RandomPed Complexity Classes

ZPP = all languages (i.e. decision problems) with Las Vegas alg/ms in expected polytime "E ero-error Probabilistica

RP = all languages L with one-sided Monte Carlo algins
in worst case polytime
Uniput X.

St. Hinput X,

(if XEL => Pr(A outputs yes) > [2]

(if XEL => Pr(A outputs no) = 1.

 Tan be changed to any const ∈ (0,1) (Zmk: by repeating & taking or of outpot (with t iterations, err prob 5 5t).

Miller-Rabin; COMPOSITE E RP)
Adleman-Huang: " & ZPP)

XKS: " CP)

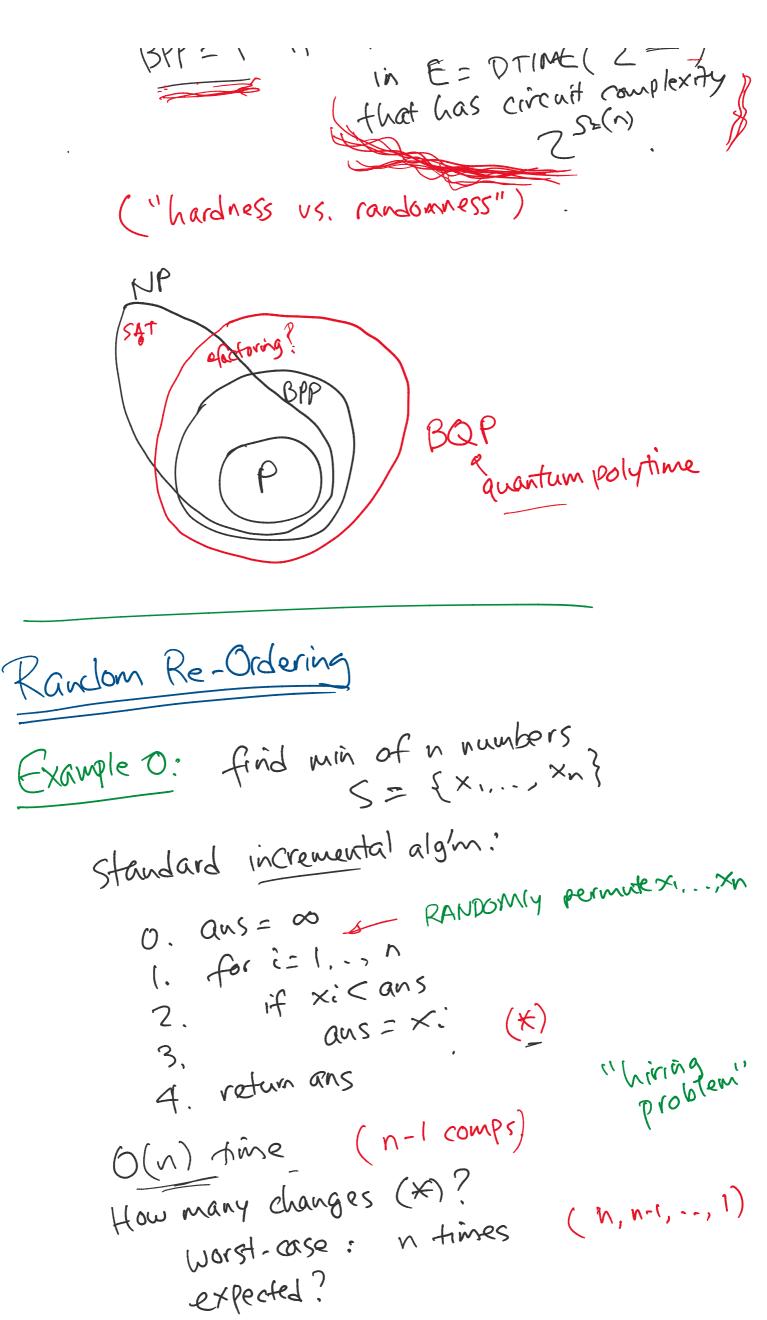
Factl. PCZPPCRP (by Markon).

Fact 2. RP S NP.

Pf: certificate = seq of rand bits. D

Facts ZPP = RP n co-RP.

PI. (C) since ZPP = co-ZPP.


Pf: (C) ... since ZPP = co-ZPP. (2) Suppose we have 2 one-sided Monte-Carlo alg'm of for L. run both: if a sorys no, know x & L. if d'says no, know XFL. v. prob 52 -> Otherwise repeat NP expaded # iterations < 2. 6-NP CO-RP RP all languages L with 2-sided Monte-Gro algms in polytime 1 Bounded-error St. Yinput X, if XEL =) Pr (d outputs yes on x) > = Propopilistic if x#L => Pr(d outputs no on x) > = Polytine" RMK: $\frac{2}{8}$ can be changed to any const \in $(\frac{1}{2}, \frac{1}{2})$. by repeating & taking majority of output (with t repetitions, err prob < 1000 by Chernoff bd...) lif exactly ±, we get different class PP)

(if exactly \frac{1}{2}, we get different class IT) not relevant to us Fact 4 RP S BPP. (also, co-RP S BPP, sina BPP=co-BPP) Upper bd for BPP? (Cnown: (Sipser-Gacs-auterman 183)

BPP = NP 1 co-NPNP

Lauterman 183) Infact, BPP = ZPPNP In fact, MA = ZPPNP (Goldreich 97) Luckerman 97) Possibility of general devandonization? Then (Adelman 178) BPP = P/poly. all languages L that can be solved by a <u>non-uniform</u> det algin in polytime i.e. a sequence of algins di, dz, ...dn,...
one for each input size n
solything that is given on advice
string with poly length

or equiv. My string with poly length dopending on n.
or equiv: Poly-size circuit.
Pf: By repeating on times, e runtime, still poly. get an algin of with err prob. (Zen
Fix n. Pick ravel sequence r of T(n) bits. Dick ravel sequence r of Size n, 8 in bits
Pr (a) 13 wish
By union bd, Pr (] x, of spen d is wrong on x using r)
i Probabilistic 2 Jean 1 for C)
(probations) (prove existing) (prove existing) (prove existing) (prove existing) (prove existing) (prove existing) (prove exists) (prove existing) (prove existing) (prove existing) (prove existing) (prove existing) (prove existing)
by showing that x of speen. Himput x of speen. A using r is correct on x.
this is a alginal.
Big Open Problem (5 BPP = P?
Known: Impagliazzo & Wigderson 97 showed
BPP = P if there is a Problem of) in E = DTIME(2001) The complexity p

naively: list all n! permutations, compute II, take aug,... rewrite algin bademards: min(S); 0. if S= \$ return 00 1. pick x & S randomly 2. ans = min (5-{x}) if x < ans 4. ans = x (x)
5. return ans any tixed).
Pr ((*) is done) = Pr (x < min(S-{x})) For any fixed 5. = Pr(x = min(S)).expected total # changes $F(n) = F(n-1) + \frac{1}{n} \cdot 1 + \frac{1}{(n-1)(n-1)} \cdot 0$ = (farmonic numbers)