Chapter 2

Probability and Expectation

Everybody knows that the dice are loaded
Everybody rolls with their fingers crossed
Everybody knows the war is over
Everybody knows the good guys lost
Everybody knows the fight was fixed

The poor stay poor, the rich get rich
That’s how it goes

By Sariel Har-Peled, April 26, 20227

Everybody knows

Everybody knows, Leonard Cohen
2.1. Basic probability

Here we recall some definitions about probability. The reader already familiar with these definition can
happily skip this section.

2.1.1. Formal basic definitions: Sample space, o-algebra, and probability

A sample space Q is a set of all possible outcomes of an experiment. We also have a set of events ¥,
where every member of ¥ is a subset of Q. Formally, we require that # is a o-algebra.

Definition 2.1.1. A single element of Q is an elementary event or an atomic event.

Definition 2.1.2. A set F of subsets of Q is a o -algebra if:
(i) F is not empty,
(ii) if X € F then X = (Q\ X) € ¥, and
(ifi) if X,¥ € F then X UY € F.
More generally, we require that if X; € F, for i € Z, then U;X; € ¥. A member of F is an event.

As a concrete example, if we are rolling a dice, then Q = {1,2,3,4,5,6} and ¥ would be the power
set of all possible subsets of Q.

Definition 2.1.3. A probability measure is a mapping P : ¥ — [0, 1] assigning probabilities to events.
The function P needs to have the following properties:

(i) ADDITIVE: for X,Y € F disjoint sets, we have that P[X UY| = P[X| + P[Y], and

(i) P[Q] = 1.

Observation 2.1.4. Let Cy,...,C, be random events (not necessarily independent). Than
n
P[UleC,-] < ZP[C,]
i=1
(This is usually referred to as the union bound.) If Cy,...,C, are disjoint events then

plur,c] = > PG,
i=1
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Definition 2.1.5. A probability space is a triple (Q, F,P), where Q is a sample space, ¥ is a o-algebra
defined over Q, and P is a probability measure.

Definition 2.1.6. A random wvariable f is a mapping from Q into some set G. We require that the
probability of the random variable to take on any value in a given subset of values is well defined.
Formally, for any subset U C G, we have that f~1(U) € #. That is, P[f € U] = P[f_l(U)] is defined.

Going back to the dice example, the number on the top of the dice when we roll it is a random
variable. Similarly, let X be one if the number rolled is larger than 3, and zero otherwise. Clearly X is
a random variable.

We denote the probability of a random variable X to get the value x, by P[X =x] (or sometime
P[x], if we are lazy).

2.1.2. Expectation and conditional probability

Definition 2.1.7 (Expectation). The expectation of a random variable X, is its average. Formally, the
expectation of X is

E[X] =) xP[X =2x].

X

Definition 2.1.8 (Conditional Probability.). The conditional probability of X given Y, is the probability
that X = x given that ¥ = y. We denote this quantity by P[X =x | Y = y].

One useful way to think about the conditional probability P[X | Y] is as a function, between the
given value of Y (i.e., y), and the probability of X (to be equal to x) in this case. Since in many cases x
and y are omitted in the notation, it is somewhat confusing.

The conditional probability can be computed using the formula

P[(X =x) N (Y =y)]
P[Y = y]

P[X=x|Y=y]=

For example, let us roll a dice and let X be the number we got. Let Y be the random variable that
is true if the number we get is even. Then, we have that

P[X:Q |Y:true] :%.

Definition 2.1.9. Two random variables X and Y are independent if P[X =x |Y = y] = P[X = x], for
all x and y.

Observation 2.1.10. If X and Y are independent then P[X =X |Y = y] = P[X = x] which is equivalent
P[X=xNnY=y]

P[Y = y]

to =P[X =x]. That is, X and Y are independent, if for all x and y, we have that

P[X:x N Y:y] :P[X:X]P[Y:y].

Remark. Informally, and not quite correctly, one possible way to think about the conditional probability
P[X =x | Y = y] is that it measure the benefit of having more information. If we know that ¥ =y, do
we have any change in the probability of X = x?



Lemma 2.1.11 (Linearity of expectation). Linearity of expectation is the property that for any
two random variables X and Y, we have that ]E,[X + Y] = E[X] +E[Y] .

Proof: E[X +Y] = Z Plw](X(w) +Y(w)) = Z Plw] X (w) + Z Plw]Y (w) = E[X] +E[Y]. [

we) weld weld

Lemma 2.1.12. If X and Y are two random independent variables, then E[XY] = E[X] E[Y].

Proof: Let U(X) the sets of all the values that X might have. We have that

E[XY] = Z xyP[X=xand Y =y] = Z xyP[X =x]|P[Y = y]
xeU(X),yeU(Y) xeU(X),yeU(Y)
= > > wPB[X=x]P[Y=y]l= ) xP[X=x] > yP[¥=y]
xeU(X) yeU(Y) xeU(X) yeU(Y)
=E[X]E[Y]. ]

2.1.3. Variance and standard deviation

Definition 2.1.13 (Variance and Standard Deviation). For a random variable X, let
VIX] = E[(X - ux0)’] = B[X*] - 1%

denote the variance of X, where uy = E[X]. Intuitively, this tells us how concentrated is the distribu-
tion of X. The standard deviation of X, denoted by oy is the quantity V[X].

Observation 2.1.14. (i) For any constant ¢ > 0, we have V|cX| = c? V[X].
(i) For X and Y independent variables, we have V[X + Y] = V[X] +V[Y] .

2.2. Some distributions and their moments

2.2.1. Bernoulli distribution

Definition 2.2.1 (Bernoulli distribution). Assume, that one flips a coin and get 1 (heads) with probability
p, and 0 (i.e., tail) with probability ¢ = 1 — p. Let X be this random variable. The variable X is has
Bernoulli distribution with parameter p.

We have that E[X]=1-p+0-(1—-p) = p, and

V[X] =E[X?] - u} =E[X*] -p*=p-p° =p(1-p) = pq.

Definition 2.2.2 (Binomial distribution). Assume that we repeat a Bernoulli experiment n times (indepen-
dently!). Let X1, ..., X, be the resulting random variables, and let X = X; +-- -+ X,,. The variable X has
the binomial distribution with parameters n and p. We denote this fact by X ~ Bin(n, p). We have

b(k;n,p) = P[X = k] = (Z)pkq"_k.
Also, E[X] =np, and V[X] = V[XL, X;| = X1, V[Xi] = npg.
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2.2.2. Geometric distribution

Definition 2.2.3. Consider a sequence Xi, X», ... of independent Bernoulli trials with probability p for
success. Let X be the number of trials one has to perform till encountering the first success. The
distribution of X is a geometric distribution with parameter p. We denote this by X ~ Geom(p).

Lemma 2.2.4. For a variable X ~ Geom(p), we have, for alli, that P[X =i] = (1-p)~'p. Furthermore,
E[X]=1/p and V[X] = (1 - p)/p*.

Proof: The proof of the expectation and variance is included for the sake of completeness, and the
reader is of course encouraged to skip (reading) this proof. So, let f(x) = X 2qx' = L and observe

. 1-x2
that f'(x) = X2, ix=! = (1 —x)™2. As such, we have !

[e9)

E|X] = (1 — =1, _ (1 - 24:1’
[X] Z}( R e Rl
and V[X E[XQ]—— 2 1—P)i_1p—]%-=p+p(1—p);i2(1—p)i_2—]%.
Observe that
= 1 144 2
=)= = ((1-x)7)" = o

i=2
As such, we have that

A(x) = Y i°x% = ) (i — 1)x"~ 2+ ix'” —f”(X)+ 1=J"'()€)+1(1"(X)—1)
X

i=2

1 B 2 1—(1 x) 3 2 1 x(2-x)
- x)3 E(a 02 )_(1—x)3+)_c( (1-x)2 )‘(1—x)3+}’(1—x)2

" —x>3 (1 =
As such, we have that

1+p 1 2(1-p) 1-p% 1
VIX]=p+p(1-p)A(l- )—— p+p(1—p)( 3 )——2— 5 )
p p p p p
_p’+2(l-p)+p-p’ —1:1—1? .
p? p?

2.3. Application of expectation: Approximating 3SAT

Let F be a boolean formula with n variables in CNF form, with m clauses, where each clause has exactly
k literals. We claim that a random assignment for F, where value 0 or 1 is picked with probability 1/2,
satisfies in expectation (1 —27%)m of the clauses.

We remind the reader that an instance of 3SAT is a boolean formula, for example F = (x1 + x2 +
x3)(x4 + X1 + x2), and the decision problem is to decide if the formula has a satisfiable assignment.
Interestingly, we can turn this into an optimization problem.
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Max 3SAT

Instance: A collection of clauses: Ci,...,Cy.
Question: Find the assignment to x, ..., x, that satisfies the maximum number of clauses.

Clearly, since 3SAT is NP-CoMPLETE it implies that Max 3SAT is NP-HARD. In particular, the
formula F becomes the following set of two clauses:

X1+ X9 + X3 and x4+ X7 +x9.
Note, that Max 3SAT is a maximization problem.

Definition 2.3.1. Algorithm Alg for a maximization problem achieves an approximation factor « if for
all inputs, we have:

Alg(G) -
Opt(G) —

In the following, we present a randomized algorithm — it is allowed to consult with a source of
random numbers in making decisions. A key property we need about random variables, is the linearity
of expectation property defined above.

Definition 2.3.2. For an event &, let X be a random variable which is 1 if €& occurred, and 0 otherwise.
The random variable X is an indicator variable.

Observation 2.3.3. For an indicator variable X of an event &, we have
E[X]=0-P[X=0]+1-P[X=1] =P[X =1]| =P[€].

Theorem 2.3.4. One can achieve (in expectation) (7/8)-approximation to Max 3SAT in polynomial
time. Specifically, consider a 3SAT formula F with n variables and m clauses, and consider the ran-
domized algorithm that assigns each variable value 0 or 1 with equal probability (independently to each
variable) . Then this assignment satisfies (7/8)m clauses in expectation.

Proof: Let x1,...,x, be the n variables used in the given instance. The algorithm works by randomly
assigning values to x1, .. ., x,, independently, and equal probability, to 0 or 1, for each one of the variables.

Let ¥; be the indicator variables which is 1 if (and only if) the ith clause is satisfied by the generated
random assignment, and 0 otherwise, for i = 1, ..., m. Formally, we have

v, = 1 C; is satisfied by the generated assignment,
Yo otherwise.

Now, the number of clauses satisfied by the given assignment is ¥ = }}72; ¥;. We claim that E[Y] =
(7/8)m, where m is the number of clauses in the input. Indeed, we have

E[Y] = E[i v| = Z]E[Yi] ,

i=1

by linearity of expectation. The probability that ¥; = 0 is exactly the probability that all three literals
appearing in the clause C; are evaluated to FALSE. Since the three literals, Say €1, {2, {3, are instance of
three distinct variable these three events are independent, and as such the probability for this happening
is

PYi=0] =P[(1=0) A (L2 =0) A (£3=0)] =P[£1 = 0] P[la = 0] P[£3 = 0] = = * 5 *

1
g

DN —
DN —

1
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(Another way to see this, is to observe that since C; has exactly three literals, there is only one possible
assignment to the three variables appearing in it, such that the clause evaluates to FALSE. Now, there
are eight (8) possible assignments to this clause, and thus the probability of picking a FALSE assignment
is 1/8.) Thus,

and .
E[Yi] =p[Y=0] «0+P[i=1]+1=<.

Namely, E[# of clauses sat] = E[Y] = 2,2, E[Y;] = (7/8)m. Since the optimal solution satisfies at most
m clauses, the claim follows. [ |

Curiously, Theorem 2.3.4 is stronger than what one usually would be able to get for an approximation
algorithm. Here, the approximation quality is independent of how well the optimal solution does (the
optimal can satisfy at most m clauses, as such we get a (7/8)-approximation. Curiouser and curiouser®,
the algorithm does not even look on the input when generating the random assignment.

Hastad [Has01] proved that one can do no better; that is, for any constant & > 0, one can not
approximate 3SAT in polynomial time (unless P = NP) to within a factor of 7/8 + &. It is pretty

amazing that a trivial algorithm like the above is essentially optimal.

Remark 2.3.5. For k > 3, the above implies (1 — 27¥)-approximation algorithm, for k-SAT, as long as
the instances are each of length at least k.

2.4. Markov’s inequality

2.4.1. Markov’s inequality

We remind the reader that for a random variable X assuming real values, its expectation is E[Y] =
2y Y -P[Y = y]. Similarly, for a function f(-), we have E[f(Y)] = 2, f(y) -P[Y = y].

Theorem 2.4.1 (Markov’s Inequality). LetY be a random variable assuming only non-negative val-
ues. Then for all t > 0, we have

B[]

P[Y 1] <
Proof: Indeed,

E[Y] :ZyP[Y=y] +ZyP[Y=y] 2 ZyP[Y=y]

y=>t y<t y=>t
ZZZP[Y:y]:tP[YZI]. n
y=t

Markov inequality is tight, as the following exercise testifies.

Exercise 2.4.2. For any (integer) k > 1, define a random positive variable X; such that P[ Xy > k E[X]] =
1/k.

@«Curiouser and curiouser!” Cried Alice (she was so much surprised, that for the moment she quite forgot how to
speak good English). — Alice in wonderland, Lewis Carol




2.4.2. Example: A good approximation to k<SAT with good probability

In Section 2.3 we saw a surprisingly simple algorithm that, for a formula F that is 3SAT with n variables
and m clauses, in expectation (in linear time) it finds an assignment that satisfies (7/8)m of the clauses
(for simplicity, here we set k = 3).

The problem is that the guarantee is only in expectation — and the assignment being output by the
algorithm might satisfy much fewer clauses. Namely, we would like to convert a guarantee that is in
expectation into, a good probability guarantee. So, let &,¢ € (0,1/2) be two parameters. We would
like an algorithm that outputs an assignment that satisfies (say) (1—¢&)(7/8)m clauses, with probability
>1-¢.

To this end, the new algorithm runs the previous algorithm

3]
u=|—In—
€ @

times, and returns the assignment satisfying the largest number of clauses.

Lemma 2.4.3. Given a 3SAT formula with n variables and m clauses, and parameters €, ¢ € (0,1/2),
the above algorithm returns an assignment that satisfies > (1 —&)(7/8)m clauses of F, with probability
> 1—¢. The running time of the algorithm is O(e™ (n +m)log ¢~1).

Proof: Let Z; be the number of clauses not satisfied by the ith random assignment considered by the
algorithm. Observe that E[Z;] = m/8,as the probability of a clause not to be satisfied is 1/23. The ith
iteration fails if

m

m—-272;<(1-e)(7/8ym = Z;>m(l-(1-¢)7/8) = (1+73)8 = (1+7¢)E[Z].

Thus, by Markov’s inequality, the ith iteration fails with probability

E[Z] 1

= 1—,
(1+70)EB(Z] 1+72 = ¢

p=P[m—-Z < (1-¢)(7/8)m] =P|Z > (1+7s)E[Z]] <

since (1+7€)(1—¢g)=1+6g—-"Te%2> 1, for e < 1/2.
For the algorithm to fail, all u iterations must fail. Since 1 —x < exp(—x), we have that
1

1
Pt < (1-¢e)" <exp(—&)" < exp(—eu) < exp(—s {— In —
€ @

<o .
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