Min Enclosing Circle

Given set S of n pts in 2D, find smallest circle énclosing S.

(applies: bounding volume, "center point"

facility location, ...)

has 3 pts on boundary =7 brute force $O(n^3.n)$ time Obs: C* is unique &

brute force $O(n^3 \cdot n) = O(n^4)$ time - n Parthest-point diagram $O(n\log n)$ time m(n) time

Toronoi diagrami
Megiddo/Dyer 183 O(n) Time Complicated
Seidel/Welzl 190: O(n) time but simpler
(losely related to linear programming (LP)
Clarkson's Alg'm (188)
idea - by rand. sampling!
MEC(S): 1. pick rand. subset RS of size r 1. pick rand. subset RS of size r
1. pick rand. subset RC > of start
C = MEC(R)
4. add {PES: poatside C}.
to R.
} (until no new pts are added to R)
5. return C
Correctness 4 # repeats £4".
Correctness 4 # repeats = 4.
at each Heration.
if all Pi Pz, P3 are
inside C,
then radius (MEC(S))
= radius (MEC(pt pt pt))
< radius(C)

< radius(C)
= rodius (MEC(K))
< radius (MEC(S))
$=$ $C = C^* : done.$
Case ?: Otherwise, at least one of pi, Pz, P3
15 Owisbe C.
& is added to R.
=) 4 iterations suffice. D
Runtine Analysis:
DCS is called an 2-11C
Det A subset R = 3 10 cm ots of S, 7
A XTC IV
DC contains 7 (pt of R.
exterior of exterior of R. exterior of all large sets
extense of (i.e. R is a hitting set of all (arge sets defined by circles)
+ of one (I)
1D: E-Net of size [=]
εν.
Lemma 3 E-net R of size O(togn).
eln fact, rand sample R works
In fact, rand sample R works w.h.p. ("with high prob." 7 1-te2)
Pf: Fix circle C with 7 En pts of S
D. Contains no pt of R)

Pr (exterior of contains no pt of R)
$\leq (1-\epsilon)'$
(assure (assure non) Sen pls None are chosen in R.
choose r= = Inn w. replaced
if we flip comis $ = \frac{2}{5}$ $ = \frac{1-25}{5}$
S(1- Fer) - clnn
$\leq c$ $=$ c $=$ c \sim c .
"district" circles = O(3)
$\Rightarrow Pr(err) \leq O(n^3) \cdot \frac{1}{n^2}$ by union by
$= O(\sqrt{c-s}).$
RMK: Spe can be reduced to $O(\frac{1}{2}\log \frac{1}{2})$ for any "range space of bounded vodins"
for any "range space of bounded VCdims"
(for circles in \mathbb{D} , $\exists \ \mathcal{E}\text{-net} \ \text{of size} \ \mathcal{O}(\frac{1}{\mathcal{E}})$)
Back to Clarkson's alg'm
(n line 3, we know (contains no production.
(by contrapositive) (in exterior with $E \approx (f) \log n$ $r \approx \frac{1}{2} \log n$
(by contrapositive, in exterior with E= if) logn.
= 6/D loan) off

V

A=B

$$nB=nA$$

= $O(\frac{1}{2}\log n) pts of s$.

The each iter.

 $|R| = O(r + 3 * \frac{1}{2}\log n)$

Set $r = rn$
 $O(\sqrt{n}\log n) + O(n)$
 $O(\sqrt{n}\log n) + O(n)$

 $= \left[\bigcirc (n) \right]$