
Chapter 1

Introduction to Randomized Algorithms
By Sariel Har-Peled, April 26, 2022① People tell me it’s a sin

To know and feel too much within.
I still believe she was my twin, but I lost the ring.
She was born in spring, but I was born too late.
Blame it on a simple twist of fate.

A little twist of fate, Bob Dylan

1.1. What are randomized algorithms?
Randomized algorithms are algorithms that makes random decision during their execution. Specifically,
they are allowed to use variables, such that their value is taken from some random distribution. It is
not immediately clear why adding the ability to use randomness helps an algorithm. But it turns out
that the benefits are quite substantial. Before listing them, let start with an example.

1.1.1. The benefits of unpredictability
Consider the following game. The adversary has a equilateral triangle, with three coins on the vertices
of the triangle (which are, numbered by, I don’t known, 1,2,3). Initially, the adversary set each of the
three coins to be either heads or tails, as she sees fit.

At each round of the game, the player can ask to flip certain coins (say, flip coins at vertex 1 and 3).
If after the flips all three coins have the same side up, then the game stop. Otherwise, the adversary is
allowed to rotate the board by 0, 120 or −120 degrees, as she seems fit. And the game continues from
this point on. To make things interesting, the player does not see the board at all, and does not know
the initial configuration of the coins.

A randomized algorithm. The randomized algorithm in this case is easy – the player randomly
chooses a number among 1, 2, 3 at every round. Since, at every point in time, there are two coins that
have the same side up, and the other coin is the other side up, a random choice hits the lonely coin, and
thus finishes the game, with probability 1/3 at each step. In particular, the number of iterations of the
game till it terminates behaves like a geometric variable with geometric distribution with probability
1/3 (and thus the expected number of rounds is 3). Clearly, the probability that the game continues for
more than 𝑖 rounds, when the player uses this random algorithm, is (2/3)𝑖. In particular, it vanishes to
zero relatively quickly.

A deterministic algorithm. The surprise here is that there is no deterministic algorithm that can
generate a winning sequence. Indeed, if the player uses a deterministic algorithm, then the adversary
can simulate the algorithm herself, and know at every stage what coin the player would ask to flip (it
is easy to verify that flipping two coins in a step is equivalent to flipping the other coin – so we can
restrict ourselves to a single coin flip at each step). In particular, the adversary can rotate the board in

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


the end of the round, such that the player (in the next round) flips one of the two coins that are in the
same state. Namely, the player never wins.

The shocker. One can play the same game with a board of size 4 (i.e., a square), where at each stage
the player can flip one or two coins, and the adversary can rotate the board by 0, 90, 180, 270 degrees
after each round. Surprisingly, there is a deterministic winning strategy for this case. The interested
reader can think what it is (this is one of these brain teasers that are not immediate, and might take
you 15 minutes to solve, or longer [or much longer]).

The unfair game of the analysis of algorithms. The underlying problem with analyzing algorithm
is the inherent unfairness of worst case analysis. We are given a problem, we propose an algorithm, then
an all-powerful adversary chooses the worst input for our algorithm. Using randomness gives the player
(i.e., the algorithm designer) some power to fight the adversary by being unpredictable.

1.1.2. Back to randomized algorithms

(A) Best. There are cases where only randomized algorithms are known or possible, especially for
games. For example, consider the 3 coins example given above.

(B) Speed. In some cases randomized algorithms are considerably faster than any deterministic
algorithm.

(C) Simplicity. Even if a randomized algorithm is not faster, often it is considerably simpler than its
deterministic counterpart.

(D) Derandomization. Some deterministic algorithms arises from derandomizing the randomized
algorithms, and this are the only algorithm we know for these problems (i.e., discrepancy).

(E) Adversary arguments and lower bounds. The standard worst case analysis relies on the idea
that the adversary can select the input on which the algorithm performs worst. Inherently, the
adversary is more powerful than the algorithm, since the algorithm is completely predictable. By
using a randomized algorithm, we can make the algorithm unpredictable and break the adversary
lower bound.
Namely, randomness makes the algorithm vs. adversary game a more balanced game, by giving
the algorithm additional power against the adversary.

1.1.3. Randomized vs average-case analysis

Randomized algorithms are not the same as average-case analysis. In average case analysis, one
assumes that is given some distribution on the input, and one tries to analyze an algorithm execution
on such an input.

On the other hand, randomized algorithms do not assume random inputs – inputs can be arbitrary.
As such, randomized algorithm analysis is more widely applicable, and more general.

While there is a lot of average case analysis in the literature, the problem that it is hard to find
distribution on inputs that are meaningful in comparison to real world inputs. In particular, for numerous
cases, the average case analysis exposes structure that does not exist in real world input.

2



1.2. Examples of randomized algorithms

1.2.1. 2SAT
The input is a 2SAT formula. That is a 2CNF boolean formula – that is, the formula is a conjunction
of clauses, where each clause is made out of two literals, which are ored together. A literal here is either
a variable or its negation. For example, the input formula might be

𝐹 = (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ · · · ∧ (𝑥1 ∨ 𝑥17).
(Here, ∨ is a boolean or, and ∧ is a boolean and.) Assume that 𝐹 is using 𝑛 variables (say 𝑥1, . . . , 𝑥𝑛 ∈
{0, 1}), and 𝑚 clauses. The task at hand is to compute a satisfying assignment for 𝐹. That is, determine
what values has to be assigned to 𝑥1, . . . , 𝑥𝑛.

This problem can be solved in linear time (i.e., 𝑂 (𝑛 + 𝑚)) by a somewhat careful and somewhat
clever usage of directed graphs and strong connected components. Here, we present a much simpler
randomized algorithm – we will present some intuition why this algorithm works. We hopefully will
provide a more detailed formal proof later in the course.

1.2.1.1. The algorithm

The algorithm starts with an arbitrary assignment to the variables of 𝐹. If 𝐹 evaluates to TRUE, then
the algorithm is done. Otherwise, there must be a clause, say 𝐶𝑖 = ℓ𝑖 ∨ ℓ′

𝑖
, that is not satisfied. The

algorithm randomly chooses (with equal probability) one of the literals of 𝐶𝑖, and flip the value assigned
to variable in this literal. Thus, if the algorithm chosen ℓ′

𝑖
= 𝑥17, then the algorithm would flip the value

of 𝑥17. The algorithm continues to the next iteration.
Claim 1.2.1 (Proof later in the course). If 𝐹 has a satisfying assignment, then the above algorithm
performs 𝑂 (𝑛2) iterations in expectation, till it finds a satisfying assignment. Thus, the expected running
time of this algorithm is 𝑂 (𝑛2𝑚).

1.2.1.2. Intuition

Fix a specific satisfying assignment Ξ to 𝐹. Assume 𝑋𝑖 is the number of variables in the assignment in
the beginning of the 𝑖th iteration that agree with Ξ. If 𝑋𝑖 = 𝑛, then the algorithm found Ξ, and it is done.
Otherwise, 𝑋𝑖 changes by exactly one at each iteration. That is 𝑋𝑖+1 = 𝑋𝑖 + 1 or 𝑋𝑖+1 = 𝑋𝑖 − 1. If both
variables of 𝐶𝑖 are assigned the “wrong” value (i.e., the negation of their value in Ξ), then 𝑋𝑖+1 = 𝑋𝑖 + 1.
The other option is that one of the variables of 𝐶𝑖 is assigned the wrong value. The probability that the
algorithm guess the right variable to flip is 1/2. Thus, we have 𝑋𝑖+1 = 𝑋𝑖 + 1 with probability 1/2, and
𝑋𝑖+1 = 𝑋𝑖 − 1 with probability 1/2.

Thus, the execution of the algorithm is a random process. Starting with 𝑋1 being some value in the
range J0 : 𝑛K = {0, . . . , 𝑛}, the question is how long do we have to run this process till 𝑋𝑖 = 𝑛? It turns
out that the answer is 𝑂 (𝑛2), because essentially this process is related to the random walk on the line,
described next.

1.2.2. Walk on the grid
1.2.2.1. Walk on the line

Let Z denote the set of all integer numbers. Consider the random process, that starts at time zero, with
the “player” being at position 𝑋0 = 0. In the 𝑖th step of the game, the player randomly choose with

3



probability half to go left – that is, to move to 𝑋𝑖−1 − 1, or with equal probability to the right (i.e.,
𝑋𝑖 = 𝑋−1 + 1). The sequence X = 𝑋0, 𝑋1, . . . is a random walk on the integers. A natural question is how
many times would the walk visit the origin, in the infinite walk X?

Well, the probability of the random walk at time 2𝑛 to be in the origin is exactly 𝛼𝑛 =
(2𝑛
𝑛

)
/22𝑛.

Indeed, there are 22𝑛 random walks of length 2𝑛. For the walk to be in the origin at time 2𝑛, the walk
has to be balanced – equal number of steps have to be taken to the left and to the right. The number
of binary sequences of length 2𝑛 that have exactly 𝑛 0s and 𝑛 1s is

(2𝑛
𝑛

)
.

Exercise 1.2.2. Prove that
(2𝑛
𝑛

)
= Θ(22𝑛/

√
𝑛). (An easy proof follows from using Stirling’s formula, but

there is also a not too difficult direct elementary proof).

As such, we have that 𝑐−/
√
𝑛 ≤ 𝛼𝑛 ≤ 𝑐+/

√
𝑛, where 𝑐−, 𝑐+ are two constants. Thus, the expected

number of times the random walk visits the origin is

∞∑︁
𝑛=1

𝛼𝑛 ≥ 𝑐−

∞∑︁
𝑛=1

1
√
𝑛
= +∞.

(Why the last argument is valid would be explained in following lectures.)
Namely, the random walk visits the origin infinite number of times.

1.2.2.2. Walk on the two dimensional grid

The same question can be asked when the underlying set is Z × Z – that is the two dimensional integer
grid. Here, the walk starts at the origin 𝑋0 = (0, 0), and in the 𝑖th step, the walk moves with (equal)
probability to one of the four adjacent locations. That is, if 𝑋𝑖−1 = (𝑥𝑖−1, 𝑦𝑖−1), then 𝑋𝑖 is one of the
following four locations with equal probability:

(𝑥𝑖 − 1, 𝑦𝑖), (𝑥𝑖 + 1, 𝑦𝑖), (𝑥𝑖, 𝑦𝑖 − 1), and (𝑥𝑖, 𝑦𝑖 + 1).

As before, one can ask what is the number of times this random walk visits the origin. Let 𝛽𝑛 be
the probability of being in the origin at time 2𝑛.

Exercise 1.2.3. Prove that 𝛽𝑛 = 𝛼2
𝑛 = Θ(1/𝑛). (There is a nifty trick to prove this. See if you can figure

it out.)

Arguing as above, we have that the expected number of times the walk visits the origin is
∑∞

𝑛=1 Θ(1/𝑛) =
+∞. Namely, the walk visit the origin infinite number of times.

1.2.2.3. Walk on the two dimensional grid

The same question can be asked when the underlying set is Z × Z × Z – as before the walk starts at the
origin, and at each step the walk goes to one of the six adjacent cells. It turns out that the probability
of being in the origin at time (say) 6𝑛 is Θ(1/𝑛3/2) (the proof is not clean or easy in this case), and as
such, the expected number of times this walk visits the origin

∑∞
𝑛=1 Θ(1/𝑛3/2) = 𝑂 (1). Surprise!

4



1.2.3. RSA and primality testing
Oversimplifying the basic idea, RSA works as follows. Compute two huge random primes 𝑝 and 𝑞,
release 𝑛 = 𝑝𝑞 as the public key. Given 𝑛 one can encrypt a message, but to decrypt it, one needs both
𝑝 and 𝑞. So, we rely here on the computational hardness of factoring.

Using RSA thus boils down to computing large prime numbers. Fortunately, the following is known
(and somewhat surprisingly, is not difficult to prove):

Theorem 1.2.4. The range J𝑛K = {1, . . . , 𝑛} contains Θ(𝑛/log 𝑛) prime numbers.

As a number 𝑛 can be written using 𝑂 (log 𝑛) digits, that essentially means that a random number
with 𝑡 digits has probability ≈ 1/𝑡 to be a prime number. Namely, primes are quite common.

Fortunately, one can test quickly whether or not a random number is a prime.

Theorem 1.2.5. Given a positive integer 𝑛, it can be written using 𝑇 = ⌈log10 𝑛⌉ digits. Furthermore,
one can decide in 𝑂 (𝑇4) = 𝑂 (log4 𝑛) randomized time if 𝑛 is prime. More precisely, if 𝑛 is not prime,
the algorithm would return “not prime” with probability half, if it is prime, it would return “prime”.

A natural way to decide if a number 𝑛 with 𝑡 bits is prime, is to run the above algorithm (say), 10𝑡
times. If any of the runs returns that the number is not prime, then we return “not prime”. Otherwise,
we return the number of is a prime. The probability that a composite number would be reported as
prime is 1/210𝑡 ≤ 1/10𝑡 , which is a tiny number, for 𝑡, say, larger than 512.

This gives us an efficient way to pick random prime numbers – the time to compute such a number
is polynomial in the number of bits its uses. Now, we can deploy RSA as computing large random prime
numbers is the main technical difficulty in computing it.

1.2.4. Min cut
In the most basic version of the min-cut problem, you are given an undirected graph G with 𝑛 vertices
and 𝑚 edges, and the task is to compute the minimum number of edges one has to delete so the graph
becomes disconnected.

Consider the following algorithm – it randomly assigns the edges of G weights from the range [0, 1].
It then computes the MST 𝑇 of this graph (according to the random weights on the edges). Let 𝑒 be the
heaviest edge in 𝑇 . Removing it breaks 𝑇 into two subtrees, with two disjoint sets of vertices 𝑆 and 𝑇 .
Let (𝑆, 𝑇) denote the set of all the edges in G that have one end point in 𝑆 and one in 𝑇 . The algorithm
outputs the edges of (𝑆, 𝑇) as the candidate to be the minimum cut.

The following result is quite surprising.

Theorem 1.2.6. The above algorithm always outputs a cut, and it outputs a min-cut with probability
≥ 2/𝑛2.

In particular, it turns out that if you run the above algorithm 𝑂 (𝑛2 log 𝑛) times, and returns the
smallest cut computed, then with probability ≥ 1 − 1/𝑛𝑂 (1), the returned cut is the minimum cut! This
algorithm has running time (roughly) 𝑂 (𝑛4) – it can be made faster, but this is already pretty good.

5


	Introduction to Randomized Algorithms
	What are randomized algorithms?
	The benefits of unpredictability
	Back to randomized algorithms
	Randomized vs average-case analysis

	Examples of randomized algorithms
	2SAT
	Walk on the grid
	RSA and primality testing
	Min cut



