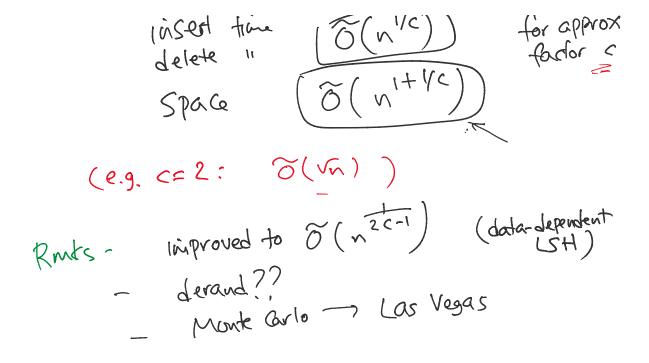

V

pts = binary strings of length d

pts = binary strings of length d
for
$$p = p_1 \cdots p_d$$
 and $q = q_1 \cdots q_d$, e. [f] (f)
 $\delta(p,q) = \left[\{ i: p_i \neq q_i \} \right]$
 $(p_1 amming distanco)$
 $OCalify - Sensitive Hashing (LSH) (Indyt · Motwani '98)$
approach · design family of hash function $h: \Delta \rightarrow T$ st.
if $\delta(p,q) \leq r$, $Pr_{L}(h(p) = h(q))$ is large
if $\delta(p,q) \geq cr$, $Pr_{L}(h(p) = h(q))$ is small.
how?
by random projection!
Pick vand sample $I = \{i_1, \dots, i_k\} \leq \{1, \dots, d\}$
where each index is chosen w. prob a indeply
 $(f(k)) = ord)$.
Define $h(p_1 \cdots p_d) = Pi_1 \cdots Pi_k$.
Obs for fixed p.q.,
 $Pr_{L}(h(p) = h(q)) = (1 - \alpha) \delta(p_1 - p_1)$
 e_q , $p_1 = 1 \circ q_1 + (1 \circ q_2) + (1 \circ q_2) + (1 \circ q_1) = 10$
 $\delta(p,q) = 3$
 $d = q$.

Cor I. if
$$\delta(p,q) > cr$$
, then
 $Prh(h(p) = h(q)) \leq (1-q)^{cr}$
 $\leq e^{-dcr}$ (pick $\alpha = \frac{lan}{cr}$)
 $z = \frac{1}{r}$: small
 $2.$ if $\delta(p,q) < r$. then $=$ small
 $Prh(h(p) = h(q)) > (1-q)^{r}$
 $z = e^{-\frac{lan}{c}} = \frac{1}{r} \sqrt{c}$.


not as small

$$Find idea - repeat t = hash fins & t hash tables)$$

$$=) query time (O(dn^{1/c}))$$

$$=) query time (O(dn^{1/c})) for approx final fills of the time for a for a fills of the time for the time for$$

Other Spaces?
e.g. Li metric space

$$S = \{0, ..., U-13^d, q=(q_1,..,q_d), for P=(P_1,...,P_d), q=(q_1,...,q_d), S_1(P,q) = |P_1-q_1| + ... + |P_d-q_d|$$

 $S_1(P,q) = |P_1-q_1| + ... + |P_d-q_d|$
(Makhatan dist.)
idea- embedding
can map Li into Hamming space ...