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Induction to Malingates

We saw Chenoft Hoeffding bounds

for hem of independent random

variables and applications

Last lecture we saw concentration

bounds also hold for negatively
correlated random variables and

saw an application However there

are other settings where
we don't

have independence or negative
correlation and still concentration

holds



Martingales provide a powerful

framework for such
bounds are

are also somewhat natural in

algorithms We saw an example of

a martingale type process
in the

last lecture on rounding a

fractional solution for the

Max K lover problem

Background on Conditional Probability

Suppose I is a probability space

and X I R is a real valued

random variable



If A R is an even then

E X A is a real value

which in the setting when
I is

discrete is defined as

A F a
PeCw X w

In the continuous setting it
is

A fixidx
A



Given two random variables X and Y

on of the random variable

E X Y is defined as

follows If Z E X Y

then Z w E X Y Y cos

this is in the discrete setting

r

ÑÉÉÉ

The meaning is the following Y

partitions I into parts where

Y is constant in each part



Y b for some fixed b constitutes a

part which can be alternatively

thought as an event As w 411g

Z assigns a value to each we As

a value equal to E X As

Claim E EEXIV E

Proof Exercise

When we write E X Y Yu Ya

where 4 Y are several

landom variables then we are

looking at the partition of I



induced by Yi tn taking on

different values in a joint way

The events correspond to

Abibu by
51 Yilco bi

Towerputs

Lemma E EEA B C c E AK

Proof Exercise

Technically a more formal way
to

describe this is via 5 algebras

and filtrations but
that is requires

more background



Dfn A sequence of
random variables

Xo X1 X2 is a martingale

sequence with respect to another

sequence of random
variables

Yo Yu if no

Xn is determined by

Yo Yn

II E 1 1 0 n

iii E Xn Yo tn Xn

A sequence
Xo X is a martingale

if it is a martingale wet itself

That is 1 1 1 0 and

ii E Xn Xo tn Xn



Exempt Suppose a gambler starts
out

with a random amount of Xo

money on day 0 and goes to the

casino every day and plays some

slot machine which is fair
Let Yi be the winnings on

day i 20 if he she loses

Let Xi be the total
amount

that player has at the end of

the i th game
Because each

game is fair E Yi 0

Xml Yi Yn Xn E Yu

Xn



The main thing that martingales
allow one to capture is that the

choice of how much
to bet and

on which slit machine to
bet

on can be arbitrarily dependent

on all the information choices

up to the previous step

Dob Martingale

Mitigatesallow one to capture

a particular type of phenomenon

where we are interested in a

function f U R over some objects

U and we have a random variable

X that takes values in U In



other words X is a random object

chosen from U according to some

process This process can be defined

by a sequence of random
variables

Yo Yi Ya And is

determined by Yo Yn However

Yo Yi for i can reveal

partial information about X

Let us define

X E f x You Yi

We will assume that E f X 20



Claim Xo Xn is a martingale

sequence with respect
to Yo Yn

Proof

E it You Yi

E E f x Yo Yin You li

by defu of Xiti

E f x Yo Yi

by lower rule

Xi by defu
D

Remack In some selling it is

easier to view f X as another random

variable Z and define Xi EEZ Y Yi



Ex Empty bins in balls and
him

Suppose we throw in balls into n

bins independently We think of this

as a sequential process where we

place ball i in the ith step and

Yi is the random choice of i th ball

Y it n Let X be the of

empty bins after all in balls are

thrown Then we know

Xi E XI Yin Yi

Xo E x n 1 1
m



Example Ld Gln p be a random

graph on n vertices where each

potential edge in the graph
is chosen

to be added independently with

probability p Let X be the

chromatic number of the
random

graph Technically we should write

it as Xnip to show dependence

on n and p It is somewhat

complicated to
estimate But

we can define a Doob martigate

called the edge expose martingale

where 4 Yu You
correspond

to the binary random variables

for picking the edges in some fixedolder



Then Xo E X anp

and Xi X Yin Ni

We can define another Doob martingale

called the vertex exposure martingale
where we Yp Yn Yn is an

ordering of vertices and Yi reveals

in punation about
the edges of valet

i to valices I to it in the

random puren



Azuma Hoefding Inequality

Recall the additive Chernoff

inequality

n

Let X Σ Xi where
i

i Xi are independent

i Xi C ai bi if n

Then 12

Pe X EX Y e
Fiat

and x

De X E X x e Ti air

A simpler from is when



ai bi Ci Ci in which

case we have

Pe X Efx 7 e É
Similarly the lower tail

Azuma Hoefding
bound extends

this to the martingale selling

theorem Let Xo Xi Xu be a

martingale sequence
where

Xi Xi l Esc is

deterministically Then

Pe Xns.Xotxee.tt ci



Proof we need an auxiliary lemma

Lemma Let X be a random

variables in 1 I with E X7 0

hm E EZ eat

Proof The function E is convex

in 1,1 For any E 1 1

we can write 1 111 17

Hence by convexity of eat

e IIe éa

ie EE
If X E 1,1 with E x 0

taking expectation on both tides

E eat Eea



By Taylor expansion
1 1 11
et

Corollary 7 0 XE c c

E eat EE
Proof Consider X and

apply previous lemma



Now we do the main proof

Let to be a parameter to be
chosen

later

Pe Xn X.sn Pe e ett

E elk Xo

So it boils down to estimating

E et
Xn Xo



For this we consider

Zi Xi Xi 1 Recall

Zi Ci and

E Zil Xo star 0 sine

E Xi Xin Xo Xin

E Xi Xo Xii Xi t

Xin Xi 0

Consider E etZi Xo X

By Lemma E ci



Now

et Xn Xo et Zutznitz

et Zuitti etZn

et 2mi
in et xo.in

EE ethnitzig the

Efetta until EE et

e

ᵗ Efik

Therefore Efet Xn
to

e
1.2



Putting together

ethanol t E

eᵗ EÉ L1

choosing t u

52 7

Corollary If C C i then

D lxn Xolzc.am 25



Mcmids Iuality andAlication

Chernoff Hoeffding bound says

that if X X X Xn where

Xi Xn are independent and

in a bounded range than X

has concentration Now consider

the selling when we have an

arbitrary function f U xU UnR

In other words f is a function

of n variables each of which

has domain Ui



Den f U XU Un R is

c Lipschitz for some
c o it

f X1 Xii Y Xity in f x exit Zixin X

C

i y Z E Ui X G Uj jti

In other words changing one coordinate

does not change the value of the

function by more than c in

absolute value

A more refined definition is that

f is 1 Cu Cn Lipschitz if

f X1 Xii Y Xity in f x exit Zixin X

Ci



i y Z E Ui X G Uj jti

Then Suppose f is circa cn Lipschitz

Let Xi Xi Xn be independent
random variables where Xi E Ui

Then

Pa If X Xn Elf Xi Xn

2

Note that intendance
is required

In some settings it can be relaxed



We reduce this to the Azuma's
inequality via the Dools martingale
Main thing to note is where

independence is used

Let x ̅ denote Xi Xn

and Zi E fLx ̅ X

Zo E f x ̅

Recall that Zo Zn is a Doob

martingale sequence We wish to

apply Azuma's inequality
to

Zo Zn For this we need to

bound Zi Zi



Zi Zi E f x ̅ Xin Xi

Eff x ̅ Xi Xii

Recall that Xi Xn are independent

Xitt Xn are independent of

Xp Xi

We have

Zi Ze Sup E x ̅ XianXian Xi a

animal
E f x ̅ Xia ex.inta b

Sup E f Ui Mi ha Xins Xn
Ui Ui

Efflum mn b Xiti XDa b

Ci



Where we used Ci Lipschitz ness of f

and independence of Xie Xn from

Xi Xi

Now we can apply Azuma's

inequality to Zo Zn and

conclude that

Pe Zn Zo A 52 2

We have Z ECF x ̅

and Zn x ̅



Actions
Balls and Bins

FethTm balls into n

bins independently Let Xi Xm

be the random choices of the

m balls Xi G n c m

Define f X1 X2 Xm to be the

of empty bins

E f x Xm is easy to

calculate and is equal

to n 1 7m

We claim f is 1 Lipschitz This



is easy to verify Changing the

assignment of one ball can change

of empty
bins by at most 1

Thus we get concentration

Pe flxin.im n 1 15 7

é

Hence if X
Vn the puban

I

imatic number of random graph

Consider random graph
G n p



Let X G be the chromatic number

of 4 For instance it is known

that EEX anti Fun
What about concentration

We consider the vertex exposure

martingale Fix ordering of vertices

and Let Yi for mlex
i denote

the random vector of edges
to

valices 1 to i 1

Let f Y Yn be the
chromatic

number of G n p

We claim f is 1 Lipschitz

Changing the edges incident to a



single vertex can change chromatic

number by at must
ii why

Thus the chromatic number of

a nip is concentrated around its

mean


