CS 574, Spring 2021
Timothy Chan

Homework 2 (due March 10 Wednesday 5pm (CT))

Instructions: You may work in groups of at most 3; submit one set of solutions per group. Always
acknowledge any discussions you have with other people and any sources you have used (although
most homework problems should be doable without using outside sources). In any case, solutions
must be written entirely in your own words.

1. [23 pts] Let X be a set of n elements. Let S be a collection of dn subsets of X, each subset
containing exactly ¢ elements. Here, ¢ is a constant (but d is not).

We want to construct a large subset A C X such that no set S € S is completely contained

in A.

(a)

[7 pts] Consider the following greedy strategy: pick an unmarked element x that is in
the smallest number of sets of S, add x to A, mark all elements y such that z and y lie
in a common set of S, and repeat until all elements are marked.

Prove that this yields a subset A C X of size Q(n/d) such that no subset S € S is
completely contained in A. (Hidden constant factors in the  notation may depend
on c.)

[16 pts] Give a randomized (Las Vegas) algorithm to construct a subset A C X of size
Q(n/d"(¢=1)) such that no subset S € S is completely contained in A.

For example, for ¢ = 4, the bound is Q(n/d"/3), which is better than in part (a).

Hint: start with a random sample. ..

[Note: this result was recently applied to obtain an improved algorithm for a well known
problem—I'1l reveal the source afterwards. . . |

2. [24 pts] We are given an n X n matrix A where every row is in increasing order and every
column is in increasing order (i.e., A7, j| < Ali,j + 1] and A[i, j] < A[i + 1, j] for every i, 7).

(a)

[7 pts] Given a value t, describe a deterministic algorithm for listing all elements in A
that are at most £. The output does not have to be in sorted order. The running time
should be O(n + K), where K denotes the output size, i.e., the number of elements at
most .

[17 pts] Given k, describe a randomized Las Vegas algorithm for finding the first &
smallest elements in A. The output does not have to be in sorted order. The expected
running time should be O(n + k). The number of random bits used should be O(logn).

Hint: use part (a) and random sampling.



3. [20 pts] Given a set S of n points in 2D and a number k, we want to find the smallest circle
C* that encloses at least n — k points of S (i.e., there are at most k points outside the circle).

Describe a randomized algorithm (Monte Carlo is fine) for this problem that has expected
running time of the form O(nk®) for some constant c.

Hint: if we pick a random sample R C S of size r, what is the probability that the minimum
enclosing circle of R is equal to C*?7

Note: constant error probability (say, 1/3) suffices. (For high probability bounds, an extra
logn factor in the time bound would be acceptable. .. )

4. [33 pts] Given a set S of n disjoint line segments in 2D, consider the problem of computing
the vertical decomposition VD(.S) (also called trapezoidal decomposition), as studied in class.
In this question, you will explore a different approach to solve the problem, based on random
sampling instead of randomized incremental construction.

(a) [5 pts] Let R C S be a random subset of size r, chosen by sampling with replacement.
For each trapezoid A, let Sa denote the subset of all line segments of S that inter-
sects A. Prove that maxacvp(r) [Sal = O((n/r)logn) with high probability (e.g., with
probability at least 1 — 1/n).

(b) [14 pts] Consider the following divide-and-conquer approach to compute VD(S): pick
a random sample R C S of size r, naively compute VD(R) (e.g., by a quadratic-time
algorithm), and recursively compute VD(Sa) for each A € VD(R), and combine these
vertical decompositions. Suppose we set r = f(n) for some suitably chosen, slow-growing
function f(n).

Provide the details and analyze the expected running time (which should be o(n!*¢) for
an arbitrarily constant ¢ > 0).

(c) [14 pts] Next, consider a different approach where we pick a large value for r. More
precisely, consider a generalized problem: the input is a set .S of n line segments and a
subset T' C S of size m, the goal is to compute VD(T") along with the sets Sa for each
A € VD(T). The approach is: pick a random sample R C T of size r = m/2, recursively
compute VD(R) and the sets Sa for each A € VD(R), then naively compute VD(Ta)
for each A € VD(R), and combine answers.

Provide the details and analyze the expected running time (which should be better than
in part (b)).



