Randomized Data Structures

Store a set S of n numbers to support:

- **Search**: given q, is $q \in S$? (membership)
 - given q, find predecessor/successor in S
 - (may not be in S)

- **Insert**
- **Delete**

Known:
- **Static**: $O(n)$ space, $O(n \log n)$ preprocessing
 - $O(\log n)$ query time
- **Dynamic**: $O(\log n)$ query & update time
 - $O(n)$ space

by
- AVL trees
- Red-black trees
- 2-3 trees, 2-3-4 trees,
- $BB(\alpha)$ trees
- Splay tree
- AA trees

Random Method 1: Skip Lists (Pugh ’90)

Idea: random sampling!

$S_0 = S$

S_1

S_2

S_3

Expected space: $O(n + \frac{n}{2^{k+1}} + \ldots) = O(n)$.

1 4 5 6 9 11 13
\[S = S_0 \supseteq S_1 \supseteq S_2 \supseteq \ldots \text{ till } S_k = \emptyset. \]

Let \(S_0 = S \)

\[\forall x \in S_i, \text{ we put } x \in S_{i+1} \text{ w. prob. } \frac{1}{2} \text{ by indep coin flip.} \]

Store each \(S_i \) in a sorted linked list

Odd pts's between \(S_i \) & \(S_{i+1} \).

\[\text{Obs} \quad \# \text{ levels } = O(\log n) \text{ w.h.p.} \]

Pf: Fix an elem \(x \).

level of \(x \) is geom distrib. w. prob. \(\frac{1}{2} \)

\[\Rightarrow \text{ mean } 2 \]

\[\Rightarrow P(\text{level of } x = i) = \left(\frac{1}{2} \right)^i \cdot \frac{1}{2} = 2^{-i} \]

\[\Rightarrow P(\text{level of } x \geq \log n) \]

\[\leq O\left(\frac{1}{n^c} \right) \]

\[= O\left(\frac{1}{n^c} \right). \]

pred-search \((S_i, q)\):

\[x = \text{pred-search} \left(S_{i+1}, q \right) \]

Do linear search in \(S_i \) from \(x \)

\[\Rightarrow \text{ query time at level } i \text{ is geom distrib. w. prob. } \frac{1}{2} \]

\[\Rightarrow E \left[\text{query time per level} \right] = O(1) \]

\[\Rightarrow E \left[\text{query time} \right] = O(\log n). \]

insert \((S_i, x, p)\): \# given ptr \(p \) to pred of \(x \)

flip coin

if heads \{
flip coin
if heads {
 do linear search in S_i
 from p to find pred p' in S_i,
 \begin{align*}
 \text{insert} & (S_i, x, p') \\
 \end{align*}
}

\begin{align*}
\Rightarrow & \quad E[\text{insert time at level } i \mid \text{level}(x) \geq i] \\
& = O(1) \quad \text{geometric dist. w. prob } \frac{1}{2} \\
\Rightarrow & \quad \Pr[\text{level}(x) \geq i] = O\left(\frac{1}{2^i}\right). \\
\Rightarrow & \quad E[\text{insert time}] = \sum_i \frac{1}{2^i} = O(1) \\
& \text{if given pred} \\
& \text{if not, } O(\log n).
\end{align*}

Same for delete.

Rand. Method 2: Trees *(Seidel-Aragon '96)*

Idea:
- back to binary search tree
- pick root "randomly"

How?
- assign each elem
- a random priority value in $[0,1]$ (indep).

- for each subtree
- choose elem w. lowest priority value as its root.

Keys: $\{2, 4, 6, 7, 9, 11, 12\}$
Priorities: $(0.7, 0.5, 0.8, 0.1, 0.4, 0.2, 0.8)$

([[Insert figure here]]

Note: simultaneously, binary search tree (in the key values)

Heap (in the priority values)
Pred-search: same as in standard binary search tree
query time $O(\log n)$ w.h.p.
(equiv. to recur. depth of rand. quicksort)

Insert: pick rand. priority value
fix problems by rotations

$O(1)$ expected time if pred/succ given
(if omitted)

Similar for delete

no messy cases
no extra ptrs.

Question: can we do better than $O(\log n)$ query time?
no for comp.-based algns
but yes for membership queries for integers!
Assume all elms are in $\{0, 1, \ldots, U-1\}$.
Easy Method 0:

- Use bit vector of size \(U \)
- Query time \(O(1) \)
- Insert \(O(1) \)
- Delete \(O(1) \)

but space is \(O(U) \).

Next: hashing...