
Chapter 3

Analyzing QuickSort and QuickSelect via
Expectation
By Sariel Har-Peled, April 26, 2022①

NOBODY expects the Spanish Inquisition! Our chief weapon is surprise...surprise and fear...fear and surprise....
Our two weapons are fear and surprise...and ruthless efficiency.... Our three weapons are fear, surprise, and ruthless
efficiency...and an almost fanatical devotion to the Pope.... Our four...no... Amongst our weapons.... Amongst our
weaponry...are such elements as fear, surprise....

The Spanish Inquisition, Monty Python

3.1. QuickSort
Let the input be a set 𝑇 = {𝑡1, . . . , 𝑡𝑛} of 𝑛 items to be sorted. We remind the reader, that the
QuickSort algorithm randomly pick a pivot element (uniformly), splits the input into two subarrays of
all the elements smaller than the pivot, and all the elements larger than the pivot, and then it recurses
on these two subarrays (the pivot is not included in these two subproblems). Here we will show that
the expected running time of QuickSort is 𝑂 (𝑛 log 𝑛).

Let 𝑆1, . . . , 𝑆𝑛 be the elements in their sorted order (i.e., the output order). Let 𝑋𝑖 𝑗 = 1 be the
indicator variable which is one ⇐⇒ QuickSort compares 𝑆𝑖 to 𝑆 𝑗 , and let 𝑝𝑖 𝑗 denote the probability
that this happens. Clearly, the number of comparisons performed by the algorithm is 𝐶 =

∑
𝑖< 𝑗 𝑋𝑖 𝑗 . By

linearity of expectations, we have

E
[
𝐶
]
= E

[∑︁
𝑖< 𝑗

𝑋𝑖 𝑗

]
=
∑︁
𝑖< 𝑗

E
[
𝑋𝑖 𝑗

]
=
∑︁
𝑖< 𝑗

𝑝𝑖 𝑗 .

We want to bound 𝑝𝑖 𝑗 , the probability that the 𝑆𝑖 is compared to 𝑆 𝑗 . Consider the last recursive
call involving both 𝑆𝑖 and 𝑆 𝑗 . Clearly, the pivot at this step must be one of 𝑆𝑖, . . . , 𝑆 𝑗 , all equally likely.
Indeed, 𝑆𝑖 and 𝑆 𝑗 were separated in the next recursive call.

Observe, that 𝑆𝑖 and 𝑆 𝑗 get compared if and only if pivot is 𝑆𝑖 or 𝑆 𝑗 . Thus, the probability for that
is 2/(𝑗 − 𝑖 + 1). Indeed,

𝑝𝑖 𝑗 = P
[
𝑆𝑖 or 𝑆 𝑗 picked

�� picked pivot from 𝑆𝑖, . . . , 𝑆 𝑗

]
=

2
𝑗 − 𝑖 + 1 .

Thus,
𝑛∑︁
𝑖=1

∑︁
𝑗>𝑖

𝑝𝑖 𝑗 =

𝑛∑︁
𝑖=1

∑︁
𝑗>𝑖

2/(𝑗 − 𝑖 + 1) =
𝑛∑︁
𝑖=1

𝑛−𝑖+1∑︁
𝑘=1

2
𝑘
≤ 2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑘=1

1
𝑘
≤ 2𝑛𝐻𝑛 ≤ 𝑛 + 2𝑛 ln 𝑛,

where 𝐻𝑛 is the harmonic number② 𝐻𝑛 =
∑𝑛

𝑖=1 1/𝑖. We thus proved the following result.
①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

②Using integration to bound summation, we have 𝐻𝑛 ≤ 1 +
∫ 𝑛

𝑥=1
1
𝑥
𝑑𝑥 ≤ 1 + ln 𝑛. Similarly, 𝐻𝑛 ≥

∫ 𝑛

𝑥=1
1
𝑥
𝑑𝑥 = ln 𝑛.

1

http://creativecommons.org/licenses/by-nc/3.0/

Lemma 3.1.1. QuickSort performs in expectation at most 𝑛 + 2𝑛 ln 𝑛 comparisons, when sorting 𝑛

elements.

Note, that this holds for all inputs. No assumption on the input is made. Similar bounds holds not
only in expectation, but also with high probability.

This raises the question, of how does the algorithm pick a random element? We assume we have
access to a random source that can get us number between 1 and 𝑛 uniformly.

Note, that the algorithm always works, but it might take quadratic time in the worst case.

Remark 3.1.2 (Wait, wait, wait). Let us do the key argument in the above more slowly, and more carefully.
Imagine, that before running QuickSort we choose for every element a random priority, which is a real
number in the range [0, 1]. Now, we re-implement QuickSort such that it always pick the element
with the lowest random priority (in the given subproblem) to be the pivot. One can verify that this
variant and the standard implementation have the same running time. Now, 𝑎𝑖 gets compares to 𝑎 𝑗 if
and only if all the elements 𝑎𝑖+1, . . . , 𝑎 𝑗−1 have random priority larger than both the random priority of
𝑎𝑖 and the random priority of 𝑎 𝑗 . But the probability that one of two elements would have the lowest
random-priority out of 𝑗 − 𝑖 + 1 elements is 2 ∗ 1/(𝑗 − 𝑖 + 1), as claimed.

3.2. QuickSelect: Median selection in linear time

3.2.1. Analysis via expectation and indicator variables
We remind the reader that QuickSelect receives an array T [1 . . . 𝑛] of 𝑛 real numbers, and a number
𝑘, and returns the element of rank 𝑘 in the sorted order of the elements of T , see Figure 3.1. We can
of course, use QuickSort, and just return the 𝑘th element in the sorted array, but a more efficient
algorithm, would be to modify QuickSelect, so that it recurses on the subproblem that contains the
element we are interested in. Formally, QuickSelect chooses a random pivot, splits the array according
to the pivot. This implies that we now know the rank of the pivot, and if its equal to m, we return it.
Otherwise, we recurse on the subproblem containing the required element (modifying m as we go down
the recursion. Namely, QuickSelect is a modification of QuickSort performing only a single recursive
call (instead of two).

As before, to bound the expected running time, we will bound the expected number of comparisons.
As before, let 𝑆1, . . . , 𝑆𝑛 be the elements of 𝑡 in their sorted order. Now, for 𝑖 < 𝑗 , let 𝑋𝑖 𝑗 be the indicator
variable that is one if 𝑆𝑖 is being compared to 𝑆 𝑗 during the execution of QuickSelect. There are several
possibilities to consider:

(i) If 𝑖 < 𝑗 < m: Here, 𝑆𝑖 is being compared to 𝑆 𝑗 , if and only if the first pivot in the range 𝑆𝑖, . . . , 𝑆𝑘
is either 𝑆𝑖 or 𝑆 𝑗 . The probability for that is 2/(𝑘 − 𝑖 + 1). As such, we have that

𝛼1 = E
[∑︁
𝑖< 𝑗<m

𝑋𝑖 𝑗

]
= E

[m−2∑︁
𝑖=1

m−1∑︁
𝑗=𝑖+1

𝑋𝑖 𝑗

]
=

m−2∑︁
𝑖=1

m−1∑︁
𝑗=𝑖+1

2
m − 𝑖 + 1 =

𝑚𝑒𝑑−2∑︁
𝑖=1

2(m − 𝑖 − 1)
m − 𝑖 + 1 ≤ 2

(
m − 2

)
.

(ii) If m < 𝑖 < 𝑗 : Using the same analysis as above, we have that P
[
𝑋𝑖 𝑗 = 1

]
= 2/(𝑗 −m + 1). As such,

𝛼2 = E


𝑛∑︁

𝑗=m+1

𝑗−1∑︁
𝑖=m+1

𝑋𝑖 𝑗

 =
𝑛∑︁

𝑗=m+1

𝑗−1∑︁
𝑖=m+1

2
𝑗 −m + 1 =

𝑛∑︁
𝑗=m+1

2(𝑗 −m − 1)
𝑗 −m + 1 ≤ 2

(
𝑛 −m

)
.

2

QuickSelect(T J1 : 𝑛K , 𝑘)
// Input: T J1 : 𝑛K array with 𝑛 numbers, parameter 𝑘.
// Assume all numbers in 𝑡 are distinct.
// Task: Return 𝑘th smallest number in T.
𝑦 ← random element of T .
𝑟 ← rank of 𝑦 in T .
if 𝑟 = 𝑘 then return 𝑦

T< = array with all elements in T < than 𝑦

T> = all elements in T > than 𝑦

// By assumption |T< | + |T> | + 1 = |T |.
if 𝑟 < 𝑘 then

return QuickSelect(T>, 𝑘 − 𝑟)
else

return QuickSelect(T<, 𝑘)

Figure 3.1: QuickSelect pseudo-code.

(iii) 𝑖 < m < 𝑗 : Here, we compare 𝑆𝑖 to 𝑆 𝑗 if and only if the first indicator in the range 𝑆𝑖, . . . , 𝑆 𝑗 is
either 𝑆𝑖 or 𝑆 𝑗 . As such, E

[
𝑋𝑖 𝑗

]
= P

[
𝑋𝑖 𝑗 = 1

]
= 2/(𝑗 − 𝑖 + 1). As such, we have

𝛼3 = E


m−1∑︁
𝑖=1

𝑛∑︁
𝑗=m+1

𝑋𝑖 𝑗

 =
m−1∑︁
𝑖=1

𝑛∑︁
𝑗=m+1

2
𝑗 − 𝑖 + 1 .

Observe, that for a fixed Δ = 𝑗 − 𝑖 + 1, we are going to handle the gap Δ in the above summation,
at most Δ − 2 times. As such, 𝛼3 ≤

∑𝑛
Δ=3 2(Δ − 2)/Δ ≤ 2𝑛.

(iv) 𝑖 = m. We have 𝛼4 =

𝑛∑︁
𝑗=m+1

E
[
𝑋𝑖 𝑗

]
=

𝑛∑︁
𝑗=m+1

2
𝑗 −m + 1 = ln 𝑛 + 1.

(v) 𝑗 = m. We have 𝛼5 =

m−1∑︁
𝑖=1
E
[
𝑋𝑖 𝑗

]
=

m−1∑︁
𝑖=1

2
m − 𝑖 + 1 ≤ ln m + 1.

Thus, the expected number of comparisons performed by QuickSelect is bounded by∑︁
𝑖

𝛼𝑖 ≤ 2(m − 2) + 2(𝑛 −m) + 2𝑛 + ln 𝑛 + 1 + ln m = 4𝑛 − 2 + ln 𝑛 + ln m.

Theorem 3.2.1. In expectation, QuickSelect performs at most 4𝑛 − 2 + ln 𝑛 + ln m comparisons, when
selecting the mth element out of 𝑛 elements.

A different approach can reduce the number of comparisons (in expectation) to 1.5𝑛 + 𝑜(𝑛). More
on that later in the course.

3.2.2. Analysis of QuickSelect via conditional expectations
Consider the problem of given a set 𝑋 of 𝑛 numbers, and a parameter 𝑘, to output the 𝑘th smallest
number (which is the number with rank 𝑘 in 𝑋). This can be easily be done by modifying QuickSort
only to perform one recursive call. See Figure 3.1 for a pseud-code of the resulting algorithm.

Intuitively, at each iteration of QuickSelect the input size shrinks by a constant factor, leading to
a linear time algorithm.

3

Theorem 3.2.2. Given a set 𝑋 of 𝑛 numbers, and any integer 𝑘, the expected running time of Quick-
Select(𝑋, 𝑛) is 𝑂 (𝑛).

Proof: Let 𝑋1 = 𝑋, and 𝑋𝑖 be the set of numbers in the 𝑖th level of the recursion. Let 𝑦𝑖 and 𝑟𝑖 be
the random element and its rank in 𝑋𝑖, respectively, in the 𝑖th iteration of the algorithm. Finally, let
𝑛𝑖 = |𝑋𝑖 |. Observe that the probability that the pivot 𝑦𝑖 is in the “middle” of its subproblem is

𝛼 = P
[𝑛𝑖

4 ≤ 𝑟𝑖 ≤
3
4𝑛𝑖

]
≥ 1

2 ,

and if this happens then

𝑛𝑖+1 ≤ max(𝑟𝑖 − 1, 𝑛𝑖 − 𝑟𝑖) ≤
3
4𝑛𝑖 .

We conclude that

E[𝑛𝑖+1 | 𝑛𝑖] ≤ P[𝑦𝑖 in the middle] 34𝑛𝑖 + P[𝑦𝑖 not in the middle]𝑛𝑖

≤ 𝛼
3
4𝑛𝑖 + (1 − 𝛼)𝑛𝑖 = 𝑛𝑖 (1 − 𝛼/4) ≤ 𝑛𝑖 (1 − (1/2)/4) = (7/8)𝑛𝑖 .

Now, we have that

𝑚𝑖+1 = E[𝑛𝑖+1] = E[E[𝑛𝑖+1 | 𝑛𝑖]] ≤ E[(7/8)𝑛𝑖] = (7/8) E[𝑛𝑖] = (7/8)𝑚𝑖

= (7/8)𝑖𝑚0 = (7/8)𝑖𝑛,

since for any two random variables we have that E[𝑋] = E
[
E
[
𝑋

��𝑌]]
. In particular, the expected

running time of QuickSelect is proportional to

E

[∑︁
𝑖

𝑛𝑖

]
=
∑︁
𝑖

E[𝑛𝑖] ≤
∑︁
𝑖

𝑚𝑖 =
∑︁
𝑖

(7/8)𝑖𝑛 = 𝑂 (𝑛),

as desired. ■

4

	Analyzing QuickSort and QuickSelect via Expectation
	QuickSort
	QuickSelect: Median selection in linear time
	Analysis via expectation and indicator variables
	Analysis of QuickSelect via conditional expectations

