2

⌋
− 1, is smaller than

𝑠𝑘 , and similarly, the number 𝑟+ = R⟨ℓ+⟩ of rank ℓ+ =
⌈
𝜇 + 𝑡

√
𝑚/2

⌉
+ 1 in R is larger than 𝑠𝑘 .

3

One can conceptually think about the interval I(𝑘) = [𝑟−, 𝑟+] as a confidence interval – we know
that 𝑠𝑘 ∈ I(𝑘) with probability ≥ 1− 1/𝑡2. But how heavy is this interval? Namely, how many elements
are there in I(𝑘) ∩𝑈?

To this end, consider the interval of ranks, in the sample, that might contain the 𝑘th element. By the
above, this is I(𝑘, 𝑡) = 𝑘 𝑚

𝑛
+
[
−𝑡
√
𝑚/2 − 1, 𝑡

√
𝑚/2 + 1

]
. In particular, consider the maximum 𝜈 ≤ 𝑘, such

that I(𝜈, 𝑡) and I(𝑘, 𝑡) are disjoint. We have the condition that 𝜈𝑚
𝑛
+ 𝑡

√
𝑚/2 + 1 ≤ 𝑘 𝑚

𝑛
− 𝑡

√
𝑚/2 − 1 =⇒

𝜈 ≤ 𝑘 − 𝑡 𝑛√
𝑚
− 2 𝑛

𝑚
. Let 𝑔 = 𝑘 − 𝑡 𝑛√

𝑚
− 2 𝑛

𝑚
and ℎ = 𝑘 + 𝑡 𝑛√

𝑚
+ 2 𝑛

𝑚
. We have that I(𝑔, 𝑡), I(𝑘, 𝑡) and I(ℎ, 𝑡)

are all disjoint with probability ≥ 1 − 3/𝑡2.
To this end, let 𝑔 = 𝑘 −

⌈
2
(
𝑡 𝑛

2
√
𝑚

)⌉
and ℎ = 𝑘 +

⌈
2
(
𝑡 𝑛

2
√
𝑚

)⌉
. It is easy to verify (using the same

argumentation as above) that with probability at least 1− 3/𝑡2, the three confidence I(𝑔), I(𝑘) and I(ℎ)
do not intersect. As such, we have

��I(𝑘) ∩𝑈
�� ≤ ℎ − 𝑔 ≤ 4

(
𝑡 𝑛

2
√
𝑚

)
.

4.3.2. Randomized selection

4.3.2.1. The algorithm

Given an array 𝑆 of 𝑛 numbers, and the rank 𝑘. The algorithm needs to compute 𝑆⟨𝑘⟩. To this end, set
𝑡 =

⌈
𝑛1/8⌉, and 𝑚 =

⌈
𝑛3/4⌉.

Using the algorithm of Lemma 4.3.1, in 𝑂 (𝑚 log𝑚) time, we get two numbers 𝑟− and 𝑟+, such that
𝑆⟨𝑘⟩ ∈ [𝑟𝑖, 𝑟+], and

|𝑆 ∩ (𝑟𝑖, 𝑟+)︸ ︷︷ ︸
𝑆𝑚

| = 𝑂
(
𝑡𝑛/

√
𝑚
)
= 𝑂

(
𝑛1/8𝑛/𝑚3/8

)
= 𝑂 (𝑛3/4).

To this end, we break 𝑆 into three sets:
(i) 𝑆< = {𝑠 ∈ 𝑆 | 𝑠 ≤ 𝑟−},
(ii) 𝑆𝑚 = {𝑠 ∈ 𝑆 | 𝑟− < 𝑠 < 𝑟+},
(iii) 𝑆> = {𝑠 ∈ 𝑆 | 𝑟+ ≤ 𝑠}.

This three way partition can be done using 2𝑛 comparisons and in linear time. We now can readily
compute the rank of 𝑟− in 𝑆 (it is |𝑆< |) and the rank of 𝑟+ in 𝑆 (it is |𝑆< | + |𝑆𝑚 | + 1). If 𝑟−⟨𝑆⟩ > 𝑘

or 𝑟+⟨𝑆⟩ < 𝑘 then the algorithm failed. The other possibility for failure is that 𝑆𝑚 is too large. That
is, larger than 8𝑡𝑛/

√
𝑚 = 𝑂 (𝑛3/4). If any of these failures happen, then we rerun this algorithm from

scratch.
Otherwise, the algorithm need to compute the element of rank 𝑘 − |𝑆< | in the set 𝑆𝑚, and this can

be done in 𝑂 (|𝑆𝑚 | log |𝑆𝑚 |) = 𝑂 (𝑛3/4 log 𝑛) time by using sorting.

4.3.2.2. Analysis

The correctness is easy – the algorithm clearly returns the desired element. As for running time, observe
that by Lemma 4.3.1, by probability ≥ 1 − 1/𝑛1/4, we succeeded in the first try, and then the running
time is 𝑂 (𝑛 + (𝑚 log𝑚)) = 𝑂 (𝑛). More generally, the probability that the algorithm failed in the first 𝛼

tries to get a good interval [𝑟−, 𝑟+] is at most 1/𝑛𝛼/4.
One can slightly improve the number of comparisons performed by the algorithm using the following

modifications.

Lemma 4.3.2. Given the numbers 𝑟−, 𝑟+, one can compute the sets 𝑆<, 𝑆𝑚, 𝑆> using in expectation
(only!) 1.5𝑛 +𝑂 (𝑛3/4) comparisons.

4

Proof: We need to compute the sets 𝑆<, 𝑆𝑚, 𝑆>. Namely, we need to compare all the numbers of 𝑆 to
𝑟− and 𝑟+. Since only 𝑂 (𝑛3/4) numbers fall in 𝑆𝑚, almost all of the numbers are in either 𝑆< or 𝑆>. If
a number of is in 𝑆< (resp. 𝑆>), then comparing it 𝑟− (resp. 𝑟+) is enough to verify that this is indeed
the case. Otherwise, perform the other comparison and put the element in its proper set (in this case
we had to perform two comparisons to handle the element).

So let us guess, by a coin flip, for each element of 𝑆 whether they are in 𝑆< or 𝑆>. If we are right,
then the algorithm would require only one comparison to put them into the right set. Otherwise, it
would need two comparisons. Let 𝑋𝑠 be the random variable that is the number of comparisons used
by this algorithm for an element 𝑠 ∈ 𝑆. We have that if 𝑠 ∈ 𝑆< ∪ 𝑆> then E[𝑋𝑠] = 1(1/2) + 2(1/2) = 3/2.
If 𝑠 ∈ 𝑆𝑚 then both comparisons will be performed, and thus E[𝑋𝑠] = 2 in this case.

Thus, the expected numbers of comparisons for all the elements of 𝑆, by linearity of expectations, is
3
2 (𝑛 − |𝑆𝑚 |) + 2|𝑆𝑚 | = (3/2)𝑛 + |𝑆𝑚 |/2. ■

Theorem 4.3.3. Given an array 𝑆 with 𝑛 numbers and a rank 𝑘, one can compute the element of rank 𝑘

in 𝑆 in expected linear time. Formally, the resulting algorithm performs in expectation 1.5𝑛+𝑂 (𝑛3/4 log 𝑛)
comparisons.

Proof: Let 𝑋 be the random variable that is the number of iteration till the interval is good. We have
that 𝑋 is a geometric variable with probability of success ≥ 1 − 1/𝑛1/4. As such, the expected number
of rounds till success is ≤ 1/𝑝 ≤ 1 + 2/𝑛1/4. As such, the expected number of comparisons performed by
the algorithm is E

[
𝑋 ·

(
1.5𝑛 +𝑂 (𝑛3/4 log 𝑛)

)]
= 1.5𝑛 +𝑂 (𝑛3/4 log 𝑛). ■

5

	Chebychev, Sampling and Selection
	Chebyshev's inequality
	Example: A better inequality via moments
	Chebychev's inequality

	Estimation via sampling
	Randomized selection – Using sampling to learn the world
	Inverse estimation
	Randomized selection

